JPH0561593B2 - - Google Patents

Info

Publication number
JPH0561593B2
JPH0561593B2 JP9197887A JP9197887A JPH0561593B2 JP H0561593 B2 JPH0561593 B2 JP H0561593B2 JP 9197887 A JP9197887 A JP 9197887A JP 9197887 A JP9197887 A JP 9197887A JP H0561593 B2 JPH0561593 B2 JP H0561593B2
Authority
JP
Japan
Prior art keywords
aluminum
analysis
flask
analytical
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9197887A
Other languages
Japanese (ja)
Other versions
JPS63259463A (en
Inventor
Iwao Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP9197887A priority Critical patent/JPS63259463A/en
Publication of JPS63259463A publication Critical patent/JPS63259463A/en
Publication of JPH0561593B2 publication Critical patent/JPH0561593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、高純度アルミニウム中の微量不純物
の分析法に関するものであり、微量不純物を濃縮
化することによつて高感度に定量し得る分析法を
提案するものである。 <従来の技術> 近年、素材産業において、高純度化材料が注目
されており、アルミニウム材料も電子材料や半導
体材料としてその用途が拡大されつつある。その
様な場合、品質保証等のために微量不純物の定量
分析が必要となる。 従来、高純度アルミニウム中の微量不純物の定
量分析法としては、石原、向井著、ジヤーナル
オブ メタルズ、9月号.944頁(1965)(H.
Ishihara、k、Mukai:J.of Metals.、Sep、944
(1965)、プラサド、他著、トランザクシヨン オ
ブ ザ インデアン インステイテユート オブ
メタルズ 32巻2号113頁(1980)(R.N.
Prasad、et al.Transactions of The Indian
Institute of Metals 32[2](1980))、藤本、
他:住友化学技報特集号、53(1981())等に紹
介されているが、放射化分析やスパーク源質量分
析が中心であつた。 しかるに、これらの方法は原子炉の利用が必要
であつたり、分析可能元素が少ない、分析精度が
低い、また、分析の迅速性に欠けるなどの問題が
ある。 一方、化学分析法においても使用する試薬、雰
囲気からの汚染があるため、分析精度が同様に満
足し得るようなレベルにない。 <発明が解決しようとする問題点> 本発明者は、上記現状に鑑みアルミニウム中の
不純物の微量分析法について研究を重ね、本発明
を完成するに至つた。 本発明は高純度アルミニウム中の微量不純物、
殊に数ppm〜数1/100ppmのオーダーの極微量不
純物の定量に好適な分析法を提案するものであ
る。 更には蒸留法により測定すべき不純物の濃縮物
を調製した後、適宜の分析法、特に好ましくはプ
ラズマ発光分析法(ICP)やフレームレス原子吸
光分析法に供することを主眼とした分析法を提案
するものである。 <問題点を解決するための手段> 本発明に係る高純度アルミニウム中の微量不純
物の分析法は、高純度アルミニウム材に臭化エチ
ルを白金族触媒、臭素の存在下で反応させた後、
生成液を減圧蒸留して有機アルミニウム化合物を
蒸留分離し、その残留分を微量分析用二次試料と
することを特徴とするものである。 即ち、分析試料の高純度アルミニウム材に臭化
エチルを白金族触媒例えば、白金、パラジウム等
と臭素の共存下で反応させ、アルミニウムを有機
アルミニウム化合物として液状化させる。この場
合、分析試料としての高純度アルミニウムは99.9
%以上の純度のものが適用されるが、反応を促進
するために板状や切削屑状のもの(肉厚0.3mm以
下)とするのが好ましく、この様な形状加工とし
た後は、表面浄化を前処理として行なうのが適当
である。 表面浄化法としては、例えば塩酸洗浄し、水洗
と有機溶媒(メタノール、エーテル等)による洗
浄を繰返した後、加熱乾燥する手段等によつて行
われる。この場合、純度99.9%以上のAlは、塩酸
を作用させても殆ど溶解することがないので、溶
解損失は無視することができる。 高純度アルミニウム材への臭化エチル
(C2H5Br)の作用に際しては、好ましくは白金
族触媒を共存させ、更に助触媒として臭素の共存
下で行なう。 この場合、分析試料としてのアルミニウムは、
その予測純度値に応じて、2〜5gが用いられる
が、アルミニウム1重量部に対して、金属イオン
を含まず純度98%以上の臭化エチルを9〜9.9重
量部添加し、これに4〜10重量部の白金族触媒と
0.01〜0.05重量部の臭素を共存させる。 反応に際しては、反応当初には20〜35℃に加温
する。反応開始後は、反応熱で特に加温を必要と
しない。一方、未反応の臭化エチルが気散するた
め、これを回収するように反応器上部に凝縮器を
設けて臭化エチルを凝縮させ反応器内に環流させ
つつ反応を続け、固体アルミニウムが消失し反応
器内のものが全て液状化してから更に数分間保持
した後、反応操作を停止する。 なお、凝縮器の開口先端からの水分の混入を防
止するため、その先端部分には吸湿剤・乾燥剤を
入れた除湿部を配設することが望ましい。 この場合、白金族触媒はアルミニウムと電池を
形成し、アルミニウムの溶解を促進しつつ臭化エ
チルとの反応を促進する。又、臭素もアルミニウ
ムの酸化溶解を促進するものである。 以上により、固体アルミニウムが液状の有機ア
ルミニウム化合物に転換されるとともに、固体ア
ルミニウム中の不純物も有機金属化合物を形成す
る。 次に生成液から多量成分である有機アルミニウ
ム化合物を除去するために減圧蒸留を行なう。 まず、生成液の入つた反応器を減圧蒸留装置に
接続し、減圧下、たとえば10Torr以下、好まし
くは1〜5Torrの減圧下又は乾燥窒素ガスで置換
した後、5Torr以下に減圧し、生成液を120〜150
℃に加熱しながら、過剰の臭化エチルと有機アル
ミニウム化合物を留出させ1〜2時間減圧蒸留を
続け、留出液の留出が停止した時に蒸留を止め
る。 これにより、残留分中に試料アルミニウム中の
不純物が濃縮された状態で得られるので、高精度
の分析を行なうことが可能となる。 これらの一連の処理において、使用される装置
は装置材料からの汚染を防止するため、石英製の
ものとするのが好ましい。 以上により得られた残留分は、例えば塩酸−硝
酸の混合液で加熱分解させ、遊離した金属元素を
次いで適宜の分析手段にて、それに含有される元
素を分析する。 その分析法としては、得られる分析精度や迅速
性等を勘案して、同時多元素分析を期待するとき
にはプラズマ発光分析法が、一元素毎の分析でよ
いときにはフレームレス原子吸光分析法が好まし
いが、旧来の固体発光分析法、吸光光度法等も適
用し得る。例えば、上述のプラズマ発光分析法に
よる分析結果は、次のとおりであつた。
<Industrial Application Field> The present invention relates to a method for analyzing trace impurities in high-purity aluminum, and proposes an analytical method that can quantify trace impurities with high sensitivity by concentrating them. . <Prior Art> In recent years, highly purified materials have been attracting attention in the materials industry, and the use of aluminum materials as electronic materials and semiconductor materials is being expanded. In such cases, quantitative analysis of trace impurities is required for quality assurance, etc. Conventionally, the quantitative analysis method for trace impurities in high-purity aluminum has been published by Ishihara and Mukai, Journal
Of Metals, September issue. 944 pages (1965) (H.
Ishihara, K., Mukai: J. of Metals., Sep, 944
(1965), Prasad et al., Transactions of the Indian Institute of Metals, Vol. 32, No. 2, p. 113 (1980) (RN
Prasad, et al.Transactions of The Indian
Institute of Metals 32 [2] (1980)), Fujimoto,
Others: As introduced in Sumitomo Chemical Technical Report Special Issue, 53 (1981), etc., the focus was on activation analysis and spark source mass spectrometry. However, these methods have problems such as requiring the use of a nuclear reactor, a small number of elements that can be analyzed, low analytical accuracy, and lack of rapid analysis. On the other hand, in chemical analysis methods as well, there is contamination from the reagents used and the atmosphere, so the analytical accuracy is not at a similarly satisfactory level. <Problems to be Solved by the Invention> In view of the above-mentioned current situation, the present inventor has repeatedly researched methods for analyzing trace amounts of impurities in aluminum, and has completed the present invention. The present invention deals with trace impurities in high purity aluminum,
In particular, we propose an analytical method suitable for quantifying trace impurities on the order of several ppm to several 1/100 ppm. Furthermore, we propose an analysis method that focuses on preparing a concentrate of impurities to be measured by a distillation method and then subjecting it to an appropriate analysis method, particularly preferably plasma emission spectrometry (ICP) or flameless atomic absorption spectrometry. It is something to do. <Means for solving the problem> The method for analyzing trace impurities in high-purity aluminum according to the present invention involves reacting ethyl bromide with a high-purity aluminum material in the presence of a platinum group catalyst and bromine, and then
This method is characterized in that the produced liquid is distilled under reduced pressure to separate the organic aluminum compound by distillation, and the residue is used as a secondary sample for trace analysis. That is, ethyl bromide is reacted with a high-purity aluminum material as an analysis sample in the presence of a platinum group catalyst such as platinum, palladium, etc. and bromine, and aluminum is liquefied as an organic aluminum compound. In this case, the high purity aluminum as the analytical sample is 99.9
% purity or higher, but to accelerate the reaction it is preferable to form it into a plate or swarf form (thickness 0.3 mm or less). It is appropriate to carry out the purification as a pretreatment. The surface purification method is carried out, for example, by washing with hydrochloric acid, repeating washing with water and an organic solvent (methanol, ether, etc.), and then drying by heating. In this case, Al with a purity of 99.9% or more is hardly dissolved even when exposed to hydrochloric acid, so the dissolution loss can be ignored. The action of ethyl bromide (C 2 H 5 Br) on a high-purity aluminum material is preferably carried out in the presence of a platinum group catalyst, and further in the presence of bromine as a co-catalyst. In this case, aluminum as the analytical sample is
Depending on the predicted purity value, 2 to 5 g is used, but 9 to 9.9 parts by weight of ethyl bromide, which does not contain metal ions and has a purity of 98% or more, is added to 1 part by weight of aluminum, and 4 to 5 g is added to this. 10 parts by weight of platinum group catalyst and
0.01 to 0.05 parts by weight of bromine is allowed to coexist. During the reaction, the temperature is heated to 20 to 35°C at the beginning of the reaction. After the reaction starts, no particular heating is required due to the reaction heat. On the other hand, since unreacted ethyl bromide is diffused, a condenser is installed at the top of the reactor to collect it, and the reaction continues while the ethyl bromide is condensed and refluxed into the reactor, and solid aluminum disappears. After everything in the reactor has liquefied, the reaction is maintained for several more minutes, and then the reaction operation is stopped. In order to prevent moisture from entering from the opening end of the condenser, it is desirable to provide a dehumidifying section containing a moisture absorbent/desiccant at the opening end of the condenser. In this case, the platinum group catalyst forms a cell with the aluminum, promoting dissolution of the aluminum while promoting the reaction with ethyl bromide. Bromine also promotes oxidative dissolution of aluminum. As a result of the above, solid aluminum is converted into a liquid organoaluminum compound, and impurities in the solid aluminum also form an organometallic compound. Next, vacuum distillation is performed to remove the organoaluminum compound, which is a large component, from the product liquid. First, the reactor containing the product liquid is connected to a vacuum distillation apparatus, and the product liquid is removed under reduced pressure, for example, under a reduced pressure of 10 Torr or less, preferably 1 to 5 Torr, or after purging with dry nitrogen gas, the pressure is reduced to 5 Torr or less, and the product liquid is removed. 120-150
Excess ethyl bromide and organoaluminum compounds are distilled off while heating to .degree. C., and vacuum distillation is continued for 1 to 2 hours, and the distillation is stopped when the distillate stops distilling. This allows the impurities in the sample aluminum to be concentrated in the residue, making it possible to perform highly accurate analysis. In these series of treatments, the equipment used is preferably made of quartz in order to prevent contamination from equipment materials. The residue obtained above is thermally decomposed using, for example, a mixed solution of hydrochloric acid and nitric acid, and the liberated metal elements are then analyzed for the elements contained therein using an appropriate analytical means. Considering the analytical accuracy and speed that can be obtained, plasma emission spectrometry is preferred when simultaneous multi-element analysis is expected, and flameless atomic absorption spectrometry is preferred when analysis of each element is sufficient. , conventional solid-state emission spectrometry, spectrophotometry, etc. can also be applied. For example, the analysis results by the plasma emission spectrometry described above were as follows.

【表】 なお、本発明による方法は、アルミニウムの特
性と近似しているシリコン(si)、ガリウム
(Ga)については、有機アルミニウム化合物に同
伴されて留出してしまうため、適切な精度が期待
出来ないので、これら元素の定量分析には適用で
きない。 <実施例> 次に本発明方法を実施例、比較例によりさらに
具体的に説明する。 実施例 1 発光分析用として市販されている標準試料につ
いて、本発明方法と従来法により定量分析を行な
つた。 A 本発明方法 (1) アルミニウム分析試料2gを石英製50mlの
平底フラスコに入れ、10gの白金線を入れ
た。 (2) 塩酸水溶液(1:1)20mlを加え、攪拌し
ながら表面浄化を図り、塩酸を除去し、水で
3回、メタノールで2回、エタノール1回の
順で洗浄処理した。次いで60℃のオーブン中
に5分放置し乾燥させた。 (3) 乾燥したメスシリンダーに無水硫酸ナトリ
ウム0.4gを加え、これに臭化エチル18mlと
臭素液0.05mlを加えて攪拌し、脱水処理を行
なつた。 (4) この脱水処理液のみを試料を入れたフラス
コに加え、フラスコ上部に石英製ジムロート
を配置した。ジムロートの先端の空気開放端
に過塩素酸マグネシウムを充填したカラムを
付設し、吸湿を防止した。 ジムロートでは、未反応の気化した臭化エ
チルをフラスコ内に還流させるため6℃以下
の冷却水を流す。 (5) 反応当初は、マントルフーターで約30℃に
加温し、反応開始後は発熱反応により通常は
特に加温を要しない。 (6) 固体アルミニウムが消失し、反応容器内の
ものが全て液状化してから更に数分間保持し
た後、室温までフラスコを冷却した。 (7) フラスコからジムロートを外し、フラスコ
から白金線を取り出し、フラスコ上部に減圧
蒸留装置を付設した。 (8) 接続した真空ポンプにより、フラスコ内の
減圧度を5Torr以下に調整しつつ、フラスコ
上部のリボンヒーターを70℃とし、フラスコ
をマントルヒーターで140℃に制御しながら、
減圧蒸留を続け、留出分が無くなつた時点で
蒸留を停止した。 (9) フラスコ内を常圧にした後、減圧蒸留装置
を取り外した。次いでフラスコ内の残留分に
塩酸水溶液(1:2)10mlと濃硝酸0.05mlを
加えホツトプレート上に置き加温し20〜30秒
間煮沸させ残留分を溶解させた。 (10) 得られた残留分の溶解液をプラズマ発光分
析器(セイコー電子(株)製、SPS−1200A)に
より同時多元素分析を行なつた。 B 従来法 ここでは、軽金属協会規格「LIS」に定める
化学分析法に準じた方法により定量分析を行な
つた。 これらA、B方法で得られた分析値は次の第1
表のとおりであり、対象元素により分析精度が1
桁から2桁も向上することが分かる。
[Table] In addition, in the method according to the present invention, appropriate accuracy cannot be expected because silicon (si) and gallium (Ga), which have properties similar to those of aluminum, are distilled out along with the organic aluminum compound. Therefore, it cannot be applied to quantitative analysis of these elements. <Examples> Next, the method of the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 Quantitative analysis was performed on standard samples commercially available for luminescence analysis using the method of the present invention and a conventional method. A Method of the Invention (1) 2 g of an aluminum analysis sample was placed in a 50 ml quartz flat-bottomed flask, and 10 g of platinum wire was added thereto. (2) 20 ml of an aqueous hydrochloric acid solution (1:1) was added, the surface was purified while stirring, the hydrochloric acid was removed, and the mixture was washed three times with water, twice with methanol, and once with ethanol in that order. Then, it was left in an oven at 60°C for 5 minutes to dry. (3) 0.4 g of anhydrous sodium sulfate was added to a dry graduated cylinder, and 18 ml of ethyl bromide and 0.05 ml of bromine solution were added thereto and stirred to perform dehydration treatment. (4) Only this dehydrated solution was added to the flask containing the sample, and a quartz Dimroth was placed above the flask. A column filled with magnesium perchlorate was attached to the air-open end of the Dimroth to prevent moisture absorption. In the Dimroth, cooling water of 6° C. or lower is flowed to reflux unreacted, vaporized ethyl bromide into the flask. (5) At the beginning of the reaction, heat to about 30°C using a mantle footer, and after the reaction starts, no particular heating is usually required due to the exothermic reaction. (6) After the solid aluminum had disappeared and everything in the reaction vessel had liquefied, the flask was held for several more minutes and then cooled to room temperature. (7) The Dimroth was removed from the flask, the platinum wire was taken out from the flask, and a vacuum distillation device was attached to the top of the flask. (8) Adjust the degree of vacuum inside the flask to 5 Torr or less using the connected vacuum pump, set the ribbon heater on the top of the flask to 70°C, and control the flask to 140°C with the mantle heater.
Distillation under reduced pressure was continued, and the distillation was stopped when no distillate remained. (9) After bringing the inside of the flask to normal pressure, the vacuum distillation apparatus was removed. Next, 10 ml of an aqueous hydrochloric acid solution (1:2) and 0.05 ml of concentrated nitric acid were added to the residue in the flask, placed on a hot plate, heated, and boiled for 20 to 30 seconds to dissolve the residue. (10) The resulting residual solution was subjected to simultaneous multi-element analysis using a plasma emission analyzer (Seiko Electronics Co., Ltd., SPS-1200A). B. Conventional method Here, quantitative analysis was performed using a method conforming to the chemical analysis method specified in the Light Metals Association standard "LIS". The analytical values obtained by these methods A and B are as follows:
As shown in the table, the analysis accuracy is 1 depending on the target element.
It can be seen that the improvement is from 1 to 2 orders of magnitude.

【表】【table】

【表】 実施例 2 市販されている公称99.99%Al地金について実
施例1と同一条件にて臭化エチル処理と減圧蒸留
処理を行なつた後、プラズマ発光分析した結果は
次の第2表のとおりであつた。
[Table] Example 2 A commercially available nominally 99.99% Al ingot was subjected to ethyl bromide treatment and vacuum distillation treatment under the same conditions as in Example 1, and then plasma emission analysis was performed. The results are shown in Table 2 below. It was as follows.

【表】【table】

【表】 <発明の効果> 本法の採用により、従来の分析技術と対比する
とき、 (1) 使用する分析処理用薬剤が少なく、分析処理
中における環境汚染もなく、分析すべき不純物
が濃縮された状態になされるため、高精度の分
析データが得られる。 (2) 試料処理のために、特に高価な特殊装置を必
要としないので、分析コストが安価である。 (3) Si及びGaを除く元素について、定量可能で、
特に同時多元素分析手段を併用するときには、
全所要時間がきわめて短縮化される。 (4) 化学分析法と対比するときには、必要試料重
量が少なくてよい。 等のメリツトがある。
[Table] <Effects of the invention> By adopting this method, when compared with conventional analytical techniques, (1) fewer chemicals are used for analytical processing, there is no environmental pollution during analytical processing, and impurities to be analyzed are concentrated; Highly accurate analytical data can be obtained. (2) Analysis costs are low because no expensive special equipment is required for sample processing. (3) Elements other than Si and Ga are quantifiable and
Especially when using simultaneous multi-element analysis methods,
The total time required is greatly reduced. (4) When compared with chemical analysis methods, the required sample weight may be smaller. There are advantages such as

Claims (1)

【特許請求の範囲】[Claims] 1 高純度アルミニウム材に臭化エチルを白金族
触媒、臭素の存在下で反応させた後、生成液を減
圧蒸留して有機アルミニウム化合物を蒸留分離
し、その残留分を微量分析用二次試料とすること
を特徴とする高純度アルミニウム中の微量不純物
の分析法。
1. After reacting ethyl bromide with a high-purity aluminum material in the presence of a platinum group catalyst and bromine, the resulting solution is distilled under reduced pressure to separate the organic aluminum compound, and the residue is used as a secondary sample for trace analysis. A method for analyzing trace impurities in high-purity aluminum.
JP9197887A 1987-04-16 1987-04-16 Analysis of trace impurities in highly pure aluminium Granted JPS63259463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9197887A JPS63259463A (en) 1987-04-16 1987-04-16 Analysis of trace impurities in highly pure aluminium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9197887A JPS63259463A (en) 1987-04-16 1987-04-16 Analysis of trace impurities in highly pure aluminium

Publications (2)

Publication Number Publication Date
JPS63259463A JPS63259463A (en) 1988-10-26
JPH0561593B2 true JPH0561593B2 (en) 1993-09-06

Family

ID=14041592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9197887A Granted JPS63259463A (en) 1987-04-16 1987-04-16 Analysis of trace impurities in highly pure aluminium

Country Status (1)

Country Link
JP (1) JPS63259463A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792453B2 (en) * 1989-08-04 1995-10-09 日本碍子株式会社 ZnO element raw material zinc oxide quality determination method

Also Published As

Publication number Publication date
JPS63259463A (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US4758519A (en) Method for continuously analysing total gaseous mercury
KR20050098905A (en) Purification of alcohol
DeGroot et al. Relative rates of carbon gasification in oxygen, steam and carbon dioxide
JPH0561593B2 (en)
JP7048620B2 (en) Method for Producing High-Purity Iridium (III) Chloride Hydrate
Hashimoto et al. Solvent Effects in the Reaction of Grignard Reagent with 1-Alkynes1
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP4559932B2 (en) Method for analyzing metal impurities
JP2565738B2 (en) Pyridine purification method
Lamprecht et al. Solubility of metals in liquid sodium. I. Sodium-tin
JP3495885B2 (en) Quantitative analysis of arsenic in liquid chemicals
JP2001199960A (en) Method for purifying pyridine
JP3144066B2 (en) Determination of boron in sulfuric acid
Matsumoto et al. Determination of aluminum oxide in and on high-purity aluminum by a phenol dissolution method
Sun et al. Novel matrix modifier for direct determination of palladium in gold alloy by electrothermal vaporization inductively coupled plasma mass spectrometry
Hashimoto et al. The Photochemical Reduction of Hydrazobenzene
Calcott et al. Analysis of Acetic Anhydride.
US2526841A (en) Method of dissolving steel to obtain residue containing aluminum nitride
US3084996A (en) Method of regenerating the free and the used hydrochloric acid from aluminium etching baths
JPH06213805A (en) Etching method in ultramicroanalysis of metal on surface of silicon wafer
JPH05211223A (en) Analyzing method of impurity on semiconductor substrate surface
Mack The spectrographic determination of trace impurities in arsenic
RU2052813C1 (en) Method of determination of selenium in organic and inorganic substances
Dash et al. Vapor phase matrix extraction of high purity di-boron trioxide and trace analysis using electrothermal AAS
US5962334A (en) Process for extracting 2,3,7,8-tetrachlorodibenzo-p-dioxin