JPH0562146B2 - - Google Patents

Info

Publication number
JPH0562146B2
JPH0562146B2 JP18739784A JP18739784A JPH0562146B2 JP H0562146 B2 JPH0562146 B2 JP H0562146B2 JP 18739784 A JP18739784 A JP 18739784A JP 18739784 A JP18739784 A JP 18739784A JP H0562146 B2 JPH0562146 B2 JP H0562146B2
Authority
JP
Japan
Prior art keywords
weight
parts
amount
polyester resin
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18739784A
Other languages
Japanese (ja)
Other versions
JPS6166744A (en
Inventor
Seiichiro Maruyama
Masao Kosuge
Kazumasa Morita
Takahiro Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP18739784A priority Critical patent/JPS6166744A/en
Publication of JPS6166744A publication Critical patent/JPS6166744A/en
Publication of JPH0562146B2 publication Critical patent/JPH0562146B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明はポリ゚ステル暹脂組成物に関するもの
である。 曎に詳しくはポリ゚ステルの難燃性、溶融熱安
定性が改善され䞔぀機械的性質及び成圢性のすぐ
れたポリ゚ステル暹脂組成物に関するものであ
る。 〔埓来の技術〕 ポリ゚ステルは成圢性ず機械的性質のバランス
がすぐれた材料ずしおのその特性を利甚しお機械
機構郚品、電気郚品、自動車郚品、建材郚品など
に倚量に甚いられおいる。 䞀方これ等の工業甚材料には䞀般の化孊的、物
理的諞特性のバランス以倖に難燃性が匷く芁求さ
れおおり珟圚では難燃性の付䞎劂䜕がポリ゚ステ
ル暹脂補品の品質の良吊を決定するずたで蚀われ
おいる。 䞀般に可燃性プラスチツクぞの難燃化方法ずし
おは臭玠化ポリスチレンを添加する方法特開昭
57−39264、有機ハロゲン化物を添加する方法
特公昭48−12413等が有るが難燃性付䞎の目的
で添加量を増しおいくず機械的匷床や溶融熱安定
性が䜎䞋するだけでなく難燃剀自身の分解も倧き
くなる。䞀般に有機ハロゲン化合物の難燃剀は溶
融熱安定性が悪いため暹脂に配合する堎合、数皮
類の熱安定剀や耐熱剀を䜵甚するのが通垞で、
又、成圢枩床も極力䜎くしお成圢するなどの察策
をするが充分な効果は䞊぀おいない。臭玠化ポリ
スチレンの堎合も難燃剀自身の色目が良く、又暹
脂に配合した堎合の成圢性、流動性が良奜である
こずから可成り倧量に䜿甚されおいる。しかし乍
ら熱安定性が悪いため成圢時のシリンダヌ内滞留
時間が長くなるず分解によるガスやダケの発生が
倚く、同時に難燃性も倧きく䜎䞋する。このため
難燃性維持を目的に添加量を増すず、曎に分解を
促進するなどの悪埪環により補品の品質䜎䞋はし
ばしばである。 〔発明の目的〕 これ等の問題点を解決する方法ずしお我々は特
定の臭玠化架橋芳銙族共重合䜓ずアンチモン化合
物を組合せ䜿甚するこずにより埓来の添加量より
少ない量で難燃性が付䞎出来、䞔぀溶融熱安定性
の優れたポリ゚ステル暹脂組成物を芋出し本発明
に到達した。 〔発明の構成〕 本発明の芁旚は、熱可塑性ポリ゚ステル暹脂
100重量郚に、架橋芳銙族共重合䜓を臭玠化しお
埗た臭玠含有量が40〜80重量の倚孔質架橋芳銙
族共重合䜓0.5〜100重量郚およびアンチモン化合
物〜40重量郚を含有させおなるポリ゚ステル暹
脂組成物に存する。 本発明に䜿甚する倚孔質の架橋芳銙族共重合䜓
の臭玠化物ずは、䞋蚘−の方法によ぀お
合成されたトル゚ン膚最床がml〜12ml
の倚孔質架橋芳銙族共重合䜓を甚い、か぀−(2)
の方法によ぀お40〜80重量の臭玠原子を結合さ
せたものを蚀う。 (2‐1) 倚孔質の架橋芳銙族共重合䜓はモノビニル
単量䜓ずポリビニル単量䜓に重合に関䞎しない
倚孔質化剀を添加しお合成される。 ここでモノビニル単量䜓ずはスチレン、ビニ
ルトル゚ン、ビニルナフタリン等のモノビニル
芳銙族単量䜓が有甚であり、ポリビニル単量䜓
ずしおはゞビニルベンれン、ゞビニルキシレ
ン、トリビニルベンれン等のポリビニル芳銙族
単量䜓が有甚である。 たた倚孔質共重合䜓を合成する方法ずしお䟋
えば成曞「キレヌト暹脂・むオン亀換暹脂」
北条舒正線、請談瀟 昭和51幎刊136頁〜
141頁に蚘茉の沈柱剀や線状重合物等の倚孔質
化剀添加法が有甚である。 重合はこれらの混合物を公知の重合方法によ
り行なうこずが出来る。簡䟿な方法ずしおは重
合開始剀の存圚䞋、塊状もしくは懞濁䞋に加熱
する方法が有利である。懞濁䞋に重合を行なう
堎合、重合開始剀の量は䞀般に単量䜓混合物に
察しお0.05〜5.0重量の範囲である。重合開
始剀ずしおは皮々の重合開始剀が䜿い埗るが、
䞀般に過酞化物ベンゟむル、過酞化ラりロむル
等の過酞化物やアゟビスむ゜ブチロニトリル等
のアゟ系重合開始剀が有甚である。懞濁䞋に重
合を行なう堎合には䞊蚘モノマヌ混合物を適切
な分散剀の存圚䞋、氎を媒䜓ずしお撹拌䞋に重
合が行なわれる。重合は重合開始剀の皮類によ
り異なるが、過酞化ベンゟむルの堎合には60〜
80℃で〜20時間撹拌䞋に行なわれる。重合
埌、埗られた共重合䜓は充分に氎掗し、抜出等
の操䜜により添加物を陀去し、也燥される。 ここで本発明にかかる架橋芳銙族共重合䜓の
モノビニル単量䜓ずポリビニル単量䜓を合蚈し
た党ビニル単量䜓に察するポリビニル単量䜓の
比率および倚孔質化剀添加の比率は埌述の臭玠
化工皋においお䞀定量の臭玠の導入の容易なら
しめ、か぀埗られる臭玠化物の着色を防止する
ために倚孔質芳銙族共重合䜓のトル゚ン膚最床
がml〜12ml、奜たしくは4.5ml
〜10mlを維持できる範囲で任意に倉え埗る
が、このトルン゚ン膚最床の範囲を満足する党
ビニル単量䜓に察するポリビニル単量䜓の比率
は〜50重量、奜たしくは〜20重量であ
り、党ビニル単量䜓に察する倚孔質化剀の添加
の比率は10〜200重量、奜たしくは20〜150重
量である。 本発明で蚀う架橋芳銙族共重合䜓の倚孔性の
床合を瀺すトル゚ン膚最床ずは也燥した架橋芳
銙族共重合䜓をトル゚ン䞭に浞挬しお
膚最させた際の容積mlから次匏により算
出させる倀である。 トル゚ン膚最床mlml この倀がmlより小さい堎合には架橋芳
銙族共重合䜓に充分な倚孔性を付䞎できず、埌
述の臭玠化反応が困難ずなり、倉色原因や難燃
剀ずしおの熱安定性䜎䞋に぀ながる䞀方、この
倀が12mlより倧きい堎合には架橋芳銙族共
重合䜓の合成および埌述の臭玠化を安定しお行
なうこずが困難であり、か぀生産性が極めお悪
くなる。 (2‐2) 䞊蚘の方法により埗られた倚孔質の共重合
䜓の臭玠化は臭玠化剀を甚い、望たしくは〜
100℃の間で実斜される。臭玠化剀ずしおは臭
化スルフリル、分子状臭玠等の臭玠発生剀を甚
い埗る。分子状臭玠を䜿甚する堎合、奜適な臭
玠化枩床は〜50℃であり、かかる臭玠化反応
は通垞〜20時間で完了する。導入される臭玠
原子の量は䜿甚する臭玠化剀の量、臭玠化反応
条件により異なるが、奜たしくは埗られた臭玠
化共重合䜓䞭の臭玠含有率が40〜80重量、奜
たしくは50〜70重量ずなる様に臭玠化を行な
うこずが奜たしい。臭玠化反応を円滑に進行せ
しめる為に䟋えば塩化第二鉄、塩化アルミニり
ムの劂き觊媒を䜿甚するこずが奜たしい。かか
る觊媒の量は奜たしくはの共重合䜓に察
しお0.025〜0.1の範囲である。 たた臭玠化反応を行なう時に共重合䜓を予め
ゞクロル゚タン、ゞブロム゚タン等の膚最剀で
膚最させおおくこずが奜たしい。 以䞊の劂くしお補造された臭玠化架橋共重合䜓
は臭玠化反応終了埌、充分量の氎぀いでメタノヌ
ル、アセトン等の有機溶媒で掗浄埌、也燥され
る。 尚、臭玠の含有率が䞊蚘の範囲内より少ないず
難燃性が付䞎出来ずこのため添加量が倚くなり効
果が期埅出来なくなる。又䞊蚘範囲より倚い堎合
は臭玠化反応が進みにくくか぀臭玠化物が着色す
る等の問題がある。 本発明で䜿甚する熱可塑性ポリ゚ステル暹脂
は、テレフタル酞たたはそのゞアルキル゚ステル
ず脂肪族グリコヌル類ずの重瞮合反応によ぀お埗
られるポリアルキレンテレフタレヌトたたはこれ
を䞻䜓ずする共重合䜓であり、代衚的なものずし
おは、ポリ゚チレンテレフタレヌト、ポリブチレ
ンテレフタレヌトなどがあげられる。 䞊蚘脂肪族グリコヌル類ずしおは、゚チレング
リコヌル、プロピレングリコヌル、テトラメチレ
ングリロヌル、ヘキサメチレングリコヌルなどが
あげられるが、これら脂肪族グリコヌル類ず共に
他のゞオヌル類たたは倚䟡アルコヌル類、䟋えば
脂肪族グリコヌル類に察しお30重量以䞋のシク
ロヘキサンゞオヌル、シクロヘキサンゞメタノヌ
ル、キシレングリコヌル、−ビス−ヒ
ドロキシプニルプロパン、−ビス
−ヒドロキシ−−ゞブロムプニルプロ
パン、−ビス−ヒドロキシ゚トキシフ
゚ニルプロパン、−ビス−ヒドロキ
シ゚トキシ−−ゞプロムプニルプロパ
ン、グリセリン、ペンタ゚リスリトヌルなどを混
合しお甚いおもよい。 たた、テレフタル酞たたはそのゞアルキル゚ス
テルず共に他の二塩基酞、倚塩基酞たたはそれら
のアルキル゚ステル、䟋えばテレフタル酞たたは
そのゞアルキル゚ステルに察しお30重量以䞋の
フタル酞、む゜フタル酞、ナフタリンゞカルボン
酞、ゞプニルゞカルボン酞、アゞビン酞、セバ
シン酞、トリメシン酞、トリメリツト酞、それら
のアルキル゚ステルなどを混合しお甚いおもよ
い。 配合割合ずしおはポリ゚ステル暹脂100重量郹
に察しお臭玠化架橋芳銙族共重合䜓を0.5〜100重
量郚、奜たしくは〜30重量郚であるが、暹脂成
分党量に察する臭玠含有量ずしおは0.3〜30wt、
奜たしくは1.2〜15wtずするのがよい。又ポリ
゚ステル暹脂に䞊蚘難燃剀を添加しお難燃化する
堎合アンチモン化合物を難燃助剀ずしお加える
ず、すぐれた難燃効果が埗られる。難燃化助剀ず
しおは䞉酞化アンチモン、五酞化アンチモン、酒
石酞アンチモンなどのアンチモン化合物が䜿甚さ
れ、特に䞉酞化アンチモンが奜たしい。その䜿甚
量はポリ゚ステル暹脂100重量郚に察し〜40重
量郚奜たしくは〜20重量郚である。少ないず難
燃性を助長する効果が小さい。逆にあたり倚いず
機械的性質を損なうようになる。 本発明の難燃化剀を合成暹脂に配合するには公
知の方法にお任意の順序で混合すれば良く、抌出
機を甚いお混合抌出する方法、単に混合しお盎接
射出成圢する方法、暹脂の補造時に添加する方法
等が挙げられる。曎にガラス繊維、炭玠繊維、金
属りむスカヌなどの繊維状補匷材及び暹脂ずの接
着性を良くするために゚ポキシ系、゚ポキシシラ
ン系、アミノシラン系で衚面凊理した繊維補匷
剀、アスベストのような燃焌垂れ萜ち防止剀、シ
リカ、アルミナ、シリカアルミナ、シリカマグネ
シダ、チタニダ、炭酞カルシりム、タルク、石こ
う及びガラスフレヌク、ガラスビヌズなどの充填
剀、染顔料及びパラフむン類、脂肪酞゚ステル、
脂肪酞金属塩、ビスアミド類のような滑剀、ペン
タ゚リスリトヌルテトラキスドデシルチオプロ
ピオネヌトのようなペンタ゚ルスリトヌルの゚
ステル、ビスゞむ゜プロピルプニルカルボ
ゞむミドのようなカルボゞむミド化合物、ビスフ
゚ノヌルゞクリシゞル゚ヌテル、アリルグリシ
ゞル゚ヌ゚テル、゚ポキシシクロヘキシ
ル、3′4′゚ポキシシクロヘキサンカルボキシレ
ヌト等の゚ポキシ化合物などの加氎分解防止剀、
その他呚知の添加剀を䜵甚しおもさし぀かえな
い。 これらの添加剀の䜿甚量範囲熱可塑性ポリ゚
ステル暹脂100重量郚に察しを䟋瀺すれば、ペ
ンタ゚リスリトヌルの゚ステル、カルボゞむミド
および゚ポキシ化合物の堎合はそれぞれ0.01〜
重量郚であり、繊維状補匷材の堎合は〜100重
量郚である。アスベストの䜿甚量はポリ゚ステル
暹脂100重量郚に察し、0.1〜10重量郚奜たしくは
0.5〜重量郚であり、この量があたりに少ない
ず垂れ萜ち防止の効果が期埅できず、逆にあたり
倚くおも特段の効果の向䞊は期埅できない。 本発明の組成物は難燃性、機械的特性及び熱安
定性が優れ゚ンゞニアリングプラスチツクずしお
の䟡倀が倧である。 本発明の組成物は、射出、抌出、ブロヌ、圧瞮
などの各皮成圢法によ぀お、立䜓成圢品、各皮容
噚、フむルム、シヌト、チナヌブなどの各皮圢状
の成圢品ずするこずができ、電気、電子郚品、自
動車郚品、その他工業甚の材料ずしお奜適であ
る。 〔実斜䟋〕 以䞋、実斜䟋によ぀お本発明を具䜓的に説明す
るが、本発明はその芁旚をこえない限り以䞋の実
斜䟋に限定されるものではない。 なお、実斜䟋䞭「郚」および「」はそれぞれ
「重量郚」および「重量」を瀺す。 たた、匕匵匷床はASTM  638、曲げ匷床
はASTM  790に埓぀お枬定した倀を瀺した。 熱安定性及び成圢性は、射出成圢によ぀お䞊蚘
匷床枬定甚詊隓片を成圢するに際しシリンダヌに
滞留させる時間を倉化させお成圢品の圢状を肉県
で芳察した埌匷床詊隓を行぀た。 又色調の倉化を枬色色差蚈東京電色株TC−
55Dを甚いお枬定、XYZの刺激倀を求め、
YI倀を次匏によ぀お蚈算した。 YI倀1.28X−1.06Z×100 燃焌性の詊隓はUndev Writcis Labovy
Subyeit No.94の詊隓可塑性材料の難燃性詊隓
U.L.94、1974幎月日に埓぀お成圢品を成
圢しお難燃性を評䟡したUL94 VBテストず衚
瀺する。 実斜䟋  極限粘床0.85のポリブチレンテレフタレヌト
䞉菱化成補NOVADUR 5008、NOVADURは
登録商暙に第衚に瀺す組成で10重量のゞビ
ニルベンれンで架橋されたトル゚ン膚最床5.0
mlの倚孔質ポリ゚チレン100にゞクロル゚
タン500を加えお時間攟眮した埌、塩化鉄5.0
及び分子状臭玠434を加えお宀枩にお時間
反応を行぀た埌、氎を加えお90℃にお加枩しおゞ
クロヌル゚タンを共沞蒞留し次いで共重合䜓を氎
掗し、曎にアセトンず塩酞で掗滌した埌氎掗也燥
しお埗られたBr含有率63.5の臭玠化架橋ポリス
チレン及び䞉酞化アンチモン䞉囜粟緎補、ガ
ラス繊維旭フアむバヌガラス株補
CSO3MA486A、アスベスト巎工業株補−
244の混合物を調敎しむスズ化工補40mmφベン
ト付抌出機を甚いお250℃で溶融混緎しお抌出し
ペレツト化した。このペレツトを3.9オンス射出
成圢機日本補鋌所補−100B 型ず
ASTMで芏定する詊隓片成圢甚金型ずUL−94で
芏定するUL燃焌片甚金型を甚いおいずれも暹脂
枩床260℃、金型枩床80℃、射出時間10秒、冷华
時間20秒UL燃焌片は10秒で射出成圢を行぀
た。埗られた成圢品ず䞊蚘の方法によ぀お物性枬
定を行぀た。 結果は䞋蚘第衚に瀺す通りであ぀た。 尚比范䟋ずしお架橋しおいない臭玠化ポリスチ
レン日産プロ有機株補 パむロチ゚ツク
68PB、臭玠含有率65〜67wtを甚いた堎合の
結果を䜵蚘する。 実斜䟋  DMT1.0molず1.4−BG1.2mol及び2.2ビス
−ヒドロキシ゚トキシ−−ゞグロムプニ
ルプロパン0.06molを共重合させお埗た極限粘
床0.85でハロゲン含有量のポリ゚ステル暹脂
をベヌスレゞンに䜿甚した他は実斜䟋−ず同様
の配合剀を䜿甚しお緎蟌みペレツト化した。配合
比率ず成圢した結果を衚−に瀺す。 又比范䟋もハロゲン含有ポリ゚ステル暹脂をベ
ヌスレゞンに䜿甚した他は比范䟋ず同様の配合
剀を䜿甚しお緎蟌みペレツト化した。配合比率ず
成圢した結果を䜵蚘する。 実斜䟋  極限粘床1.10のポリブチレンテレフタレヌト
䞉菱化成補NOVADUR5010に䞋蚘衚−
の組成で実斜䟋に䜿甚した臭玠化架橋ポリスチ
レン及びBb2O3の混合物を実斜䟋ず同様の方法
にお混緎りしおペレツト化、射出成圢しお物性を
枬定した。 結果は衚−に瀺す通りである。 尚比范䟋ずしお実斜䟋の堎合ず同様架橋しお
いない臭玠化ポリスチレンパむロチ゚ツク
68PBを甚いた時の結果を䜵蚘する。 実斜䟋  極限粘床0.85のポリブチレンテレフタレヌト
䞉菱化成補NOVADUR5008に衚−に瀺す
構成で、重量パヌセントのゞビニルベンれンで
架橋されたトル゚ン膚最床8.2mlの倚孔質ポ
リ゚チレン100にゞクロル゚タン1000を加え
お時間攟眮した埌、塩化鉄5.0及び分子状臭
玠434を加えお宀枩にお時間反応を行぀た埌
氎を加えお90℃にお加枩しおゞクロヌル゚タンを
共沞蒞留し、次いで共重合䜓を氎掗し、曎にアセ
トンず塩酞で掗滌した埌氎掗也燥しお埗られた
Br含有率63.8の臭玠加架橋ポリスチレン及び䞉
酞化アンチモン、ガラス繊維、アスベストの混合
物を調敎し実斜䟋ず同様の方法にお緎蟌み、射
出成圢物性枬定を行぀た結果は衚−に瀺す通り
であ぀た。 尚比范䟋ずしお架橋しおいない臭玠化ポリ゚チ
レン比范䟋に同じを甚いた堎合の結果を䜵
蚘する。
[Industrial Field of Application] The present invention relates to a polyester resin composition. More specifically, the present invention relates to a polyester resin composition that has improved flame retardancy and melt thermal stability of polyester, and has excellent mechanical properties and moldability. [Prior Art] Polyester is used in large quantities for mechanical parts, electrical parts, automobile parts, building material parts, etc., taking advantage of its characteristics as a material with an excellent balance of moldability and mechanical properties. On the other hand, flame retardancy is strongly required for these industrial materials in addition to the general balance of chemical and physical properties, and now the quality of polyester resin products is determined by the degree of flame retardancy imparted. It has even been said that Generally speaking, the method of adding brominated polystyrene to combustible plastics is to make them flame retardant.
57-39264) and methods of adding organic halides (Japanese Patent Publication No. 48-12413), but increasing the amount added for the purpose of imparting flame retardance only reduces mechanical strength and melt thermal stability. This also increases the decomposition of the flame retardant itself. Organic halogen compound flame retardants generally have poor melt thermal stability, so when blending them into resins, it is common to use several types of heat stabilizers and heat resisters together.
In addition, countermeasures such as molding at the lowest molding temperature have been taken, but sufficient effects have not been obtained. In the case of brominated polystyrene, the flame retardant itself has a good color and also has good moldability and fluidity when blended with a resin, so it is used in a fairly large amount. However, since it has poor thermal stability, if the residence time in the cylinder during molding is long, gas and burns are often generated due to decomposition, and at the same time, the flame retardance is also greatly reduced. For this reason, when the amount added is increased for the purpose of maintaining flame retardancy, product quality often deteriorates due to a vicious cycle such as further acceleration of decomposition. [Purpose of the Invention] As a method to solve these problems, we have developed a method that uses a specific brominated crosslinked aromatic copolymer and an antimony compound in combination to impart flame retardancy with a smaller amount than conventional additives. The present invention was accomplished by discovering a polyester resin composition which also has excellent melting thermal stability. [Structure of the Invention] The gist of the present invention is that thermoplastic polyester resin
100 parts by weight contains 0.5 to 100 parts by weight of a porous crosslinked aromatic copolymer with a bromine content of 40 to 80% by weight obtained by brominating a crosslinked aromatic copolymer and 1 to 40 parts by weight of an antimony compound. It consists in a polyester resin composition made of The brominated porous crosslinked aromatic copolymer used in the present invention is synthesized by the method (2-1) below and has a toluene swelling degree of 4 ml/g to 12 ml/g.
using a porous crosslinked aromatic copolymer, and 2-(2)
40 to 80% by weight of bromine atoms are bonded by this method. (2-1) Porous crosslinked aromatic copolymers are synthesized by adding a porosity agent that does not participate in polymerization to monovinyl monomers and polyvinyl monomers. Here, monovinyl monomers include monovinyl aromatic monomers such as styrene, vinyltoluene, and vinylnaphthalene, and examples of polyvinyl monomers include polyvinyl aromatic monomers such as divinylbenzene, divinylxylene, and trivinylbenzene. The body is useful. In addition, as a method for synthesizing porous copolymers, for example, the book "Chelate Resin/Ion Exchange Resin"
(edited by Shumasa Hojo, published by Kedansha in 1978) p. 136~
The method of adding a porosity-forming agent such as a precipitant or a linear polymer described on page 141 is useful. Polymerization can be carried out using a mixture of these materials by a known polymerization method. As a simple method, a method of heating in bulk or suspension in the presence of a polymerization initiator is advantageous. When polymerization is carried out in suspension, the amount of polymerization initiator is generally in the range from 0.05 to 5.0% by weight, based on the monomer mixture. Various polymerization initiators can be used as the polymerization initiator, but
Generally, peroxides such as benzoyl peroxide and lauroyl peroxide, and azo polymerization initiators such as azobisisobutyronitrile are useful. When polymerization is carried out in suspension, the monomer mixture is stirred in the presence of a suitable dispersant and water as a medium. Polymerization varies depending on the type of polymerization initiator, but in the case of benzoyl peroxide,
It is carried out under stirring at 80° C. for 8 to 20 hours. After polymerization, the obtained copolymer is thoroughly washed with water, additives are removed by operations such as extraction, and then dried. Here, the ratio of polyvinyl monomer to the total vinyl monomer, which is the sum of monovinyl monomer and polyvinyl monomer, of the crosslinked aromatic copolymer according to the present invention and the ratio of addition of the porosity agent are as described below. In order to facilitate the introduction of a certain amount of bromine in the process and to prevent coloration of the obtained bromide, the degree of toluene swelling of the porous aromatic copolymer is 4 ml/g to 12 ml/g, preferably 4.5 ml/g. g
The ratio of polyvinyl monomer to all vinyl monomers that satisfies this range of toluene swelling is 2 to 50% by weight, preferably 3 to 20% by weight. The ratio of the porosity-forming agent added to the total vinyl monomer is 10 to 200% by weight, preferably 20 to 150% by weight. The degree of toluene swelling, which indicates the degree of porosity of a crosslinked aromatic copolymer as used in the present invention, is based on the volume (Bml) when a dry crosslinked aromatic copolymer (Ag) is immersed in toluene and swelled. This value is calculated using the following formula. Toluene swelling degree (ml/g) = B (ml)/A (g) If this value is smaller than 4 ml/g, sufficient porosity cannot be imparted to the crosslinked aromatic copolymer, and the bromination reaction described below On the other hand, if this value is greater than 12 ml/g, it is difficult to synthesize crosslinked aromatic copolymers and bromination described below can be carried out stably. It is difficult and productivity is extremely low. (2-2) The porous copolymer obtained by the above method is brominated using a brominating agent, preferably from 0 to
Performed between 100℃. As the brominating agent, bromine generating agents such as sulfuryl bromide and molecular bromine can be used. When molecular bromine is used, suitable bromination temperatures are from 0 to 50°C, and such bromination reactions are usually completed in 2 to 20 hours. The amount of bromine atoms introduced varies depending on the amount of brominating agent used and the bromination reaction conditions, but preferably the bromine content in the obtained brominated copolymer is 40 to 80% by weight, preferably 50 to 80% by weight. It is preferable to carry out the bromination so that the amount is 70% by weight. In order to make the bromination reaction proceed smoothly, it is preferable to use a catalyst such as ferric chloride or aluminum chloride. The amount of such catalyst preferably ranges from 0.025 to 0.1 g per gram of copolymer. Further, when carrying out the bromination reaction, it is preferable to swell the copolymer in advance with a swelling agent such as dichloroethane or dibromoethane. After the bromination reaction, the brominated crosslinked copolymer produced as described above is washed with a sufficient amount of water and an organic solvent such as methanol or acetone, and then dried. Incidentally, if the bromine content is less than the above range, flame retardancy cannot be imparted, and therefore the amount added becomes large and no effect can be expected. If the amount exceeds the above range, the bromination reaction will be difficult to proceed and the brominated product will be colored. The thermoplastic polyester resin used in the present invention is polyalkylene terephthalate obtained by a polycondensation reaction of terephthalic acid or its dialkyl ester with aliphatic glycols, or a copolymer mainly composed of this. Examples include polyethylene terephthalate and polybutylene terephthalate. Examples of the aliphatic glycols mentioned above include ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, etc. Along with these aliphatic glycols, other diols or polyhydric alcohols such as aliphatic glycols can be used. 30% by weight or less of cyclohexanediol, cyclohexanedimethanol, xylene glycol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)propane,
-Hydroxy-3,5-dibromophenyl)propane, 2,2-bis(4-hydroxyethoxyphenyl)propane, 2,2-bis(4-hydroxyethoxy-3,5-dibromophenyl)propane, glycerin, pentaerythritol, etc. may be used in combination. In addition, together with terephthalic acid or its dialkyl ester, other dibasic acids, polybasic acids, or their alkyl esters, such as phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphthalic acid, diphthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphthalic acid, etc. Enyldicarboxylic acid, adivic acid, sebacic acid, trimesic acid, trimellitic acid, alkyl esters thereof, and the like may be used in combination. The blending ratio is 0.5 to 100 parts by weight, preferably 2 to 30 parts by weight, of the brominated crosslinked aromatic copolymer per 100 parts by weight of the polyester resin, but the bromine content relative to the total amount of resin components is 0.3 to 30 parts by weight. %,
The content is preferably 1.2 to 15 wt%. Further, when adding the above-mentioned flame retardant to polyester resin to make it flame retardant, an excellent flame retardant effect can be obtained by adding an antimony compound as a flame retardant aid. As the flame retardant aid, antimony compounds such as antimony trioxide, antimony pentoxide, and antimony tartrate are used, and antimony trioxide is particularly preferred. The amount used is 1 to 40 parts by weight, preferably 2 to 20 parts by weight, per 100 parts by weight of the polyester resin. If the amount is too low, the effect of promoting flame retardancy will be small. On the other hand, if the amount is too large, the mechanical properties will be impaired. In order to blend the flame retardant of the present invention into a synthetic resin, it may be mixed in any order by a known method, such as a method of mixing and extruding using an extruder, a method of simply mixing and direct injection molding, a method of simply mixing and direct injection molding, Examples include a method of adding it during production. Furthermore, fiber reinforcement materials such as glass fibers, carbon fibers, and metal whiskers, surface-treated fiber reinforcement materials with epoxy systems, epoxy silane systems, and amino silane systems to improve adhesion with resins, and combustion drippings such as asbestos. inhibitors, silica, alumina, silica alumina, silica magnesia, titania, calcium carbonate, talc, gypsum and glass flakes, fillers such as glass beads, dyes and pigments and paraffins, fatty acid esters,
Fatty acid metal salts, lubricants such as bisamides, esters of pentaerythritol such as pentaerythritol tetrakis (dodecylthiopropionate), carbodiimide compounds such as bis(diisopropylphenyl)carbodiimide, bisphenol A dicrycidyl ether , allyl glycidyl ether, 3,4 epoxycyclohexyl, 3′,4′ epoxycyclohexane carboxylate, and other epoxy compounds;
Other known additives may also be used in combination. To give an example of the usage range of these additives (based on 100 parts by weight of thermoplastic polyester resin), in the case of pentaerythritol ester, carbodiimide, and epoxy compound, the amount range is 0.01 to 5.
It is 5 to 100 parts by weight in the case of a fibrous reinforcing material. The amount of asbestos used is preferably 0.1 to 10 parts by weight per 100 parts by weight of polyester resin.
The amount is 0.5 to 5 parts by weight, and if this amount is too small, no effect of preventing dripping can be expected, and on the other hand, if it is too large, no particular improvement in the effect can be expected. The composition of the present invention has excellent flame retardancy, mechanical properties and thermal stability, and is of great value as an engineering plastic. The composition of the present invention can be made into molded products of various shapes such as three-dimensional molded products, various containers, films, sheets, and tubes by various molding methods such as injection, extrusion, blowing, and compression. It is suitable as a material for electronic parts, automobile parts, and other industrial uses. [Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. In the examples, "parts" and "%" indicate "parts by weight" and "% by weight," respectively. Further, the tensile strength was measured according to ASTM D 638, and the bending strength was measured according to ASTM D 790. Thermal stability and moldability were determined by injection molding the test piece for strength measurement, varying the residence time in the cylinder, observing the shape of the molded product with the naked eye, and then conducting a strength test. In addition, changes in color tone can be measured using a color difference meter (Tokyo Denshoku Co., Ltd. TC-
55D), calculate the XYZ tristimulus values,
The YI value was calculated using the following formula. YI value = (1.28X-1.06Z) x 100/Y Flammability test is conducted by Undev Writcis Labovy
Subyeit No.94 test (Flame retardant test of plastic materials
The flame retardance was evaluated by molding a molded article in accordance with UL94 (February 1, 1974) (labeled as UL94 VB test). Example 1 Polybutylene terephthalate (NOVADUR 5008 manufactured by Mitsubishi Kasei, NOVADUR is a registered trademark) with an intrinsic viscosity of 0.85 was cross-linked with 10% by weight of divinylbenzene to a toluene swelling degree of 5.0 with the composition shown in Table 1.
After adding 500 g of dichloroethane to 100 g of porous polyethylene of ml/g and leaving it for 1 hour, 5.0 g of iron chloride was added.
After adding g and 434 g of molecular bromine and reacting at room temperature for 8 hours, water was added and heated at 90°C to azeotropically distill dichloroethane. Then, the copolymer was washed with water, and then acetone Brominated cross-linked polystyrene with a Br content of 63.5% obtained by washing with hydrochloric acid and water and drying, antimony trioxide (manufactured by Mikuni Seirei Co., Ltd.), and glass fiber (manufactured by Asahi Fiber Glass Co., Ltd.)
CSO3MA486A), asbestos (Tomoe Kogyo Co., Ltd. R-
A mixture of 244) was prepared and melt-kneaded at 250°C using a 40 mmφ vented extruder manufactured by Isuzu Kako Co., Ltd., and extruded into pellets. The pellets are processed using a 3.9 oz injection molding machine (N-100B type manufactured by Japan Steel Works).
Using a mold for molding test pieces specified by ASTM and a mold for UL combustion pieces specified by UL-94, the resin temperature was 260℃, the mold temperature was 80℃, the injection time was 10 seconds, and the cooling time was 20 seconds (UL The combustion pieces were injection molded in 10 seconds). The physical properties of the obtained molded article were measured using the method described above. The results were as shown in Table 1 below. As a comparative example, non-crosslinked brominated polystyrene (Pyrocheck manufactured by Nissan Ferro Organic Co., Ltd.) was used as a comparative example.
68PB, bromine content 65-67 wt%) is also shown. Example 2 DMT1.0mol, 1.4-BG1.2mol and 2.2bis(4
-Hydroxyethoxy-3,5-diglomphenyl) propane 0.06 mol was used as the base resin, and the same compounding agents as in Example 1 were used, except that a polyester resin with an intrinsic viscosity of 0.85 and a halogen content of 6% was used. It was kneaded into pellets. Table 2 shows the blending ratio and molding results. In Comparative Example, the same compounding agents as in Comparative Example 1 were used, except that a halogen-containing polyester resin was used as the base resin, and the mixture was kneaded into pellets. The blending ratio and molding results are also listed. Example 3 The following (Table 3) was added to polybutylene terephthalate (NOVADUR5010 manufactured by Mitsubishi Kasei) with an intrinsic viscosity of 1.10.
A mixture of the brominated crosslinked polystyrene used in Example 1 and Bb 2 O 3 having the composition was kneaded in the same manner as in Example 1, pelletized and injection molded, and the physical properties were measured. The results are shown in Table-3. As a comparative example, non-crosslinked brominated polystyrene (Pyrocheck) was used as in Example 1.
68PB) are also shown. Example 4 Polybutylene terephthalate (NOVADUR5008 manufactured by Mitsubishi Kasei) with an intrinsic viscosity of 0.85 was mixed with 100 g of porous polyethylene with a toluene swelling degree of 8.2 ml/g cross-linked with 4 weight percent divinylbenzene and 1000 g of dichloroethane with the composition shown in Table 4. was added and allowed to stand for 1 hour, then 5.0 g of iron chloride and 434 g of molecular bromine were added and the reaction was carried out at room temperature for 8 hours. Water was then added and heated at 90°C to azeotropically distill dichloroethane. Then, the copolymer was washed with water, further washed with acetone and hydrochloric acid, and then washed with water and dried.
A mixture of brominated crosslinked polystyrene with a Br content of 63.8%, antimony trioxide, glass fiber, and asbestos was prepared and kneaded in the same manner as in Example 1, and the physical properties of injection molding were measured. The results are shown in Table 4. It was hot on the street. As a comparative example, the results obtained when non-crosslinked brominated polyethylene (same as Comparative Example 1) were used are also shown.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

〔発明の効果〕〔Effect of the invention〕

本発明による組成物は、難燃性、機械的性質お
よび熱安定性にすぐれたものである。
The composition according to the invention has excellent flame retardancy, mechanical properties and thermal stability.

Claims (1)

【特蚱請求の範囲】[Claims]  熱可塑性ポリ゚ステル暹脂100重量郚に、架
橋芳銙族共重合䜓を臭玠化しお埗た臭玠含有量が
40〜80重量の倚孔質架橋芳銙族共重合䜓0.5〜
100重量郚およびアンチモン化合物〜40重量郹
を含有させおなるポリ゚ステル暹脂組成物。
1 The bromine content obtained by brominating a crosslinked aromatic copolymer is added to 100 parts by weight of a thermoplastic polyester resin.
40~80% by weight porous crosslinked aromatic copolymer 0.5~
A polyester resin composition containing 100 parts by weight and 1 to 40 parts by weight of an antimony compound.
JP18739784A 1984-09-07 1984-09-07 Polyester resin composition Granted JPS6166744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18739784A JPS6166744A (en) 1984-09-07 1984-09-07 Polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18739784A JPS6166744A (en) 1984-09-07 1984-09-07 Polyester resin composition

Publications (2)

Publication Number Publication Date
JPS6166744A JPS6166744A (en) 1986-04-05
JPH0562146B2 true JPH0562146B2 (en) 1993-09-07

Family

ID=16205309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18739784A Granted JPS6166744A (en) 1984-09-07 1984-09-07 Polyester resin composition

Country Status (1)

Country Link
JP (1) JPS6166744A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623328B2 (en) * 1987-03-09 1994-03-30 ポリプラスチックス株匏䌚瀟 Wire covering material
JPH0747736B2 (en) * 1987-05-29 1995-05-24 マナック株匏䌚瀟 Flame retardants
JPH0816173B2 (en) * 1988-12-12 1996-02-21 垝人株匏䌚瀟 Flexible circuit board and its base film

Also Published As

Publication number Publication date
JPS6166744A (en) 1986-04-05

Similar Documents

Publication Publication Date Title
EP0048483B2 (en) Flame retarding polyester composition
EP0065777A1 (en) Flame-retardant resin composition
US5824750A (en) Preparation of polymers containing oxazine groups
CN105566879A (en) chemical resistant polymer composition for a center fascia
CA1085538A (en) Thermoplastic polyesters
JPS6213378B2 (en)
WO1997002302A1 (en) Graft ethylene-vinyl acetate copolymer and resin composition containing the same
JPH0562146B2 (en)
JPH064755B2 (en) Flame-retardant aromatic polyester composition
TWI670325B (en) Polymer resin composition having excellent flame retardancy
JP2843171B2 (en) Flame retardant polyester resin composition
JPH0473461B2 (en)
JP3516788B2 (en) Polyester resin composition with excellent impact resistance
JPS6250504B2 (en)
JPS636093B2 (en)
US4454302A (en) Polyester resin composition
JP2000080257A (en) Polyester resin composition
JPS612746A (en) Polyester resin composition
KR0123799B1 (en) Polymer composition comprising a branched polycarbonate and a polyester
JPH0627246B2 (en) Flame-retardant aromatic polyester resin composition
JP2003119362A (en) Flame retardant reinforced polytrimethylene terephthalate resin composition
KR20180067291A (en) Polymer resin composition and molded product of the same
JP2597668B2 (en) Flame retardant polyester composition
JPH0138818B2 (en)
EP0351152A2 (en) Halogenated polyester resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term