JPH0562653B2 - - Google Patents

Info

Publication number
JPH0562653B2
JPH0562653B2 JP10665086A JP10665086A JPH0562653B2 JP H0562653 B2 JPH0562653 B2 JP H0562653B2 JP 10665086 A JP10665086 A JP 10665086A JP 10665086 A JP10665086 A JP 10665086A JP H0562653 B2 JPH0562653 B2 JP H0562653B2
Authority
JP
Japan
Prior art keywords
rubber
resistance
air spring
inner layer
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10665086A
Other languages
Japanese (ja)
Other versions
JPS62266240A (en
Inventor
Tsunejiro Mori
Kazuyoshi Hiromura
Akio Maeda
Takashi Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd, Nippon Zeon Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP10665086A priority Critical patent/JPS62266240A/en
Publication of JPS62266240A publication Critical patent/JPS62266240A/en
Publication of JPH0562653B2 publication Critical patent/JPH0562653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • F16F9/0409Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall characterised by the wall structure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、車両用懸架装置等に用いられる空気
バネの構成材料に関する。 〔従来技術〕 車両用懸架装置等に用いられる空気バネは、ゴ
ム等の可撓性材料を略円筒状に成形して構成され
ており、その内部に二層の補強部材が埋設されて
いる。この補強部材は、ナイロン繊維等の合成繊
維すだれ織物からなり、補強性を担うタテ糸とこ
のタテ糸の密度を保持するヨコ糸で構成され、各
タテ糸が互いに交差する方向で配置されている。 上述した空気バネは、外筒とオイルダンパーの
端部の機械的に取り付けられて気室を形成し、内
部に空気を封入し、圧縮弾性によりシヨツクを緩
衝し得るようになつている。 この空気バネは、乗車人員や積荷量の増減、車
速、路面状況に応じて車高、車の姿勢、バネ定数
を制御して優れた操縦安定性と乗り心地とを得る
ために苛酷な使用条件下におかれている。このた
め、空気バネ周囲の雰囲気温度は高温になる傾向
があり、従来以上の耐熱性が要求されるようにな
つてきている。 ところが、従来、このような空気バネには、そ
の材料として耐熱性、耐寒性、耐屈曲性、耐油
性、耐オゾン性などの諸特性のバランスに優れた
合成ゴムであるクロロプレンゴムが採用されてき
た。 しかし、従来、内層及び外層がクロロプレンゴ
ムで構成された空気バネは、耐熱性に限界があ
り、新たな耐熱性の改良要求には応えられず、特
に硬化型劣化を起こすことから長期の使用に耐え
られなかつた。また、クロロプレンゴム自体が結
晶構造を保有しているため、寒冷地での使用は不
適とされており、動的オゾン性能にも不安がもた
れているなどの欠点を有していた。 一方、内層及び外層がエピクロルヒドリン−エ
チレンオキシド系共重合体ゴムあるいはエピクロ
ルヒドリン−プロピレンオキシド系共重合体ゴム
で構成された空気バネは、クロロプレンゴムに比
べ耐熱性、耐寒性、耐油性、耐動的オゾン性に優
れてはいるものの、耐屈曲性に劣ることから実用
に供し得なかつた。 〔発明の目的〕 本発明は、耐熱性、耐寒性、耐屈曲性、耐油性
及び耐動的オゾン性が総合的に優れた空気バネを
提供することを目的とする。 〔発明の構成〕 このため、本発明は、内層と外層の中間部に補
強部材を配した空気バネにおいて、前記内層およ
び外層あるいは内層と外層のいずれか一方をエピ
クロルヒドリン−プロピレンオキシド−不飽和エ
ポキシド三元共重合体ゴム90〜50重量%とクロロ
プレンゴム10〜50重量%とからなるゴム混合物で
構成したことを特徴とする空気バネを要旨とする
ものである。 以下、本発明の構成について詳しく説明する。 第1図は、空気バネ装置を示す一部を切欠した
正面視説明図、第2図は第1図におけるA部の拡
大説明図である。 これらの図において、1は外筒、2は空気バネ
を構成するゴム膜である。ゴム膜2は、第2図に
示すように内層2aと外層2bと補強部材層2c
とからなる。補強部材層2cにおいて、X1は内
層側のタテ糸、X2は外層側のタテ糸である。3
はオイルダンパー、Gは気室である。 本発明においては、ゴム膜2において、内層2
a及び外層2bあるいは内層2aと外層2bのい
ずれか一方をエピクロルヒドリン−プロピレンオ
キシド−不飽和エポキシド三元共重合体ゴム90〜
50重量%とクロロプレンゴム10〜50重量%とから
なるゴム混合物で構成する。内層2aおよび外層
2bのそれぞれの厚さは、0.3〜1.5mm程度であ
る。なお、このゴム膜2は、所望の金型中で通常
100〜250℃の温度で加硫することにより製造され
る。 (1) エピクロルヒドリン−プロピレンオキシド−
不飽和エポキシド三元共重合体ゴム。 不飽和エポキシドとしては、アリルグリシジ
ルエーテル、グリシジルメタクリレート、グリ
シジルアクリレート及びブタジエンモノオキシ
ドなどが挙げられる。使用量は、1〜15モル%
であり、より好ましくは2〜10モル%である。
不飽和エポキシドを共重合させることにより、
熱軟化劣化及び耐動的オゾン性が改良される
が、15モル%を越えると熱によつて硬化型劣化
が生じ、ゴム弾性を失い脆くなる欠陥を生じ
る。また、プレピレンオキシドの量は、ゴム成
形品に求められる耐寒性に応じて30〜90モル%
の範囲で適宜決定されるが、その量が30モル%
未満では耐寒性に問題を生じ、90モル%を越え
ると耐油性が低下し膨潤度が大きくなる。共重
合成分の特に好ましい割合は、エピクロルヒド
リン15〜55モル%、プロピレンオキシド35〜85
モル%、不飽和エポキシド2〜10モル%であ
る。 (2) クロロプレンゴム。 本発明におけるクロロプレンゴムとは、2−
クロロ−1,3−ブタジエンの単独重合体ゴム
または、2−クロロ−1,3−ブタジエン及び
これと共重合可能な単量体との共重合体ゴムで
あり、イオウ変性タイプも含まれる。 (3) ゴム混合物。 上記共重合体ゴム90〜50重量%と上記クロロ
プレンゴム10〜50重量%からなる。共重合体ゴ
ムが90重量%を越えると耐屈曲性が低下し、50
重量%未満では耐動的オゾン性に問題を生じ
る。 このゴム混合物の加硫剤としては、不飽和エ
ポキシドを共重合した共重合体ゴムと不飽和二
重結合を含有しているクロロプレンゴムとの混
合物であることから、イオウ系加硫剤が使用可
能である。また、いずれも塩素原子を含有して
いるので、塩素原子を介して加硫反応を生起せ
しめるトリアジンチオール系加硫剤、チオウレ
ア系加硫剤も使用可能である。その他、通常用
いられる補強剤、充てん剤、軟化剤、可塑剤、
老化防止剤及び加硫促進剤などは、実施の態様
に応じて添加し得る。 次義に実施例により本発明を具体的に説明す
る。 なお、本発明は特定のゴム混合物を空気バネの
内層及び外層あるいは内層と外層のいずれか一方
に用いることに特徴が存するものであるので、実
施例においては、便宜上、ゴム混合物の特性を評
価した。配合処方及びゴム混合物における数値は
重量部を意味する。 〔実施例〕 エピクロルヒドリン(30モル%)−プロピレン
オキシド(67モル%)−アリルグリシジルエーテ
ル(3モル%)三元共重合体ゴムとクロロプレン
ゴムとを、各々、下記第1表の配合処方により他
の配合剤とともに試験用密閉式混合機で混練した
のち、試験用ロール機にてコンパウンドブレンド
方式を採用し、下記第2表に示す配合比となるよ
うに調製した。 テストピース加硫条件は、160℃×30分のプレ
ス加硫とした。 各試料につき、デマーチヤ屈曲試験、空気加熱
老化試験、低温衝撃ぜい化試験、耐油試験をJIS
K6301に準拠し行つた。 また、動的オゾン劣化試験は、40℃雰囲気、オ
ゾン濃度50pphmとして試験片に0〜30%の伸長
を与え、動的条件下で行い、亀裂状態を判定し
た。 結果を第2表に示す。 なお、実験番号1、2、6、7は比較列を示
す。
[Technical Field of the Invention] The present invention relates to constituent materials of air springs used in vehicle suspension systems and the like. [Prior Art] Air springs used in vehicle suspension systems and the like are formed by molding a flexible material such as rubber into a substantially cylindrical shape, and two layers of reinforcing members are embedded inside the spring. This reinforcing member is made of synthetic fiber blind fabric such as nylon fiber, and is composed of warp yarns that provide reinforcement and weft yarns that maintain the density of the warp yarns, and each warp yarn is arranged in a direction that intersects with each other. . The above-mentioned air spring is mechanically attached to the outer cylinder and the end of the oil damper to form an air chamber, which seals air inside and is capable of cushioning the shock by compressive elasticity. These air springs are designed to operate under harsh operating conditions in order to achieve excellent handling stability and ride comfort by controlling the vehicle height, vehicle posture, and spring constant according to changes in the number of passengers and cargo, vehicle speed, and road surface conditions. It is placed below. For this reason, the ambient temperature around the air spring tends to be high, and higher heat resistance than ever before is required. However, conventionally, such air springs have been made of chloroprene rubber, a synthetic rubber with an excellent balance of properties such as heat resistance, cold resistance, bending resistance, oil resistance, and ozone resistance. Ta. However, conventional air springs whose inner and outer layers are made of chloroprene rubber have limited heat resistance and cannot meet new demands for improved heat resistance. I couldn't stand it. In addition, since chloroprene rubber itself has a crystalline structure, it is considered unsuitable for use in cold regions, and has drawbacks such as concerns about dynamic ozone performance. On the other hand, air springs whose inner and outer layers are made of epichlorohydrin-ethylene oxide copolymer rubber or epichlorohydrin-propylene oxide copolymer rubber have better heat resistance, cold resistance, oil resistance, and dynamic ozone resistance than chloroprene rubber. Although it was excellent, it could not be put to practical use because of its poor bending resistance. [Object of the Invention] An object of the present invention is to provide an air spring that is comprehensively excellent in heat resistance, cold resistance, bending resistance, oil resistance, and dynamic ozone resistance. [Structure of the Invention] For this reason, the present invention provides an air spring in which a reinforcing member is disposed between an inner layer and an outer layer, in which either the inner layer and the outer layer or the inner layer and the outer layer are made of epichlorohydrin-propylene oxide-unsaturated epoxide. The gist of this invention is an air spring characterized by being composed of a rubber mixture consisting of 90 to 50% by weight of original copolymer rubber and 10 to 50% by weight of chloroprene rubber. Hereinafter, the configuration of the present invention will be explained in detail. FIG. 1 is a partially cutaway front view explanatory view showing the air spring device, and FIG. 2 is an enlarged explanatory view of section A in FIG. 1. In these figures, 1 is an outer cylinder, and 2 is a rubber film constituting an air spring. As shown in FIG. 2, the rubber membrane 2 includes an inner layer 2a, an outer layer 2b, and a reinforcing member layer 2c.
It consists of. In the reinforcing member layer 2c, X 1 is a warp thread on the inner layer side, and X 2 is a warp thread on the outer layer side. 3
is an oil damper and G is an air chamber. In the present invention, in the rubber film 2, the inner layer 2
a and the outer layer 2b or either the inner layer 2a and the outer layer 2b are made of epichlorohydrin-propylene oxide-unsaturated epoxide terpolymer rubber 90~
It consists of a rubber mixture consisting of 50% by weight and 10-50% by weight of chloroprene rubber. The thickness of each of the inner layer 2a and the outer layer 2b is about 0.3 to 1.5 mm. Note that this rubber film 2 is normally placed in a desired mold.
Manufactured by vulcanization at temperatures of 100-250°C. (1) Epichlorohydrin-propylene oxide-
Unsaturated epoxide terpolymer rubber. Examples of unsaturated epoxides include allyl glycidyl ether, glycidyl methacrylate, glycidyl acrylate, and butadiene monoxide. The amount used is 1 to 15 mol%
and more preferably 2 to 10 mol%.
By copolymerizing unsaturated epoxide,
Thermal softening deterioration and dynamic ozone resistance are improved, but if the amount exceeds 15 mol %, hardening type deterioration occurs due to heat, resulting in loss of rubber elasticity and brittle defects. In addition, the amount of prepylene oxide is 30 to 90 mol% depending on the cold resistance required for the rubber molded product.
The amount is determined as appropriate within the range of 30 mol%.
If it is less than 90 mol%, there will be problems with cold resistance, and if it exceeds 90 mol%, oil resistance will decrease and the degree of swelling will increase. Particularly preferable ratios of copolymerization components are 15 to 55 mol% of epichlorohydrin and 35 to 85 mol% of propylene oxide.
mol%, unsaturated epoxide 2-10 mol%. (2) Chloroprene rubber. The chloroprene rubber in the present invention is 2-
It is a homopolymer rubber of chloro-1,3-butadiene or a copolymer rubber of 2-chloro-1,3-butadiene and a monomer copolymerizable therewith, and also includes a sulfur-modified type. (3) Rubber mixture. It consists of 90 to 50% by weight of the above copolymer rubber and 10 to 50% by weight of the above chloroprene rubber. If the copolymer rubber exceeds 90% by weight, the bending resistance decreases, and the
If it is less than % by weight, problems will arise in dynamic ozone resistance. As the vulcanizing agent for this rubber mixture, a sulfur-based vulcanizing agent can be used since it is a mixture of copolymer rubber copolymerized with unsaturated epoxide and chloroprene rubber containing unsaturated double bonds. It is. Furthermore, since both contain chlorine atoms, triazinethiol-based vulcanizing agents and thiourea-based vulcanizing agents that cause a vulcanization reaction via chlorine atoms can also be used. In addition, commonly used reinforcing agents, fillers, softeners, plasticizers,
Antiaging agents, vulcanization accelerators, and the like may be added depending on the embodiment. The present invention will be specifically explained below using Examples. Note that the present invention is characterized by using a specific rubber mixture for the inner layer and outer layer of the air spring, or for either the inner layer and the outer layer, so in the examples, for convenience, the characteristics of the rubber mixture were evaluated. . Numerical values in formulations and rubber mixtures refer to parts by weight. [Example] Epichlorohydrin (30 mol%)-propylene oxide (67 mol%)-allyl glycidyl ether (3 mol%) terpolymer rubber and chloroprene rubber were each mixed according to the formulation shown in Table 1 below. After kneading with the compounding ingredients in a test internal mixer, a compound blending method was adopted in a test roll machine to prepare the compounding ratios shown in Table 2 below. The test piece vulcanization conditions were press vulcanization at 160°C for 30 minutes. Each sample was subjected to JIS Demartyer bending test, air heating aging test, low temperature impact embrittlement test, and oil resistance test.
Conducted in accordance with K6301. In addition, the dynamic ozone deterioration test was conducted under dynamic conditions in which the test piece was given an elongation of 0 to 30% in an atmosphere of 40° C. and an ozone concentration of 50 pphm, and the crack state was determined. The results are shown in Table 2. Note that experiment numbers 1, 2, 6, and 7 indicate comparison columns.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したことから明らかなように、本発明
によれば耐熱性、耐寒性、耐屈曲性、耐油性及び
耐動的オゾン性が総合的に優れた空気バネを得る
ことができる。この空気バネは、この諸特性のバ
ランス保持に優れていることから、特に車両用懸
架装置等に用いられる空気バネとして好適であ
り、耐久性能の向上が図れる。
As is clear from the above description, according to the present invention, it is possible to obtain an air spring that is comprehensively excellent in heat resistance, cold resistance, bending resistance, oil resistance, and dynamic ozone resistance. Since this air spring is excellent in maintaining the balance of these various characteristics, it is particularly suitable as an air spring used in a vehicle suspension system, etc., and its durability performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気バネ装置を示す一部を切欠した正
面説明図、第2図は第1図A部の拡大説明図であ
る。 1……外筒、2……ゴム膜、2a……内層、2
b……外層、2c……補強部材層、3……オイル
ダンパー、G……気室。
FIG. 1 is a partially cutaway front explanatory view showing the air spring device, and FIG. 2 is an enlarged explanatory view of section A in FIG. 1...Outer cylinder, 2...Rubber membrane, 2a...Inner layer, 2
b...Outer layer, 2c...Reinforcing member layer, 3...Oil damper, G...Air chamber.

Claims (1)

【特許請求の範囲】 1 内層と外層の中間部に補強部材を配した空気
バネにおいて、前記内層および外層あるいは内層
と外層のいずれか一方をエピクロルヒドリン−プ
ロピレンオキシド−不飽和エポキシド三元共重合
体ゴム90〜50重量%とクロロプレンゴム10〜50重
量%とからなるゴム混合物で構成したことを特徴
とする空気バネ。 2 内層および外層のそれぞれの厚さが0.3〜1.5
mmである特許請求の範囲第1項記載の空気バネ。
[Scope of Claims] 1. An air spring in which a reinforcing member is disposed between an inner layer and an outer layer, wherein either the inner layer and the outer layer or the inner layer and the outer layer are made of epichlorohydrin-propylene oxide-unsaturated epoxide terpolymer rubber. An air spring comprising a rubber mixture consisting of 90 to 50% by weight of chloroprene rubber and 10 to 50% by weight of chloroprene rubber. 2 The thickness of each inner layer and outer layer is 0.3 to 1.5
The air spring according to claim 1, which is mm.
JP10665086A 1986-05-12 1986-05-12 Air spring Granted JPS62266240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10665086A JPS62266240A (en) 1986-05-12 1986-05-12 Air spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10665086A JPS62266240A (en) 1986-05-12 1986-05-12 Air spring

Publications (2)

Publication Number Publication Date
JPS62266240A JPS62266240A (en) 1987-11-19
JPH0562653B2 true JPH0562653B2 (en) 1993-09-08

Family

ID=14438990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10665086A Granted JPS62266240A (en) 1986-05-12 1986-05-12 Air spring

Country Status (1)

Country Link
JP (1) JPS62266240A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575096B2 (en) * 2004-09-27 2010-11-04 東洋ゴム工業株式会社 Air spring
DE112012002208B4 (en) * 2011-05-24 2021-04-29 Firestone Industrial Products Company, Llc Elastomeric air spring bellows and air spring having it
DE102016221202A1 (en) * 2016-10-27 2018-05-03 Contitech Luftfedersysteme Gmbh Air spring element
DE102016221203A1 (en) * 2016-10-27 2018-05-03 Contitech Luftfedersysteme Gmbh Air spring element

Also Published As

Publication number Publication date
JPS62266240A (en) 1987-11-19

Similar Documents

Publication Publication Date Title
US10737543B2 (en) Thermoplastic jounce bumpers
US6858675B1 (en) Vibration damping rubber member and process of producing the same
US4936814A (en) Transmission belt with anistropic composite material having an elastomer matrix
US3983094A (en) Thermally stable polyurethane elastomers produced from poly(oxypropylene)-poly(oxyethylene)glycols of high oxyethylene group content
US3432165A (en) Game ball
US20110210486A1 (en) Rubber articles subjected to repeated deformation and compositions for making the same
JPH0562653B2 (en)
US4362840A (en) Soft, heat and fatigue resistant elastomeric articles
EP2603713B1 (en) Thermoplastic jounce bumpers
US6927244B2 (en) Heat-resistant vibration damping rubber composition
Hayashi et al. Low-temperature properties of hydrogenated nitrile rubber (HNBR)
EP0461464A1 (en) Vibration-isolating material
EP0687708A1 (en) Improved heat and ozone resistant NBR/epichlorohydrin blends
JP2008164167A (en) Transmission belt and method of manufacturing transmission belt
KR101551020B1 (en) Bush composition containing polyetheresther based thermoplastic elastomer for automobile
JPH0665423A (en) Vibration damping material
JP2959364B2 (en) Spring seat rubber for suspension equipment
KR950010358B1 (en) Manufacturing method of air bag cloth
JPH04296345A (en) Production of nitrile/urethane rubber molded article
SU1152225A1 (en) Rubber mix on carbo-chain rubber base
JP2005337292A (en) Rubber molding and pneumatic device including it
KR20240063216A (en) Shock-absorbing pad with enhanced dimensional stability
CN118065150A (en) PVC (polyvinyl chloride) artificial leather resistant to low-temperature folding
JPS6383485A (en) Rubber hose for air conditioner
KR20200060985A (en) Fabric for impact absorbes