JPH0562081A - Fire detecting system - Google Patents

Fire detecting system

Info

Publication number
JPH0562081A
JPH0562081A JP3220369A JP22036991A JPH0562081A JP H0562081 A JPH0562081 A JP H0562081A JP 3220369 A JP3220369 A JP 3220369A JP 22036991 A JP22036991 A JP 22036991A JP H0562081 A JPH0562081 A JP H0562081A
Authority
JP
Japan
Prior art keywords
fire
value
temperature
temperature rise
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3220369A
Other languages
Japanese (ja)
Other versions
JP2817462B2 (en
Inventor
Kiyotoshi Tamura
清俊 田村
Ayato Ootsuka
綾人 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3220369A priority Critical patent/JP2817462B2/en
Publication of JPH0562081A publication Critical patent/JPH0562081A/en
Application granted granted Critical
Publication of JP2817462B2 publication Critical patent/JP2817462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Fire Alarms (AREA)

Abstract

PURPOSE:To detect even the comparatively small fire source as a fire by comparing the total value of the temperature rise value per the unit time of respective temperature measuring points and the threshold set beforehand. CONSTITUTION:At the ceiling part of a side wall 3 of a gateway 2, an optical fiber sensor 5 is laid along the length-wise direction of the gateway 2, and at the optical fiber sensor 5, a temperature measuring point Pi is provided at equal intervals. When the gross heating value to generate a fire source 7 is diffused to space 6, the temperature measured value at each temperature measuring point Pi respectively rises in accordance with the diffusion. By the extent of the diffusion, the temperature measured value shows the respectively different value. Then, each temperature rise value per the unit time is obtained, the temperature rise value of each measuring point Pi is totaled, and then, in no relation to the size of the diffusion, the total value approximately in proportion to the gross heating value is obtained. Thus, when the obtained total value exceeds the threshold, it is judged that the fire occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な火災検知システ
ムに係り、特にトンネル、洞道等の限定された拡がりを
持つ空間内で比較的小さな火源であっても、その火源が
発生する総熱量を近似的に捕らえて火災として検知する
ことのできる火災検知システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel fire detection system, and particularly to a fire source even if it is a relatively small fire source in a space having a limited spread such as a tunnel or a cave. The present invention relates to a fire detection system capable of approximately catching the total amount of heat generated and detecting it as a fire.

【0002】[0002]

【従来の技術】雰囲気温度を感知して火災を検出する火
災検知システムには、従来、温度センサを設けて温度を
測定すると共に温度上限値を定めて測定値がこの上限値
を越えたことをもって火災と判定する定温式熱感知方式
と、同様に温度を測定すると共に上記測定値の単位時間
当たり温度上昇値がある一定値を越えたことをもって火
災と判定する温度上昇率検出方式とが知られている。こ
こで、温度上限値や温度上昇上限値は通常の温度変動の
範囲や測定のばらつきの範囲を越える値に設定すること
は勿論である。
2. Description of the Related Art In a fire detection system for detecting a fire by detecting an ambient temperature, a temperature sensor has been conventionally provided to measure a temperature, and an upper limit value of temperature is set and the measured value exceeds the upper limit value. There are known a constant temperature type heat sensing method that determines a fire and a temperature rise rate detection method that determines a fire when the temperature rise value of the above measured value per unit time exceeds a certain value. ing. Here, it goes without saying that the temperature upper limit value and the temperature increase upper limit value are set to values exceeding the normal temperature fluctuation range and the measurement fluctuation range.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、火災検
知システムが備えられている空間に比して火源が小さく
しかも温度センサから離れている場合は、火源から発生
した燃焼ガスや暖められた空気等の高温ガスが温度セン
サに到達するまえに拡散してしまい、温度センサの位置
では常時の温度変動範囲を越えない程度の温度上昇しか
示さないことになる。このため上記定温式熱感知方式或
いは上記温度上昇率検出方式のどちらを用いても小さな
火源からなる火災を検出することができない。この場
合、火災が成長して延焼が始まってようやく火災が検知
されることになる。即ち、火災の発見が遅くなって問題
があった。
However, when the fire source is smaller than the space in which the fire detection system is installed and is far from the temperature sensor, the combustion gas generated from the fire source or the warm air is generated. The high temperature gas such as the above diffuses before reaching the temperature sensor, and at the position of the temperature sensor, the temperature rises only to such an extent that the normal temperature fluctuation range is not exceeded. Therefore, it is not possible to detect a fire consisting of a small fire source by using either the constant temperature type heat sensing method or the temperature rise rate detecting method. In this case, the fire grows, the spread of the fire starts, and the fire is finally detected. That is, there was a problem that the discovery of the fire was delayed.

【0004】そこで、本発明の目的は、上記課題を解決
し、比較的小さな火源であっても、火災として検知する
ことのできる火災検知システムを提供することにある。
Therefore, an object of the present invention is to solve the above problems and to provide a fire detection system capable of detecting a fire even with a relatively small fire source.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、空間内に略等間隔に温度測定点を設け、こ
れら各温度測定点の単位時間当たりの温度上昇値を求め
ると共にこれらを合計し、その合計値と予め設定したし
きい値とを比較して火災を検知するようにした。
In order to achieve the above object, the present invention provides temperature measuring points in a space at substantially equal intervals and obtains temperature rise values per unit time at these temperature measuring points. Are summed, and the fire is detected by comparing the total value with a preset threshold value.

【0006】[0006]

【作用】上記構成により、各温度測定点の単位時間での
温度上昇を求めると共にこれらを合計すると、後述する
ように、空間内での総発熱量に略比例した合計値が得ら
れることになる。この合計値に対して予めしきい値を設
けておき、両者を比較することで火災を検知する。この
ようにすれば、小さな火源を持つ火災であって、発熱が
拡散されてしまう場合でも総発熱量に略比例した合計値
に基づいて検知できることから、火災として検知される
ことになる。
With the above structure, when the temperature rise at each temperature measurement point per unit time is obtained and these are summed, a total value approximately proportional to the total calorific value in the space is obtained, as will be described later. .. A threshold is set in advance for this total value, and a fire is detected by comparing the two. In this way, even if the fire has a small fire source, even if the heat is diffused, it can be detected based on the total value that is approximately proportional to the total amount of heat generation, and therefore it is detected as a fire.

【0007】ここで、断面積の略一定した通路状の空間
にあっては、略等間隔に複数の測定点を設けて、各測定
点での単位時間での温度上昇値の総和を求めると、この
総和はこの通路状の空間内での発熱量の総和に対して近
似的に比例している。この比例関係に着目して、各測定
点での単位時間での温度上昇値の総和に対してしきい値
を設け、上記総和がしきい値を越えたことをもって火災
と判定するようにすれば、発熱量の総和に応じた判定が
できることになり、小さな火源を持つ火災であっても検
知できることになる。
Here, in a passage-like space having a substantially constant cross-sectional area, a plurality of measurement points are provided at substantially equal intervals, and the sum of temperature rise values per unit time at each measurement point is calculated. , This total sum is approximately proportional to the total heat generation amount in this passage-like space. Focusing on this proportional relationship, a threshold value is set for the sum of temperature rise values at unit time at each measurement point, and if the sum exceeds the threshold value, it can be judged as a fire. Therefore, the judgment can be made according to the total amount of heat generation, and even a fire having a small fire source can be detected.

【0008】このようにして、火源が発生する総熱量を
近似的に捕らえて、小さな火源を持つ火災が検知される
ので火災の早期発見が可能になる。
In this way, the total amount of heat generated by the fire source is approximately caught, and the fire having a small fire source is detected, so that the fire can be detected early.

【0009】[0009]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0010】本発明の実施に当たっては、光ファイバに
沿って等間隔に温度を測定できる光ファイバ温度レ−ダ
(分布型光ファイバ温度測定装置。以下FTRという)
を用いることが適当である。FTRは光ファイバに光を
通しておき、この光ファイバの雰囲気温度が光に与える
影響を光センサで検出して温度を測定するもので、光フ
ァイバの光路に沿ってリニアに温度分布を測定すること
ができる。以下に述べる本発明の一実施例においては、
FTRを使用して等間隔に温度測定点を設ける。
In carrying out the present invention, an optical fiber temperature radar (distributed optical fiber temperature measuring device, hereinafter referred to as FTR) capable of measuring temperature at equal intervals along an optical fiber.
Is suitable. The FTR allows light to pass through an optical fiber and measures the temperature by detecting the effect of the ambient temperature of the optical fiber on the light with an optical sensor. It is possible to measure the temperature distribution linearly along the optical path of the optical fiber. it can. In one embodiment of the invention described below,
The temperature measurement points are provided at equal intervals using the FTR.

【0011】図1は、火災検知システム1の概念図であ
る。坑道2は図2に示されるようなア−チ状の断面を持
ち、天井部を含む側壁3と床部4により区画され細長く
形成された空間6を有している。坑道2はその全長に亘
って断面積が略等しく形成されている。この坑道2の側
壁3の天井部には、光ファイバセンサ5が坑道2の長手
方向に沿って敷設されている。光ファイバセンサ5に
は、等間隔に温度を測定するための温度測定点Pが設け
られている。また、図示されないが光ファイバセンサ5
の端部にはFTRが接続されており、光ファイバセンサ
5に沿った温度分布が観測できるように構成されてい
る。即ち、i番目の測定点Pi(i=1,2,3・・)
での温度は測定値Tiで表すことができる。この測定値
は一定時間おきに測定されて更新される。同時に、1回
前の測定値との差が求められ各測定点Piの温度上昇値
dTiが計算される。
FIG. 1 is a conceptual diagram of a fire detection system 1. The tunnel 2 has an arch-shaped cross section as shown in FIG. 2, and has a space 6 which is defined by a side wall 3 including a ceiling portion and a floor portion 4 and which is elongated. The gallery 2 is formed to have a substantially equal cross-sectional area over its entire length. An optical fiber sensor 5 is laid on the ceiling of the side wall 3 of the gallery 2 along the longitudinal direction of the gallery 2. The optical fiber sensor 5 is provided with temperature measurement points P for measuring temperature at equal intervals. Although not shown, the optical fiber sensor 5
An FTR is connected to the end of the optical fiber sensor 5, and the temperature distribution along the optical fiber sensor 5 can be observed. That is, the i-th measurement point Pi (i = 1, 2, 3, ...)
The temperature at can be represented by the measured value Ti. This measured value is measured and updated at regular intervals. At the same time, the difference from the previous measured value is obtained, and the temperature rise value dTi at each measurement point Pi is calculated.

【0012】一方、火災を検知するためのしきい値Θ
は、通常の温度変動の範囲を越えていると共に火災と判
定できる最小の発熱量に対応させて、予め設定されてい
る。
On the other hand, a threshold value Θ for detecting a fire
Is set in advance so as to correspond to the minimum heat generation amount that can be determined to be a fire while exceeding the normal temperature fluctuation range.

【0013】次に本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0014】坑道2内で火災が発生し、その火源7が小
さく温度測定点Piからも離れているものとする。その
小さな火源7が発生する総発熱量Qは、主に燃焼ガスや
周囲の空気等の高温ガスによって坑道2の空間6に拡散
していく。このようにして、火源7が発生する総発熱量
Qが空間6に拡散されると、この拡散に応じて各温度測
定点Piでの温度測定値Tiがそれぞれ上昇する。温度
測定値Tiは拡散の度合いによってそれぞれ異なった値
を示すことになる。そこで、単位時間当たりの各温度上
昇値dTiを求め、この各測定点Pの温度上昇値dTi
を合計すると、拡散の大小に関わりなく総発熱量Qに略
比例した合計値Σが得られることになる。
It is assumed that a fire occurs in the gallery 2 and the fire source 7 is small and far from the temperature measurement point Pi. The total calorific value Q generated by the small fire source 7 diffuses into the space 6 of the tunnel 2 mainly by high temperature gas such as combustion gas and ambient air. In this way, when the total heat generation amount Q generated by the fire source 7 is diffused in the space 6, the temperature measurement value Ti at each temperature measurement point Pi increases in accordance with this diffusion. The temperature measurement values Ti show different values depending on the degree of diffusion. Therefore, each temperature rise value dTi per unit time is obtained, and the temperature rise value dTi at each measurement point P is obtained.
By summing up, the total value Σ that is substantially proportional to the total heat generation amount Q can be obtained regardless of the magnitude of diffusion.

【0015】このようにして、各測定点Piの温度上昇
値dTiを合計して得られた合計値Σがしきい値Θを越
えた時、火災が発生したものと判定されることになる。
即ち、小さな火源7を持ち、温度測定点から離れた火災
でも検知されることになり、火災の早期発見が可能にな
る。
In this way, when the total value Σ obtained by summing the temperature rise values dTi at the respective measurement points Pi exceeds the threshold value Θ, it is determined that a fire has occurred.
That is, even a fire that has a small fire source 7 and is far from the temperature measurement point can be detected, and early detection of the fire becomes possible.

【0016】ここで、本発明に係る火災検知システムと
従来の定温式熱感知方式及び温度上昇率検出方式を利用
した火災検知システムとを模擬火災実験によって比較し
た結果を示しておく。表1は、試行回数7回でのそれぞ
れの火災検知システムにおける、火災検知までの時間
と、その時間の平均値と、標準偏差値とを示したもので
ある。なお、模擬火災実験は0.25〜0.5m2 のベ
ルトコンベア用ベルトに火源を載置して、その位置を変
えながら比較的小さな火災を模擬的に発生させて行った
ものである。また、温度を測定するための装置としては
同一のFTRが用いられている。表中CASE番号はこ
の実験の試行回数を示している。
Here, the results of comparison between the fire detection system according to the present invention and the conventional fire detection system using the constant temperature type heat detection method and the temperature rise rate detection method by a simulated fire experiment will be shown. Table 1 shows the time until fire detection, the average value of the times, and the standard deviation value in each fire detection system when the number of trials was seven. The simulated fire experiment was conducted by placing a fire source on a belt for a belt conveyor of 0.25 to 0.5 m 2 and simulating a relatively small fire while changing its position. The same FTR is used as a device for measuring temperature. The CASE number in the table indicates the number of trials of this experiment.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示されるように、火災検知までの時
間は、どの試行においても本発明に係る火災検知システ
ムが最も短く、平均値も小さい。これは、本発明に係る
火災検知システムが従来の火災検知システムに比べて火
災の検知が早いことを示している。さらに、標準偏差値
の項に注目すれば、最大検出値に達するための時間のば
らつきが小さいことが分かる。これは、本発明に係る火
災検知システムの動作が確実で信頼性が高いことを示し
ている。このように、模擬火災実験の結果から見れば、
本発明に係る火災検知システムは火災の発見が早く且つ
確実であることになる。
As shown in Table 1, the fire detection system according to the present invention has the shortest time until fire detection in any trial, and the average value is also small. This indicates that the fire detection system according to the present invention can detect a fire earlier than the conventional fire detection system. Furthermore, if attention is paid to the term of the standard deviation value, it can be seen that there is little variation in the time required to reach the maximum detection value. This shows that the operation of the fire detection system according to the present invention is reliable and highly reliable. Thus, from the results of the simulated fire experiment,
The fire detection system according to the present invention makes it possible to detect a fire quickly and reliably.

【0019】以上述べたように、本発明にあっては1点
のみの測定値をもとに独立に判定するのではなく、多数
の測定点の測定値を総合して判定しているので、単に温
度変化を捕らえるだけでなく、熱量の増加をも間接的に
捕らえることが可能になった。熱量の増加に基づいて火
災を検知することにより、火災の大きさが空間に比べて
小さくても発見できるようになった。
As described above, in the present invention, the judgment is not made independently based on the measured values of only one point, but the measured values of a large number of measuring points are comprehensively judged. It is now possible to indirectly capture not only changes in temperature but also increases in heat. By detecting a fire based on an increase in the amount of heat, it has become possible to detect even if the size of the fire is smaller than that in space.

【0020】なお、本実施例にあっては、坑道2はその
全長に亘って断面積が略等しく形成されているものとし
たが、断面積が一定しない場合や、凹凸や屈曲を有する
空間であっても、その形状を考慮にいれた計算法で総発
熱量Qに略比例した合計値Σを得ることは容易である。
従って、本発明に係る火災検知システム1は、トンネ
ル、洞道、坑道、地下道、部屋、廊下等所定の形状、大
きさに区画された空間であればこれを設けることができ
る。
In the present embodiment, the tunnel 2 is formed so that the cross-sectional areas are substantially equal over the entire length thereof, but in the case where the cross-sectional area is not constant or there is unevenness or a curved space. Even if there is, it is easy to obtain the total value Σ that is substantially proportional to the total heat generation amount Q by a calculation method that takes the shape into consideration.
Therefore, the fire detection system 1 according to the present invention can be provided in any space defined by a predetermined shape and size such as a tunnel, a cave, a tunnel, an underground passage, a room, and a corridor.

【0021】[0021]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exerts the following excellent effects.

【0022】(1)火災の早期発見ができる。(1) A fire can be detected early.

【0023】(2)広い空間での火災の発見ができる。(2) A fire can be found in a wide space.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】本発明の一実施例を示す概略図である。FIG. 2 is a schematic view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 火災検知システム 6 空間 Ti 温度測定値 dTi 温度上昇値 P、Pi 温度測定点 Θ しきい値 1 Fire detection system 6 Space Ti temperature measurement value dTi temperature rise value P, Pi temperature measurement point Θ threshold value

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の空間の雰囲気温度を感知して火災
を検出する火災検知システムにおいて、上記空間内に略
等間隔に温度測定点を設け、これら各温度測定点の単位
時間当たりの温度上昇値を求めると共にこれらを合計
し、その合計値と予め設定したしきい値とを比較して火
災を検知することを特徴とする火災検知システム。
1. A fire detection system for detecting a fire by detecting an ambient temperature in a predetermined space, wherein temperature measuring points are provided at substantially equal intervals in the space, and temperature rises at a unit time of each of these temperature measuring points. A fire detection system characterized by detecting a value, summing these values, and comparing the total value with a preset threshold value to detect a fire.
JP3220369A 1991-08-30 1991-08-30 Fire detection system Expired - Fee Related JP2817462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3220369A JP2817462B2 (en) 1991-08-30 1991-08-30 Fire detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3220369A JP2817462B2 (en) 1991-08-30 1991-08-30 Fire detection system

Publications (2)

Publication Number Publication Date
JPH0562081A true JPH0562081A (en) 1993-03-12
JP2817462B2 JP2817462B2 (en) 1998-10-30

Family

ID=16750050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3220369A Expired - Fee Related JP2817462B2 (en) 1991-08-30 1991-08-30 Fire detection system

Country Status (1)

Country Link
JP (1) JP2817462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106489A (en) * 1995-10-11 1997-04-22 Yamato Protec Co Fire extinguishing system
WO2005003689A1 (en) * 2003-07-02 2005-01-13 Neubrex Co., Ltd. Structure monitor system
JP2018180676A (en) * 2017-04-05 2018-11-15 株式会社創発システム研究所 Early-stage fire detection system and early-stage fire detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912795A (en) * 1972-04-26 1974-02-04
JPS6294181A (en) * 1985-10-21 1987-04-30 日本フエンオ−ル株式会社 Fire extinguishing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912795A (en) * 1972-04-26 1974-02-04
JPS6294181A (en) * 1985-10-21 1987-04-30 日本フエンオ−ル株式会社 Fire extinguishing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106489A (en) * 1995-10-11 1997-04-22 Yamato Protec Co Fire extinguishing system
WO2005003689A1 (en) * 2003-07-02 2005-01-13 Neubrex Co., Ltd. Structure monitor system
JPWO2005003689A1 (en) * 2003-07-02 2006-08-17 ニューブレクス株式会社 Structure monitoring system
CN100458371C (en) * 2003-07-02 2009-02-04 光纳株式会社 Structure monitoring system
US7542856B2 (en) 2003-07-02 2009-06-02 Neubrex Co., Ltd. Structure monitor system
JP4495672B2 (en) * 2003-07-02 2010-07-07 ニューブレクス株式会社 Structure monitoring system
JP2018180676A (en) * 2017-04-05 2018-11-15 株式会社創発システム研究所 Early-stage fire detection system and early-stage fire detection method

Also Published As

Publication number Publication date
JP2817462B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
Gao et al. Fire spill plume from a compartment with dual symmetric openings under cross wind
Hu et al. Facade flame height ejected from an opening of fire compartment under external wind
Himoto et al. Modeling thermal behaviors of window flame ejected from a fire compartment
US20080266120A1 (en) Combustion instability detection
CN103292835B (en) A kind of comprehensive detection simulation experiment device for fire detection performance
JPS5944519A (en) Diagnostics of combustion state
Gao et al. Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement
Wang et al. Early stage of elevated fires in an aircraft cargo compartment: a full scale experimental investigation
Himoto Quantification of cross-wind effect on temperature elevation in the downwind region of fire sources
JPH0562081A (en) Fire detecting system
Kolaitis et al. A full-scale fire test to investigate the fire behaviour of the ventilated facade system
JP2758671B2 (en) Fire judgment device
Cleary et al. Evaluation of empirical evidence against zone models for smoke detector activation prediction
US6499357B2 (en) Heat flux measurement pipe and method for determining sprinkler water delivery requirement
KR102295210B1 (en) Forecasting Apparatus and System of Forest Fire Spreading
US8568021B2 (en) Apparatus and method for measuring heat flux from radiant heater
Gottuk et al. Smoke transport and FDS validation
CN107300572B (en) System and method for testing critical thermal radiation flux of flooring material
US9080777B2 (en) Reflector for radiant tube heater
Tanaka et al. Full scale experiments for determining the burning conditions to be applied to toxicity tests
JPH09106489A (en) Fire extinguishing system
Tiwari et al. Experimental investigation on burning characteristics of diesel pool fires in naturally ventilated compartment
JPH07275391A (en) Disasters preventive system
Heck The influence of wind on the structure of inclined flames
JPS5820832Y2 (en) ventilation control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees