JPH056137B2 - - Google Patents

Info

Publication number
JPH056137B2
JPH056137B2 JP59127468A JP12746884A JPH056137B2 JP H056137 B2 JPH056137 B2 JP H056137B2 JP 59127468 A JP59127468 A JP 59127468A JP 12746884 A JP12746884 A JP 12746884A JP H056137 B2 JPH056137 B2 JP H056137B2
Authority
JP
Japan
Prior art keywords
sample
gas
liquid
solution
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127468A
Other languages
Japanese (ja)
Other versions
JPS617467A (en
Inventor
Juroku Yamamoto
Manabu Yamamoto
Makoto Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59127468A priority Critical patent/JPS617467A/en
Publication of JPS617467A publication Critical patent/JPS617467A/en
Publication of JPH056137B2 publication Critical patent/JPH056137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、被検元素を含む試料を試薬と反応さ
せて、被検元素のガス状原子又はガス状化合物を
発生させ、これらを検出部に送ることにより被検
元素を検出定量するフローインジエクシヨン分析
法に関し、更に詳しくはポンプの脈動に基づく試
料と試薬の不均一な混合及び反応を防止し、均一
な反応を速やかに進行させることによつて検出感
度及び分析精度の向上を計り、合わせて分析の迅
速化を計つた改良されたフローインジエクシヨン
分析法に関する。 〔従来技術〕 近年高速、高精度の分析法としてフローインジ
エクシヨン分析法が注目を浴びている。フローイ
ンジエクシヨン分析法は、従来からよく行われて
いる連続フロー分析法とは異なつて試料の空気分
節はなく、試料の注入から反応、測定に至る操作
を液体の連続的な流れの構成によつて行つてい
る。 ところで試料中の被検元素を試薬として反応さ
せて被検元素のガス状原子又はガス状化合物を発
生させ、これらをキヤリヤーガスと共に検出部に
送り込み被検元素を検出定量する連続フロー分析
法が提案されている(分光研究vol.32、No.5
pp334〜338、分析化学vol.30、pp368〜374、
Analyst vol.101、pp966〜973及び同vol.106、
pp921〜930)。本発明者らがこれら先行文献に記
載されている技術につき追試検討を行つたとこ
ろ、なるほどヒ素、アンチモン、テルル、鉛等の
元素が検出定量できるものの、試料の量が多く必
要であつて微量試料の検出定量には不適当である
ことが判つた。しかも分析精度及び検出感度の面
で未だ十分ではなく、又測定に要する時間すなわ
ち迅速性の面でも十分な分析法といえないことも
判明した。そこで本発明者らは、現行のこの連続
フロー分析法とは全く異なる前述のフローインジ
エクシヨン分析法を応用して上記問題の解決を試
みた。 〔発明の目的〕 しかるにフローインジエクシヨン分析法を単に
適用しても検出感度の向上、分析精度の向上及び
迅速性の向上を全て満足させるには以下に示す如
き矛盾が存在し、一朝一夕では解決できないこと
が判つた。すなわち迅速化を行うには発生したガ
ス状原子又はガス状化合物を素早く検出部に送り
込む必要があり、このためにはキヤリヤーガスの
供給量を増やせばよい。しかしキヤリヤーガス供
給量を多くすると被検元素のガス状原子又はガス
状化合物が希釈されるので検出感度が低下する。
又高精度でかつ検出感度を向上させるためには系
内の圧力変動をなくす必要があり、このためには
圧力変動を緩和するバツフアータンクの如き容量
の大きい緩衝装置が必要である。しかしかかる緩
衝装置の存在は、試料等の系内滞留時間が長くな
り迅速性が低下する。 以上の如き問題に鑑み、本発明者らは更に研究
を重ねた結果、試料と試薬との混合を特殊な条件
下で行えば前述の矛盾を解決できることを見い出
した。すなわち本発明の目的は、相互に矛盾のあ
る検出感度の向上、分析精度の向上及び迅速性の
向上を同時に可能にしたフローインジエクシヨン
分析法を提供することにある。 〔発明の構成及び概要〕 すなわち本発明は間欠的に注入された試料ゾー
ンを含む連続的に供給されてくるキヤリヤー液と
試薬とを、流速0.1〜5m/secのジエツト噴流状
態で接触混合し、定量的に発生する被検元素のガ
ス状原子又はガス状化合物をキヤリヤーガスと共
に検出部へ供給し、被検元素を検出定量すること
を特徴とするフローインジエクシヨン分析法であ
る。 フローインジエクシヨン分析法 第1図に本発明のフローインジエクシヨン分析
法の概要を示すフローチヤート図を示す。連続し
て流れてくるキヤリヤー液中に被検元素を含有す
る試料をロータリーバブル等により間欠的に注入
する。注入された試料はゾーンとなつてキヤリヤ
ー液中に存在し、続いて連続的又は間欠的に供給
されてくる試薬と混合され、反応部で被検元素の
ガス状原子又はガス状化合物を発生する。発生し
た被検元素のガス状原子又はガス状化合物は気液
分離されてキヤリヤーガスと共に検出部に供給さ
れて検出定量される。以下本発明のフローインジ
エクシヨン分析法について更に詳細に説明する。 まずポンプによつて連続的に供給されるキヤリ
ヤー液中に試料液を間欠的に注入する。試料の注
入は通常の方法すなわちロータリーバブルによる
方法でよい。 本発明に関しては試料を含むキヤリヤー液と試
薬溶液とを流速0.1〜5m/secのジエツト噴流状
態で接触混合させることが重要である。すなわち
両者を細管又は細孔から連続的に噴流させ、両噴
流を互に衝突させ合うことによつて、 試薬溶液供給ポンプ及びキヤリヤー液供給ポ
ンプの脈動が防止でき、該脈動に起因する系内
圧力変動が消去されるので圧力緩衝装置を必要
としない。 接触混合が理想的に行われるので、反応が短
時間内に定量的に完了する。 反応が短時間で定量的に完了するので、反応
部に要する空間容積を小さくすることができ
る。 といつた特長が現われ、その結果次の如き利点が
得られる。 系内圧力変動に基づくノイズの発生がなくな
り、分析精度及び検出感度が向上する。 接触混合によつて反応が速やかに進行完結す
るので、更に検出感度が向上する。 圧力緩衝装置を必要としないし、反応部の空
間容積を小さくすることができるので、系内滞
留時間が減少し迅速性が向上する。 被検元素のガス状原子又はガス状化合物が短
時間で分離されるので共存イオンによる干渉を
著しく抑制することができる。 試料及び試薬の量が極めて少量ですむので経
済的にも有利であり、更に廃液の量が少なくて
すむので、廃液処理の問題から解放される。 試料を含むキヤリヤー液と試薬とをジエツト噴
流状態で接触混合させるには、第2図及び第3図
の方法が考えられる。第2図は、キヤリヤー液に
よつて運ばれる試料が連続的に流れてくる細管4
及び試薬溶液が連続的又は間欠点に流れてくる細
管5の先端から流出する液がジエツト噴流状態す
なわち液が連続的に先端から0.1〜5m/sec程度
で流出するようにポンプによつて高い背圧を掛け
る方法である。一方第3図は、試料を含むキヤリ
ヤー液及び試薬溶液が流れる管24及び25の先
端を絞り、ジエツト噴流状態となるようにする方
法である。これらの場合、試料液と試薬溶液とが
効率よく接触混合して次の反応部2又は22へ送
り込まれるよう、試料を含むキヤリヤー液を供給
する管4又は24と試薬溶液を供給する管5又は
25とを直角位置に配置すると共に、キヤリヤー
ガスを供給する管3又は23を設けてある。 試料液と試薬溶液は流速0.1〜5m/secのジエ
ツト噴流状態で接触混合されて化学反応が進行
し、反応部で化学反応が完了すると共に、被検元
素のガス状原子又はガス状化合物が反応部で発生
する。この際化学反応が短時間内に完了するので
反応部容積は小さくて済む。発生した被検元素の
ガス状原子又はガス状化合物は、必要に応じて気
液分離セパレータで気液分離されたのち、キヤリ
ヤーガスと共に検出部へ供給されて検出定量分析
される。 検出部の検出方法は公知の如何なる方法でも適
用できる。例えば原子吸光法、原子ケイ光法、誘
導結合高周波プラズマ発光法等の原子スペクトル
分析法、隔膜カルバニ電池法、定電位電解法等の
電気化学分析法、半導体素子法、気体熱電伝導式
素子法、光干渉法等が例示できる。これらの中で
はとくに原子スペクトル分析法が好ましい。 試料・キヤリヤー及び試薬 本発明に用いられる試料はヒ素、アンチモン、
ビスマス、テルル、セレン、ゲルマニウム、ス
ズ、鉛又は水銀等といつた被検元素を含む液体で
ある。キヤリヤー液又はキヤリヤーガスは試料や
試薬あるいは発生した被検元素のガス状原子又は
ガス状化合物に対して安定で反応しないものであ
つて、たとえばキヤリヤー液としては純水、酸性
又はアルカリ性溶液、有機溶媒、緩衝溶媒等、キ
ヤリヤーガスとしては窒素、水素、アルゴン、ヘ
リウム等を例示することができる。試薬は被検元
素に対し選択的に反応し、被検元素のガス状原子
又はガス状化合物を発生させるものであるなら如
何なるものでもよく、このような試薬の例として
はたとえばテトラヒドロホウ酸ナトリウム−酸
(鉱酸又は有機酸)系がある。すなわちテトラヒ
ドロホウ酸ナトリウム−酸系は還元剤として働
き、ガス状被検元素水素化合物たとえばAsH3
SbH3、SeH2、BiH3、TeH2、SnH4、PbH4
GeH4等あるいは水銀原子の蒸気を発生させる。 〔実施例〕 以下本発明の好適な例としてヒ素のフローイン
ジエクシヨン原子吸光分析法を説明する。 まず第4図に示すような装置を組み立てた。キ
ヤリヤー液として純水及び各種試薬溶液及びセグ
メントガスとしての窒素を所定圧力で供給するた
め4チヤンネルペリスターボンプ41を用い、試
料の注入のためのロータリーバブルには六方コツ
ク42を用いた。ミキシングコイル43は内径
1.5mmのガラス管(2mm、20巻)を、テトラヒド
ロホウ酸ナトリウムとの反応が進行する反応部4
4には内径2mmのテフロン 管10cmを用いた。そ
の他は全て内径0.5mmのテフロン 管を用いて接
続した。気液分離セパレーター45は内径15mm、
高さ12cmの一段プレートを持つものを用いた。 次に分析の手順について述べる。 分析に用いるヒ素の標準溶液を次のように調整
した。ヒ酸水素ナトリウム(Na2HAsO4)2.28g
を1N−塩酸水溶液で1とし、その中から10ml
を採り1N−塩酸水溶液で1とする。又その中
から10mlを採り1N−塩酸水溶液で1とし、更
にその中から10mlを採取し純水で100mlとする。
この溶液を分析用試料とする。この溶液のヒ素濃
度は10ppb(10ng/ml)である。 次いで原子吸光装置を測定可能な状態にセツト
し、然る後に水を5ml/分の割合で連続的に流
し、セグメントガスとしての窒素を5ml/分の割
合で混合する。続いて六方コツク42を切り換え
ることによつてヒ素含有試料を1回当り0.5mlの
割合でキヤリヤー液(純水)の中に間欠的に注入
する。注入された試料は水及び窒素に挾さまれた
状態すなわち水/窒素/試料/窒素/水の形にな
つて連続的に流れる。この時の窒素の存在は、試
料が水の中に拡散して試料ゾーン巾が広がり検出
感度が低下するのを防ぐ役割をはたす。試料を含
む水には続いて塩酸35v/v%を7ml/分及びヨ
ウ化カリウム溶液50w/v%を1.5ml/分の割合
で供給する。ヨウ化カリウム溶液の添加は5価の
ヒ素を3価に還元し後述の水素化物の発生効率を
向上させると共に共存イオンの干渉を抑制する。
塩酸、ヨウ化カリウム溶液が添加された試料を含
むキヤリヤー液には、ミキシングコイル43を通
過後、テトラヒドロホウ酸ナトリウム溶液3w/
v%と1.5ml/分及びキヤリヤーガスとして窒素
を300ml/分の割合で供給する。このテトラヒド
ロホウ酸ナトリウム溶液と試料を含む水との接触
混合(図中番号46部分)は第2図に示す装置によ
つてジエツト噴流状態で行う。ジエツト噴流状態
の線速は1.27m/secである。 試料を含むキヤリヤー液とテトラヒドロホウ酸
ナトリウム溶液は、ジエツト噴流状態で接触混合
されて反応が起こり、反応管44中で還元反応が
完了してガス状のヒ化水素(AsH3)が定量的に
発生する。続いて気液分離セパレーター45に送
られ気液が分離されヒ素の水素化物と窒素は原子
吸光部に送られる。この時気液分離セパレーター
の内容積を小さくすると滞留時間が短かくなつて
気液分離が不十分となり、飛沫が気体と共に原子
吸光部に導入されて不都合である。したがつて気
体は直径約1mmの孔を通過させプレートに衝突さ
せたのち回収することによつて不純物の液体を除
く。分離された気体は原子吸光部に供給され、ヒ
素の検出定量が行われる。 ヒ素標準試料溶液0.5mlを用いてこのような操
作を10回繰り返し、変動係数(CV%)を調べた
ところ1.2%であつた。又1%吸収を示す感度が
0.1ng、検出限界(S/N=3)が0.15ngであつ
た。更に本分析法は1時間に120検体の検出定量
が可能であつた。廃液量は、1検体当り17mlであ
り、検体試料量は、1測定当り0.5mlを必要とし
た。 [比較例 1] 比較のため、雑誌「分光研究」Vol.32 No.5
pp334〜335Fig1に示された連続法を用い、ヒ素
の定量を行なつた。 この連続法を、第5図に模式的に示した。 第5図に示すように、ペリスタポンプ1を介し
て、試料3に塩酸15とヨー化カリウム6を加
え、試料中のAs5+をAs3+に予備還元した。 得られた試料を含む溶液をミキシングコイル7
内で混合した後、アルゴンガス8とテトラヒドロ
ホウ酸ナトリウム溶液(試薬)9とを混合し、反
応部10で反応させ、セパレーター11に送つ
て、ここで水素化物12と廃液13に分離し、水
素化物を図示しない検出部に送り被検物質である
ヒ素を検出定量した。 測定条件は、以下のとおりとした。 HCL水溶液(1mo/) :9.2ml/min. NaBH4水溶液(3%) :2.3ml/min. KI水溶液(35%) :2.3ml/min. 試料流速 :7.3ml/min. ヒ素濃度 :200ppb その結果、ヒ素の検出限界(S/N=3)は、
10ng、6回の測定の繰り返し変動係数(CV%)
は、2.3%、1時間に30検体の検出定量が可能で
あつた。廃液量は、1検体当り46mlであり、検体
試料量は、1測定当り16mlを必要とした。 [実施例2および比較例2] 本発明のフローインジエクシヨン法と雑誌「分
光研究」Vol.32 No.5 pp334〜335Fig1に示さ
れた連続法との測定時間の比較をするために、実
施例1および比較例1で用いた装置をそれぞれ用
いて実施例2および比較例2を以下の表1の条件
で行い、島津製作所製AA−630型原子吸光分析
装置によりヒ素濃度を検出し、結果を表2および
第6図に示した。 なお、実施例2におけるジエツト噴流状態の線
速は1.14m/secであつた。
[Field of Application of the Invention] The present invention reacts a sample containing the analyte element with a reagent to generate gaseous atoms or gaseous compounds of the analyte element, and sends these to a detection section to detect the analyte element. Regarding the flow injection analysis method for detection and quantification, more specifically, it prevents uneven mixing and reaction of the sample and reagent due to pump pulsation, and improves detection sensitivity and analysis accuracy by rapidly promoting a uniform reaction. This invention relates to an improved flow injection analysis method that aims to improve the efficiency of the analysis and speed up the analysis. [Prior Art] In recent years, flow injection analysis has attracted attention as a high-speed, high-precision analysis method. Unlike the conventional continuous flow analysis method, the flow injection analysis method does not have an air segment for the sample, but instead consists of a continuous flow of liquid from sample injection to reaction and measurement. I'm waddling along. By the way, a continuous flow analysis method has been proposed in which gaseous atoms or gaseous compounds of the analyte are generated by reacting with the analyte in the sample as a reagent, and these are sent together with a carrier gas to the detection section to detect and quantify the analyte. (Spectroscopy Research vol.32, No.5
pp334-338, Analytical Chemistry vol.30, pp368-374,
Analyst vol.101, pp966-973 and same vol.106,
pp921-930). When the present inventors conducted a follow-up study on the techniques described in these prior documents, they found that although elements such as arsenic, antimony, tellurium, and lead can be detected and quantified, a large amount of sample is required. It was found to be inappropriate for detection and quantification. Furthermore, it has been found that the analysis accuracy and detection sensitivity are still insufficient, and the time required for measurement, that is, the speed, is also insufficient. Therefore, the present inventors attempted to solve the above problem by applying the aforementioned flow injection analysis method, which is completely different from the current continuous flow analysis method. [Object of the Invention] However, even if the flow injection analysis method is simply applied, there are contradictions as shown below in order to satisfy all of the improvement in detection sensitivity, analysis accuracy, and speed, and it cannot be solved overnight. It turned out that I couldn't do it. That is, in order to speed up the detection, it is necessary to quickly send the generated gaseous atoms or gaseous compounds to the detection section, and for this purpose, the amount of carrier gas supplied may be increased. However, when the amount of carrier gas supplied is increased, the gaseous atoms or gaseous compounds of the test element are diluted, resulting in a decrease in detection sensitivity.
Furthermore, in order to achieve high accuracy and improve detection sensitivity, it is necessary to eliminate pressure fluctuations within the system, and for this purpose, a large-capacity buffer device such as a buffer tank is required to alleviate pressure fluctuations. However, the presence of such a buffer device increases the residence time of the sample etc. in the system and reduces the speed. In view of the above problems, the present inventors conducted further research and found that the above-mentioned contradiction could be resolved by mixing the sample and reagent under special conditions. That is, an object of the present invention is to provide a flow injection analysis method that simultaneously enables improvement in detection sensitivity, improvement in analysis accuracy, and improvement in speed, which are contradictory to each other. [Structure and Summary of the Invention] That is, the present invention involves contact-mixing a continuously supplied carrier liquid including an intermittently injected sample zone and a reagent in a jet jet state at a flow rate of 0.1 to 5 m/sec. This is a flow injection analysis method characterized by supplying quantitatively generated gaseous atoms or gaseous compounds of the analyte element to the detection section together with a carrier gas, and detecting and quantifying the analyte element. Flow Injection Analysis Method FIG. 1 shows a flowchart showing an overview of the flow injection analysis method of the present invention. A sample containing a test element is injected intermittently into a continuously flowing carrier liquid using a rotary bubble or the like. The injected sample is present in a carrier liquid as a zone and is subsequently mixed with continuously or intermittently supplied reagents to generate gaseous atoms or gaseous compounds of the analyte element in the reaction zone. . The generated gaseous atoms or gaseous compounds of the analyte element are separated into gas and liquid, and are supplied together with a carrier gas to a detection section where they are detected and quantified. The flow injection analysis method of the present invention will be explained in more detail below. First, a sample liquid is intermittently injected into a carrier liquid that is continuously supplied by a pump. The sample may be injected by a conventional method, ie, a method using a rotary bubble. Regarding the present invention, it is important to contact and mix the carrier liquid containing the sample and the reagent solution in a jet jet state at a flow rate of 0.1 to 5 m/sec. In other words, by jetting both continuously from a thin tube or pore and making both jets collide with each other, pulsation of the reagent solution supply pump and the carrier liquid supply pump can be prevented, and the internal pressure caused by the pulsation can be reduced. There is no need for a pressure damper as fluctuations are eliminated. Since catalytic mixing is ideally carried out, the reaction is quantitatively completed within a short time. Since the reaction is completed quantitatively in a short time, the space required for the reaction section can be reduced. As a result, the following advantages can be obtained. Noise generation due to pressure fluctuations within the system is eliminated, and analysis accuracy and detection sensitivity are improved. Since the reaction progresses quickly and is completed by contact mixing, the detection sensitivity is further improved. Since a pressure buffer device is not required and the spatial volume of the reaction section can be reduced, the residence time in the system is reduced and speed is improved. Since gaseous atoms or gaseous compounds of the test element are separated in a short time, interference by coexisting ions can be significantly suppressed. It is economically advantageous because the amounts of samples and reagents are extremely small, and the amount of waste liquid is also small, which eliminates the problem of waste liquid disposal. In order to contact and mix the carrier liquid containing the sample and the reagent in a jet jet state, the methods shown in FIGS. 2 and 3 can be considered. Figure 2 shows a capillary tube 4 through which the sample carried by the carrier fluid flows continuously.
The liquid flowing out from the tip of the capillary tube 5, through which the reagent solution flows continuously or intermittently, is in a jet jet state, that is, the pump is used with a high back so that the liquid flows out continuously from the tip at a rate of about 0.1 to 5 m/sec. This is a method of applying pressure. On the other hand, FIG. 3 shows a method in which the tips of the tubes 24 and 25 through which the carrier liquid and reagent solution containing the sample flow are constricted to create a jet jet state. In these cases, a tube 4 or 24 for supplying a carrier liquid containing the sample and a tube 5 or 25 are arranged at right angles to each other, and a tube 3 or 23 for supplying carrier gas is provided. The sample solution and the reagent solution are mixed in contact with each other in a jet jet state at a flow rate of 0.1 to 5 m/sec, and the chemical reaction progresses. At the same time, the chemical reaction is completed in the reaction zone, and the gaseous atoms or gaseous compounds of the test element react. Occurs in the department. At this time, since the chemical reaction is completed within a short time, the volume of the reaction section can be small. The generated gaseous atoms or gaseous compounds of the analyte element are separated into gas and liquid by a gas-liquid separator if necessary, and then supplied together with a carrier gas to a detection section where they are detected and quantitatively analyzed. Any known detection method can be applied to the detection section. For example, atomic spectrum analysis methods such as atomic absorption spectrometry, atomic fluorescence method, and inductively coupled high-frequency plasma emission method; electrochemical analysis methods such as diaphragm carbani cell method and constant potential electrolysis method; semiconductor device method; gas thermoelectric conduction device method; An example is optical interference method. Among these, atomic spectrum analysis is particularly preferred. Samples/Carriers and Reagents Samples used in the present invention include arsenic, antimony,
A liquid containing test elements such as bismuth, tellurium, selenium, germanium, tin, lead, or mercury. The carrier liquid or carrier gas is stable and does not react with the sample, reagent, or gaseous atoms or gaseous compounds of the generated test element. For example, the carrier liquid may be pure water, an acidic or alkaline solution, an organic solvent, Examples of carrier gases such as buffer solvents include nitrogen, hydrogen, argon, helium, and the like. Any reagent may be used as long as it reacts selectively with the analyte element and generates gaseous atoms or gaseous compounds of the analyte element. Examples of such reagents include sodium tetrahydroborate. There are acids (mineral acids or organic acids). That is, the sodium tetrahydroborate-acid system acts as a reducing agent and reduces gaseous analyte hydrogen compounds such as AsH 3 ,
SbH 3 , SeH 2 , BiH 3 , TeH 2 , SnH 4 , PbH 4 ,
Generates vapors such as GeH 4 or mercury atoms. [Example] As a preferred example of the present invention, a flow-in injection atomic absorption spectrometry method for arsenic will be described below. First, a device as shown in Figure 4 was assembled. A four-channel pellister pump 41 was used to supply pure water as a carrier liquid, various reagent solutions, and nitrogen as a segment gas at a predetermined pressure, and a hexagonal pot 42 was used as a rotary bubble for injecting a sample. The mixing coil 43 has an inner diameter
A 1.5 mm glass tube (2 mm, 20 rolls) was placed in reaction section 4 where the reaction with sodium tetrahydroborate progresses.
For No. 4, a 10 cm Teflon tube with an inner diameter of 2 mm was used. All other connections were made using Teflon tubes with an inner diameter of 0.5 mm. The gas-liquid separator 45 has an inner diameter of 15 mm.
A device with a single-stage plate 12 cm in height was used. Next, the analysis procedure will be described. The arsenic standard solution used for analysis was prepared as follows. Sodium hydrogen arsenate ( Na2HAsO4 ) 2.28g
to 1 with 1N-hydrochloric acid aqueous solution, and 10ml of it
Take it and make it 1 with 1N hydrochloric acid aqueous solution. Also, take 10 ml from it and make it 1 with 1N aqueous hydrochloric acid solution, then take 10 ml from there and make 100 ml with pure water.
This solution is used as a sample for analysis. The arsenic concentration in this solution is 10 ppb (10 ng/ml). Next, the atomic absorption spectrometer was set in a measurable state, and then water was continuously flowed at a rate of 5 ml/min, and nitrogen as a segment gas was mixed at a rate of 5 ml/min. Subsequently, by switching the hexagonal tip 42, an arsenic-containing sample is intermittently injected into the carrier liquid (pure water) at a rate of 0.5 ml per injection. The injected sample flows continuously in the form of water and nitrogen, that is, water/nitrogen/sample/nitrogen/water. The presence of nitrogen at this time serves to prevent the sample from diffusing into the water, increasing the sample zone width and reducing detection sensitivity. The water containing the sample is subsequently fed with 7 ml/min of 35% v/v hydrochloric acid and 1.5 ml/min of 50% w/v potassium iodide solution. Addition of the potassium iodide solution reduces pentavalent arsenic to trivalent arsenic, improves the generation efficiency of hydrides, which will be described later, and suppresses interference from coexisting ions.
After passing through the mixing coil 43, the carrier liquid containing the sample to which hydrochloric acid and potassium iodide solution have been added is added with 3 w/sodium tetrahydroborate solution.
v% and 1.5 ml/min and nitrogen as a carrier gas at a rate of 300 ml/min. The contact mixing of the sodium tetrahydroborate solution and the water containing the sample (section 46 in the figure) is carried out in a jet jet state using the apparatus shown in FIG. The linear velocity in the jet state is 1.27 m/sec. The carrier liquid containing the sample and the sodium tetrahydroborate solution are contacted and mixed in a jet jet state to cause a reaction, and the reduction reaction is completed in the reaction tube 44 and gaseous hydrogen arsenide (AsH 3 ) is quantitatively produced. Occur. Subsequently, the gas is sent to a gas-liquid separator 45, where the gas and liquid are separated, and the arsenic hydride and nitrogen are sent to the atomic absorption section. At this time, if the internal volume of the gas-liquid separation separator is made small, the residence time will be shortened, resulting in insufficient gas-liquid separation, and droplets will be introduced into the atomic absorption part along with the gas, which is disadvantageous. Therefore, the gas passes through a hole with a diameter of about 1 mm, collides with the plate, and is recovered to remove impurity liquid. The separated gas is supplied to an atomic absorption section, where arsenic is detected and quantified. This operation was repeated 10 times using 0.5 ml of the arsenic standard sample solution, and the coefficient of variation (CV%) was found to be 1.2%. Also, the sensitivity shows 1% absorption.
The detection limit (S/N=3) was 0.15 ng. Furthermore, this analytical method was able to detect and quantify 120 samples per hour. The amount of waste liquid was 17 ml per specimen, and the amount of specimen sample required was 0.5 ml per measurement. [Comparative Example 1] For comparison, the magazine “Spectroscopy Research” Vol.32 No.5
pp334-335Arsenic was determined using the continuous method shown in Fig1. This continuous method is schematically shown in FIG. As shown in FIG. 5, 15 hydrochloric acid and 6 potassium iodide were added to sample 3 via peristaltic pump 1 to preliminarily reduce As 5+ in the sample to As 3+ . The solution containing the obtained sample is transferred to the mixing coil 7.
After mixing in the chamber, argon gas 8 and sodium tetrahydroborate solution (reagent) 9 are mixed, reacted in a reaction section 10, and sent to a separator 11, where they are separated into a hydride 12 and a waste liquid 13. The compound was sent to a detection section (not shown), and arsenic, which was a test substance, was detected and quantified. The measurement conditions were as follows. HCL aqueous solution (1mo/): 9.2ml/min. NaBH 4 aqueous solution (3%): 2.3ml/min. KI aqueous solution (35%): 2.3ml/min. Sample flow rate: 7.3ml/min. Arsenic concentration: 200ppb As a result, the detection limit for arsenic (S/N=3) is
Repeated variation coefficient (CV%) of 10ng, 6 measurements
was 2.3%, and it was possible to detect and quantify 30 samples per hour. The amount of waste liquid was 46 ml per specimen, and the amount of specimen sample required was 16 ml per measurement. [Example 2 and Comparative Example 2] In order to compare the measurement time between the flow injection method of the present invention and the continuous method shown in the magazine "Spectroscopy Research" Vol. 32 No. 5 pp. 334-335 Fig. Example 2 and Comparative Example 2 were carried out using the apparatuses used in Example 1 and Comparative Example 1 under the conditions shown in Table 1 below, and the arsenic concentration was detected using an atomic absorption spectrometer AA-630 manufactured by Shimadzu Corporation. are shown in Table 2 and FIG. In addition, the linear velocity in the jet jet state in Example 2 was 1.14 m/sec.

【表】【table】

【表】 [実施例3〜5および比較例3〜5] キヤリヤー液と試薬との混合速度を4.3m/sec
〜0.05m/secの幅で変化させ、その他の条件は
実施例1と同様にして、島津製作所製AA−630
型原子吸光分析装置によりヒ素濃度を検出し、ヒ
素検出ピーク高さ(mm)とノイズ幅(mm)を算出
し、表3に示した。キヤリヤー液試料を含む水と
試薬(テトラヒドロホウ酸ナトリウム溶液)との
混合速度の変化は、第2図に示す装置において、
キヤリヤー液流量およびキヤリヤー液流路4の口
径をかえて行つた。 なお、実施例4は、実施例1と全く同じ条件で
ヒ素検出ピーク高さとノイズ幅を測定した実験で
ある。
[Table] [Examples 3 to 5 and Comparative Examples 3 to 5] The mixing speed of the carrier liquid and reagent was 4.3 m/sec.
The width was varied at ~0.05 m/sec, and the other conditions were the same as in Example 1.
The arsenic concentration was detected using a type atomic absorption spectrometer, and the arsenic detection peak height (mm) and noise width (mm) were calculated and shown in Table 3. The change in the mixing rate of the water containing the carrier liquid sample and the reagent (sodium tetrahydroborate solution) was determined in the apparatus shown in FIG.
The experiment was carried out by changing the carrier liquid flow rate and the diameter of the carrier liquid flow path 4. Note that Example 4 is an experiment in which the arsenic detection peak height and noise width were measured under exactly the same conditions as Example 1.

【表】 表3に示す結果から、試料を含むキヤリヤー液
と試薬との混合速度を5〜0.1m/secとすると、
ヒ素検出ピーク高さが高くノイズ幅の狭い高感度
の測定が得られるが、この範囲をはずれると感度
が落ちてしまうことが明らかである。
[Table] From the results shown in Table 3, if the mixing speed of the carrier liquid containing the sample and the reagent is 5 to 0.1 m/sec,
Although highly sensitive measurements with a high arsenic detection peak height and a narrow noise width can be obtained, it is clear that sensitivity decreases when outside this range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローインジエクシヨン分析
法の概要を示すフローチヤート図、第2図〜第4
図は本発明の実施例図である。第5図は、比較例
に用いた連続法を説明するフロー図である。第6
a図および第6b図は、それぞれ実施例2と比較
例2の結果を示すグラフである。 符号の説明、1……ペリスタポンプ、3……試
料、6……ヨー化カリウム、7……ミキシングコ
イル、8……アルゴンガス、9……テトラヒドロ
ホウ酸ナトリウム溶液、10……反応部、11…
…セパレーター、12……水素化物、13……廃
液、15……塩酸、4,24……キヤリヤー液流
路、5,25……試薬流路、2,22……反応
部、42……六方コツク、45……気液分離セパ
レーター。
Figure 1 is a flowchart showing an overview of the flow injection analysis method of the present invention, and Figures 2 to 4.
The figure is an embodiment diagram of the present invention. FIG. 5 is a flow diagram illustrating the continuous method used in the comparative example. 6th
Figures a and 6b are graphs showing the results of Example 2 and Comparative Example 2, respectively. Explanation of symbols, 1... Peristaltic pump, 3... Sample, 6... Potassium iodide, 7... Mixing coil, 8... Argon gas, 9... Sodium tetrahydroborate solution, 10... Reaction section, 11...
... Separator, 12 ... Hydride, 13 ... Waste liquid, 15 ... Hydrochloric acid, 4, 24 ... Carrier liquid flow path, 5, 25 ... Reagent flow path, 2, 22 ... Reaction section, 42 ... Hexagonal Kotuku, 45... Gas-liquid separation separator.

Claims (1)

【特許請求の範囲】[Claims] 1 間欠的に注入された試料ゾーンを含む連続的
に供給されてくるキヤリヤー液と試薬とを、流速
0.1〜5m/secのジエツト噴流状態で接触混合し、
定量的に発生する被検元素のガス状原子又はガス
状化合物をキヤリヤーガスと共に検出部へ供給
し、被検元素を検出定量することを特徴とするフ
ローインジエクシヨン分析法。
1. A continuous supply of carrier liquid and reagents containing an intermittent sample zone are
Contact mixing with a jet flow of 0.1 to 5 m/sec,
A flow injection analysis method characterized in that gaseous atoms or gaseous compounds of a test element that are quantitatively generated are supplied to a detection section together with a carrier gas, and the test element is detected and quantified.
JP59127468A 1984-06-22 1984-06-22 Flow injection analysis Granted JPS617467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127468A JPS617467A (en) 1984-06-22 1984-06-22 Flow injection analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127468A JPS617467A (en) 1984-06-22 1984-06-22 Flow injection analysis

Publications (2)

Publication Number Publication Date
JPS617467A JPS617467A (en) 1986-01-14
JPH056137B2 true JPH056137B2 (en) 1993-01-25

Family

ID=14960671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127468A Granted JPS617467A (en) 1984-06-22 1984-06-22 Flow injection analysis

Country Status (1)

Country Link
JP (1) JPS617467A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087140B2 (en) * 1986-02-05 1996-01-29 株式会社日立製作所 Atomic absorption analysis method using flame
JP4981749B2 (en) * 2007-05-29 2012-07-25 一般財団法人電力中央研究所 Method and system for quantitative analysis of selenium
EP3875944A4 (en) * 2018-10-29 2022-06-22 Chongqing Mintai New Agrotech Development Group Co., Ltd. Atomic fluorescence spectrometry method and device employing water as carrier fluid
JP6617191B1 (en) 2018-12-03 2019-12-11 三井金属鉱業株式会社 Method and apparatus for separating or analyzing target components in a solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154862A (en) * 1974-06-04 1975-12-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154862A (en) * 1974-06-04 1975-12-13

Also Published As

Publication number Publication date
JPS617467A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
Pohl et al. Chemical vapor generation of noble metals for analytical spectrometry
Zheng et al. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water
Wang et al. Interfacing sequential injection on-line preconcentration using a renewable micro-column incorporated in a ‘lab-on-valve’system with direct injection nebulization inductively coupled plasma mass spectrometry
Magnuson et al. Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium (VI) to selenium (IV) with hydride generation inductively coupled plasma mass spectrometric detection
Liu et al. Plasma induced chemical vapor generation for atomic spectrometry: A review
Rojas et al. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry
da Rocha et al. Speciation of mercury using capillary electrophoresis coupled to volatile species generation-inductively coupled plasma mass spectrometryPresented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehammer, Norway, February 4–8, 2001.
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
Julin et al. Selective flame emission detection of phosphorus and sulfur in high-performance liquid chromatography
Li Studies on the determination of trace amounts of gold by chemical vapour generation non-dispersive atomic fluorescence spectrometry
JPH056137B2 (en)
Ramasamy et al. Repetitive determinations of sulfur dioxide gas in air samples by flow injection and chemical reaction at a gas-liquid interface
Mestre et al. Determination of phenylephrine hydrochloride by flow injection analysis with chemiluminescence detection
Brindle et al. A comparison of gas—liquid separators for the determination of mercury by cold-vapour sequential injection atomic absorption spectrometry
US6891605B2 (en) Multimode sample introduction system
Tölg Problems, limitations, and future trends in the analytical characterization of high-purity materials
Tian et al. Determination of arsenic speciation by capillary, electrophoresis and ICP-MS using a movable reduction bed hydride generation system
Janeda et al. Discrete micro-volume suspension injection to microwave induced plasma for simultaneous determination of cadmium and lead pre-concentrated on multiwalled carbon nanotubes in optical emission spectrometry
Sun et al. Simultaneous determination of trace cadmium and mercury in Chinese herbal medicine by non-dispersive atomic fluorescence spectrometry using intermittent flow vapor generator
Li et al. Trace and ultratrace analysis of purified water samples and hydrogen peroxide solutions for phosphorus by flow-injection method
Bulska et al. ETAAS determination of lead with on-line preconcentration using a flow-through electrochemical microcell
JP2012511710A (en) Determination of lead
Matusiewicz et al. Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry
Krenželok et al. The Use of a Membrane GasLiquid Separator for Flow Injection Hydride Generation Atomic Absorption Spectrometry On-Line Speciation and Determination of As (III) and As (V)
Hueber et al. Application of hydride generation to the determination of trace concentrations of arsenic by capacitively coupled microwave plasma