JPH0560988A - Light beam detector - Google Patents

Light beam detector

Info

Publication number
JPH0560988A
JPH0560988A JP3246438A JP24643891A JPH0560988A JP H0560988 A JPH0560988 A JP H0560988A JP 3246438 A JP3246438 A JP 3246438A JP 24643891 A JP24643891 A JP 24643891A JP H0560988 A JPH0560988 A JP H0560988A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
mirror
light beam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3246438A
Other languages
Japanese (ja)
Inventor
Katsumi Nishimura
克己 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP3246438A priority Critical patent/JPH0560988A/en
Publication of JPH0560988A publication Critical patent/JPH0560988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To provide a light beam detector which improves the workability of adjustment by referring to an output waveform to adjust the position of a photodetector and eliminating a need of a jig for adjustment. CONSTITUTION:In the light beam detector which is arranged on the scanning line of a light beam and detects the light beam to generate a synchronizing signal, a photodetector 20 having a light reception face 20a of prescribed size is used, and the photodetector 20 is so arranged that the scanning direction of the light beam to the light reception face 20a of the photodetector 20 coincides with the direction where a maximum output is obtained from the photodetector 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば光走査装置にお
ける同期信号検出用光学系などに用いることができる光
ビーム検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam detecting device which can be used, for example, in a synchronizing signal detecting optical system in an optical scanning device.

【0002】[0002]

【従来の技術】例えば光走査装置などにおいては、レー
ザービームの走査開始位置を受光素子で検出し、受光素
子による検出信号出力時点から一定時間後に同期信号を
発生させ、この同期信号に同期してレーザー光源を被記
録情報信号により駆動開始するようになっている。レー
ザービームは上記被記録情報信号に応じて変調されると
共に、上記のようにレーザー光源の駆動開始位置の同期
がとられることにより、感光体の感光面上にジッターの
ない良好な潜象が形成される。
2. Description of the Related Art In, for example, an optical scanning device, a light receiving element detects a scanning start position of a laser beam, a synchronizing signal is generated after a predetermined time has elapsed from a detection signal output point by the light receiving element, and the synchronizing signal is synchronized with this synchronizing signal. Driving of the laser light source is started by the recorded information signal. The laser beam is modulated according to the recorded information signal, and the driving start position of the laser light source is synchronized as described above, so that a good latent image without jitter is formed on the photosensitive surface of the photoconductor. To be done.

【0003】図13は、従来の光走査装置などに用いら
れている光ビーム検出装置の例を示すもので、符号40
は光ビームによる走査線を示しており、この走査線40
は、受光素子50の四角形の受光面50a上において受
光面50aの一辺と平行な方向を走査するようになって
いる。図14は上記受光素子50による光ビームの検出
出力を示すもので、受光面50aの走査線40方向の寸
法に対応した大きさ(時間幅)の検出出力aが得られ
る。
FIG. 13 shows an example of a light beam detecting device used in a conventional optical scanning device or the like, which is designated by reference numeral 40.
Indicates a scanning line by the light beam, and this scanning line 40
Scans in a direction parallel to one side of the light receiving surface 50a on the rectangular light receiving surface 50a of the light receiving element 50. FIG. 14 shows the detection output of the light beam by the light receiving element 50, and the detection output a of a size (time width) corresponding to the size of the light receiving surface 50a in the scanning line 40 direction is obtained.

【0004】[0004]

【発明が解決しようとする課題】光走査装置などに用い
られている光ビーム検出装置では、光ビームの走査線が
受光面50aの中心を通るように受光素子50の初期位
置を調整する。仮りに光ビームの走査線が受光面50a
の中心からずれた状態で初期設定されているとすると、
振動等によって受光素子50の位置がずれた場合に光ビ
ームの走査線が受光面50aから外れ、検出出力が得ら
れないからである。そこで従来は、治具を用いて受光素
子50の位置を調整し、光ビームの走査線が受光面50
aの中心を通るように設定していた。従って、調整用の
治具が必要であると共に、治具を用いた調整は作業が悪
いという難点があった。
In the light beam detecting device used in the light scanning device or the like, the initial position of the light receiving element 50 is adjusted so that the scanning line of the light beam passes through the center of the light receiving surface 50a. If the scanning line of the light beam is the light receiving surface 50a.
If the initial setting is off the center of
This is because when the position of the light receiving element 50 is displaced due to vibration or the like, the scanning line of the light beam deviates from the light receiving surface 50a, and a detection output cannot be obtained. Therefore, conventionally, the position of the light receiving element 50 is adjusted by using a jig, and the scanning line of the light beam is set to the light receiving surface 50.
It was set to pass through the center of a. Therefore, there is a problem that a jig for adjustment is required and that the adjustment using the jig is not a good operation.

【0005】本発明は、このような従来技術の問題点を
解消するためになされたもので、出力波形をみながら受
光素子の位置調整を可能にして調整用の治具を不要に
し、もって、調整の作業性を向上させることができる光
ビーム検出装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art. The position of the light receiving element can be adjusted while observing the output waveform, and a jig for adjustment is not required. It is an object of the present invention to provide a light beam detection device capable of improving the workability of adjustment.

【0006】[0006]

【課題を解決するための手段】本発明は、所定の大きさ
の受光面を有する受光素子を用い、受光素子の受光面に
対する光ビームの走査方向が、受光素子から最大出力が
得られる方向となるように受光素子を配置したことを特
徴とする。
According to the present invention, a light receiving element having a light receiving surface of a predetermined size is used, and the scanning direction of the light beam with respect to the light receiving surface of the light receiving element is such that the maximum output is obtained from the light receiving element. The light receiving element is arranged so that

【0007】[0007]

【作用】受光素子の出力信号の幅をみながら受光素子の
位置を調整することができる。受光素子から最大信号幅
が得られるとき光ビームの走査線が受光面の中心を通っ
ており、光ビームの走査線が受光面の中心から外れるに
従って信号幅が小さくなる。そこで、受光素子から最大
信号幅が得られるように受光素子の位置を調整し、その
位置に固定する。
The position of the light receiving element can be adjusted while checking the width of the output signal of the light receiving element. When the maximum signal width is obtained from the light receiving element, the scanning line of the light beam passes through the center of the light receiving surface, and the signal width becomes smaller as the scanning line of the light beam deviates from the center of the light receiving surface. Therefore, the position of the light receiving element is adjusted so that the maximum signal width is obtained from the light receiving element, and is fixed at that position.

【0008】[0008]

【実施例】以下、図面を参照しながら本発明にかかるミ
ラー角度調整装置について説明することにするが、図示
の実施例は光走査装置の同期信号検出光学系における光
ビーム検出装置になっているので、まず、光走査装置及
びその同期信号検出光学系の例について概略的に説明す
ることにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A mirror angle adjusting device according to the present invention will be described below with reference to the drawings. The illustrated embodiment is a light beam detecting device in a synchronizing signal detecting optical system of an optical scanning device. Therefore, first, an example of the optical scanning device and its synchronization signal detection optical system will be briefly described.

【0009】図8、図9において、周壁を有するシャー
シ11の一側部には半導体レーザー等でなるレーザー光
源12が固定されており、レーザー光源12から出射し
たレーザービームの進路にはシリンドリカルレンズ13
が配置されると共に、さらにその先方にモータ14によ
って回転駆動されるポリゴンミラー15が配置されてい
る。ポリゴンミラー15の回転により、レーザー光源1
2からのレーザービームが一定の角度範囲で偏向され
る。ポリゴンミラー15によって偏向されたレーザービ
ームは、ポリゴンミラー15の近傍に配置されたfθレ
ンズ16を通り、図8においてシャーシ11の上縁部に
配置された第1の走査用反射ミラー17で反射される。
第1の走査用反射ミラー17は図9に示すようにレーザ
ービームを鋭角的に折り返し状に反射するものであり、
この反射光はさらにシャーシ11の内方底部に配置され
た第2の走査用反射ミラー18でシャーシ11の外方に
向かい反射される。
In FIGS. 8 and 9, a laser light source 12 made of a semiconductor laser or the like is fixed to one side portion of a chassis 11 having a peripheral wall, and a cylindrical lens 13 is provided in the path of a laser beam emitted from the laser light source 12.
And a polygon mirror 15 that is driven to rotate by a motor 14 is further arranged. By rotating the polygon mirror 15, the laser light source 1
The laser beam from 2 is deflected in a certain angular range. The laser beam deflected by the polygon mirror 15 passes through the fθ lens 16 arranged in the vicinity of the polygon mirror 15, and is reflected by the first scanning reflection mirror 17 arranged at the upper edge of the chassis 11 in FIG. It
As shown in FIG. 9, the first scanning reflection mirror 17 reflects the laser beam in a folded shape at an acute angle.
This reflected light is further reflected toward the outside of the chassis 11 by the second scanning reflection mirror 18 arranged at the inner bottom of the chassis 11.

【0010】図10にも示すように、第2の走査用反射
ミラー18による反射光の進路上には感光体(図示され
ず)などがあり、この感光体などの感光面上で走査線2
1を描く。図10において走査線21の走査方向を矢印
で示すように右から左に向かう方向とすると、走査開始
側である右側に、第2の走査用反射ミラー18による反
射ビームの一部を反射するためのミラー19が配置され
ている。ミラー19による反射ビームの進路上には受光
素子20が配置されている。図8に示すように、受光素
子20は、fθレンズ16と第2の走査用反射ミラー1
8との間において、fθレンズ16を通ったレーザービ
ームの進行に支障とならないようにシャーシ11に固定
されている。この受光素子20にレーザービームの一部
を導くために、図10に示すようにミラー19は所定の
傾き角度をもって取付けられている。
As shown also in FIG. 10, there is a photoconductor (not shown) or the like on the path of the reflected light by the second scanning reflection mirror 18, and the scanning line 2 is formed on the photoconductive surface of this photoconductor or the like.
Draw one. In FIG. 10, if the scanning direction of the scanning line 21 is from right to left as indicated by the arrow, a part of the reflected beam by the second scanning reflection mirror 18 is reflected to the right side which is the scanning start side. Mirror 19 of is arranged. A light receiving element 20 is arranged on the path of the reflected beam by the mirror 19. As shown in FIG. 8, the light receiving element 20 includes the fθ lens 16 and the second scanning reflection mirror 1.
8 is fixed to the chassis 11 so as not to hinder the progress of the laser beam passing through the fθ lens 16. In order to guide a part of the laser beam to the light receiving element 20, the mirror 19 is attached with a predetermined inclination angle as shown in FIG.

【0011】上に述べたミラー19と受光素子20及び
第2の走査用反射ミラー18の配置関係からわかるよう
に、受光素子20はレーザービームの走査開始位置を検
出する。そこで、受光素子20による検出信号出力時点
から一定時間後に同期信号を発生させ、この同期信号に
同期してレーザー光源12を被記録情報信号により駆動
開始すると、この被記録情報信号に応じてレーザービー
ムが変調され、前記感光体の感光面上に潜象が形成され
る。
As can be seen from the positional relationship between the mirror 19, the light receiving element 20 and the second scanning reflection mirror 18 described above, the light receiving element 20 detects the scanning start position of the laser beam. Therefore, when a synchronizing signal is generated after a fixed time from the time when the detection signal is output by the light receiving element 20 and the laser light source 12 is started to be driven by the recorded information signal in synchronization with the synchronized signal, the laser beam is generated according to the recorded information signal. Are modulated to form latent images on the photosensitive surface of the photoconductor.

【0012】このように、ミラー19は同期信号を検出
するための受光素子20にレーザービームを導くための
ものであるから、その傾き角度は精度よく調整されてい
る必要があり、調整精度がよくない場合は受光素子20
にレーザービームが正しく入射しなくなり、被記録情報
信号の同期が外れて画像が正しく形成されないことにな
る。図3ないし図7はミラー角度調整装置の具体例を示
す。
As described above, since the mirror 19 is for guiding the laser beam to the light receiving element 20 for detecting the synchronizing signal, its tilt angle must be adjusted with high accuracy, and the adjustment accuracy is high. If not, the light receiving element 20
The laser beam will not be properly incident on the recording medium, and the recorded information signal will be out of synchronization and an image will not be formed correctly. 3 to 7 show specific examples of the mirror angle adjusting device.

【0013】図3ないし図7において、ミラー19はミ
ラーホルダー23の表面に取付けられている。ミラーホ
ルダー23は外縁部に互いに直交する方向の面を有する
折曲部24,24を有している。これらの折曲部24,
24にミラー19の互いに直交する二つの側面が押し当
てられ、さらにミラーホルダー23に固植又は突出形成
された二つの位置決め突起25,25によってミラー1
9の互いに直交する他の二つの側面が位置決めされるこ
とにより、ミラーホルダー23の所定位置にミラー19
が位置決めされている。この状態で複数個所を接着剤2
6で接着することによりミラー19がミラーホルダー2
3に取付けられている。
In FIGS. 3 to 7, the mirror 19 is mounted on the surface of the mirror holder 23. The mirror holder 23 has bent portions 24, 24 having surfaces in directions orthogonal to each other on the outer edge portion. These bent portions 24,
Two side surfaces of the mirror 19 which are orthogonal to each other are pressed against the mirror 24, and further, two positioning protrusions 25, 25 fixed or projected on the mirror holder 23 are used to form the mirror 1
By positioning the other two side surfaces of the mirror 9 which are orthogonal to each other, the mirror 19 is positioned at a predetermined position of the mirror holder 23.
Is positioned. Adhesive 2 at multiple points in this state
The mirror 19 is attached to the mirror holder 2 by bonding with 6.
It is attached to 3.

【0014】ミラーホルダー23にはその一側縁部を折
り曲げることによって突き当て部28が形成されてい
る。ミラーホルダー23には上記突き当て部28を形成
した縁部において、かつ、突き当て部28の両側に円形
の挿通孔29,29が形成されている。付当て部28は
挿通孔29,29の中心を結ぶ直線上に形成されてい
る。ミラーホルダー23にはまた、挿通孔29,29と
は別の位置に長孔27が形成されている。二つの挿通孔
29,29の中心を結ぶ直線に対して、一方の挿通孔2
9と長孔27の中心とを結ぶ直線は互いに直交するよう
に、挿通孔29,29と長孔27とが配置されている。
An abutting portion 28 is formed on the mirror holder 23 by bending one side edge thereof. Circular insertion holes 29, 29 are formed in the mirror holder 23 at the edge portion where the abutting portion 28 is formed and on both sides of the abutting portion 28. The contact portion 28 is formed on a straight line connecting the centers of the insertion holes 29, 29. The mirror holder 23 also has an elongated hole 27 formed at a position different from the insertion holes 29, 29. One insertion hole 2 with respect to the straight line connecting the centers of the two insertion holes 29, 29
The insertion holes 29, 29 and the elongated hole 27 are arranged so that the straight line connecting the center of the elongated hole 27 and the center of the elongated hole 27 is orthogonal to each other.

【0015】ミラーホルダー23は次のようにして基体
30に取付けられている。上記二つの挿通孔29,29
に挿通されたねじ31,31及び上記長孔27に挿通さ
れた調整ねじ32がそれぞれ基体30のねじ孔に螺入さ
れている。二つのねじ31,31を基体30に螺入する
ことにより、図4に示すようにミラーホルダー23の突
き当て部28の先端が基体30に突き当たり、また、図
6に示すように調整ねじ32を基体30に螺入すること
によりミラーホルダー23が基体30に強固に取付けら
れている。基体30とミラーホルダー23との間には、
これら基体30とミラーホルダー23とを互いに離間す
る方向に付勢する板ばね33が介装されている。
The mirror holder 23 is attached to the base body 30 as follows. The two insertion holes 29, 29
The screws 31 and 31 inserted into the screw hole and the adjusting screw 32 inserted into the elongated hole 27 are respectively screwed into the screw holes of the base body 30. By screwing the two screws 31, 31 into the base body 30, the tip end of the abutting portion 28 of the mirror holder 23 abuts the base body 30 as shown in FIG. 4, and the adjusting screw 32 as shown in FIG. The mirror holder 23 is firmly attached to the base body 30 by being screwed into the base body 30. Between the base body 30 and the mirror holder 23,
A leaf spring 33 is interposed which biases the base body 30 and the mirror holder 23 in a direction in which they are separated from each other.

【0016】いま、突き当て部28が基体30に突き当
たった状態でその両側のねじ31,31を調整すること
により、突き当て部28を支点としてミラーホルダー2
3及びこれと一体のミラー19を図4において左右方向
に傾動させ、ミラー19の一方向の傾き角度を調整する
ことができる。この調整は突き当て部28を基体30に
突き当てると共に突き当て部28を支点として行われる
から、調整後もミラーホルダー23は基体30に強固に
取付けられ、光走査ユニットが振動してもミラーホルダ
23が共振することはなく、前記受光素子20の検出出
力波形がゆれることはない。
Now, with the abutting portion 28 abutting on the base body 30, the screws 31, 31 on both sides of the abutting portion 28 are adjusted so that the abutting portion 28 serves as a fulcrum.
3 and the mirror 19 integrated therewith can be tilted in the left-right direction in FIG. 4 to adjust the tilt angle of the mirror 19 in one direction. Since this adjustment is performed by abutting the abutting portion 28 against the base body 30 and using the abutting portion 28 as a fulcrum, the mirror holder 23 is firmly attached to the base body 30 even after the adjustment, and the mirror holder 23 vibrates even if the optical scanning unit vibrates. 23 does not resonate, and the detection output waveform of the light receiving element 20 does not fluctuate.

【0017】また、調整ねじ32を調整することによ
り、突き当て部28を支点としてミラーホルダー23及
びこれと一体のミラー19を図6において左右方向、す
なわち上記ねじ31,31によるミラー19の傾動方向
に対して直交する方向に傾動させ、ミラー19の他方向
の傾き角度を調整することができる。板ばね33も傾き
角度調整に寄与することになるが、基体30に突き当て
られたミラーホルダー23の突き当て部28を支点とし
て角度調整されることになるため、調整後もミラーホル
ダー23は基体30に強固に取付けられる。
Further, by adjusting the adjusting screw 32, the mirror holder 23 and the mirror 19 integrated with the mirror holder 23 with the abutting portion 28 as a fulcrum are moved in the left and right direction in FIG. 6, that is, the tilting direction of the mirror 19 by the screws 31 and 31. The tilt angle in the other direction of the mirror 19 can be adjusted by tilting the mirror 19 in a direction orthogonal to the direction. The leaf spring 33 also contributes to the tilt angle adjustment, but since the angle is adjusted with the abutting portion 28 of the mirror holder 23 abutting on the base body 30 as a fulcrum, the mirror holder 23 remains a base body even after the adjustment. It is firmly attached to 30.

【0018】各方向の傾きを調整した後は、図6に示す
ように各ねじ31,32と基体30との間に接着剤35
を塗布し、各ねじ31,32とミラーホルダー23との
間に接着剤36を塗布して、ミラーホルダー23と基体
30とをより強固かつ確実に一体化することが望まし
い。
After adjusting the inclination in each direction, as shown in FIG. 6, an adhesive 35 is applied between each screw 31, 32 and the base body 30.
It is desirable that the adhesive 36 is applied between the screws 31 and 32 and the mirror holder 23 so that the mirror holder 23 and the base body 30 are more firmly and reliably integrated.

【0019】さて、上記ミラー19によって反射された
光ビームは受光素子20に導かれるが、図10に示すよ
うにミラー19は光ビームの入射方向に対して傾けて、
かつ、ミラー19の面上において光ビームがミラー19
を対角線方向に横切るように配置されている。これに対
して受光素子20は、ミラー19からの光ビームに正対
するように、かつ、図1に詳細に示すように、ミラー1
9からの光ビームの受光素子20上における走査線40
が受光素子20の受光面20aを対角線方向に横切るよ
うに配置されている。
The light beam reflected by the mirror 19 is guided to the light receiving element 20, but the mirror 19 is inclined with respect to the incident direction of the light beam as shown in FIG.
Moreover, on the surface of the mirror 19, the light beam
Are arranged so as to traverse diagonally. On the other hand, the light receiving element 20 includes the mirror 1 so as to directly face the light beam from the mirror 19 and as shown in detail in FIG.
Scanning line 40 on the light receiving element 20 of the light beam from
Are arranged so as to cross the light receiving surface 20a of the light receiving element 20 in a diagonal direction.

【0020】このように、受光素子20上における光ビ
ームの走査線40が受光面20aを対角線方向に横切る
ように受光素子20を配置することによって、図1に示
すように受光面20aにおける光ビームの受光範囲が最
大の範囲lとなって受光素子20による光ビームの検出
出力幅は最大となる。この最大の検出出力幅を図2
(a)波形Aで示すものとすると、受光面20aの対角
線上から走査線40が外れるに従って、図2(b)に波
形Bで示すように検出出力幅は順次小さくなる。そこ
で、受光素子20の検出出力幅を測定しあるいは観察し
ながら、検出出力幅が最大となるように受光素子20の
位置及び姿勢を調整し、その位置で固定する。
As described above, by arranging the light receiving element 20 so that the scanning line 40 of the light beam on the light receiving element 20 crosses the light receiving surface 20a in a diagonal direction, the light beam on the light receiving surface 20a as shown in FIG. The maximum light receiving range is the range l, and the detection output width of the light beam by the light receiving element 20 is maximum. This maximum detection output width is shown in Fig. 2.
(A) If the waveform A is used, the detection output width is gradually reduced as shown by the waveform B in FIG. 2B as the scanning line 40 deviates from the diagonal line of the light receiving surface 20a. Therefore, while measuring or observing the detection output width of the light receiving element 20, the position and posture of the light receiving element 20 are adjusted so as to maximize the detection output width, and fixed at that position.

【0021】なお、上記実施例においては、光ビームの
走査線40を斜めにするようにしていたが、光ビームを
従来通り水平に走らせ、図11に示すように菱形の受光
面60aをもつ受光素子60に入力させるようにしても
よいし、図12に示すように円形の受光面70aを有す
る受光素子70に入力させるようにしてもよい。
In the above embodiment, the scanning line 40 of the light beam is slanted, but the light beam is made to run horizontally as in the conventional case, and the light receiving surface 60a having a diamond shape as shown in FIG. 11 is received. The light may be input to the element 60, or may be input to the light receiving element 70 having a circular light receiving surface 70a as shown in FIG.

【0022】以上説明した実施例によれば、受光素子2
0の受光面20aに対する光ビームの走査方向が、受光
素子20から最大出力が得られる方向となるように受光
素子20を配置したから、受光素子20の検出出力を測
定しあるいは観察しながら、検出出力が最大出力となる
ように受光素子20の位置及び姿勢を調整すればよく、
従来のように治具を用いる必要がないから、調整の作業
性が向上するという利点がある。また、光ビームの走査
線40が確実に受光素子20の中心を通るように調整す
るのが容易であるから、振動等によって受光素子20の
位置又はミラー19の調整がずれても、検出出力が出な
くなるという不具合を最小限に抑えることができる。
According to the embodiment described above, the light receiving element 2
Since the light receiving element 20 is arranged so that the scanning direction of the light beam with respect to the light receiving surface 20a of 0 is the direction in which the maximum output is obtained from the light receiving element 20, the detection output of the light receiving element 20 is detected or measured while observing. The position and orientation of the light receiving element 20 may be adjusted so that the output becomes maximum output.
Since it is not necessary to use a jig as in the conventional case, there is an advantage that the workability of adjustment is improved. Further, since it is easy to adjust so that the scanning line 40 of the light beam surely passes through the center of the light receiving element 20, even if the position of the light receiving element 20 or the adjustment of the mirror 19 is deviated due to vibration or the like, the detection output is obtained. The problem of not coming out can be minimized.

【0023】[0023]

【発明の効果】本発明によれば、受光素子の受光面に対
する光ビームの走査方向が、受光素子から最大出力が得
られる方向となるように受光素子を配置したから、受光
素子の検出出力を見ながら、検出出力が最大出力となる
ように受光素子を調整すればよく、従来のように治具を
用いる必要がないから、調整の作業性のよい光ビーム検
出装置を提供することができる。
According to the present invention, since the light receiving element is arranged so that the scanning direction of the light beam with respect to the light receiving surface of the light receiving element is the direction in which the maximum output is obtained from the light receiving element, the detection output of the light receiving element is It is sufficient to adjust the light receiving element so that the detection output becomes the maximum output while looking, and it is not necessary to use a jig as in the conventional case. Therefore, it is possible to provide a light beam detection device with good workability of adjustment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光ビーム検出装置の実施例の要
部を示す斜視図。
FIG. 1 is a perspective view showing a main part of an embodiment of a light beam detection device according to the present invention.

【図2】同上実施例の検出出力の例を示す波形図。FIG. 2 is a waveform chart showing an example of the detection output of the above embodiment.

【図3】本発明装置と組み合わせて用いることができる
ミラー保持機構の例を示す正面図。
FIG. 3 is a front view showing an example of a mirror holding mechanism that can be used in combination with the device of the present invention.

【図4】同上ミラー保持機構の左側面図。FIG. 4 is a left side view of the same mirror holding mechanism.

【図5】同上ミラー保持機構の背面図。FIG. 5 is a rear view of the above mirror holding mechanism.

【図6】同上ミラー保持機構の平面図。FIG. 6 is a plan view of the above mirror holding mechanism.

【図7】同上ミラー保持機構の正面図。FIG. 7 is a front view of the same mirror holding mechanism.

【図8】本発明装置を適用した光走査装置の例を示す平
面図。
FIG. 8 is a plan view showing an example of an optical scanning device to which the device of the present invention is applied.

【図9】同上断面側面図。FIG. 9 is a sectional side view of the same.

【図10】上記光走査装置のミラー及び受光素子の部分
の配置関係を示す斜視図。
FIG. 10 is a perspective view showing a positional relationship between a mirror and a light receiving element of the optical scanning device.

【図11】本発明に適用可能な受光素子の別の例を示す
正面図。
FIG. 11 is a front view showing another example of a light receiving element applicable to the present invention.

【図12】本発明に適用可能な受光素子のさらに別の例
を示す正面図。
FIG. 12 is a front view showing still another example of a light receiving element applicable to the present invention.

【図13】従来の光ビーム検出装置の例を示す斜視図。FIG. 13 is a perspective view showing an example of a conventional light beam detection device.

【図14】同上従来例の検出出力の例を示す波形図。FIG. 14 is a waveform diagram showing an example of the detection output of the conventional example.

【符号の説明】[Explanation of symbols]

20 受光素子 20a 受光面 40 走査線 20 light receiving element 20a light receiving surface 40 scanning line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ビームの走査線上に配置され、上記光
ビームを検出して同期信号を発生する光ビーム検出装置
において、 所定の大きさの受光面を有する受光素子を用い、受光素
子の受光面に対する光ビームの走査方向が、受光素子か
ら最大出力が得られる方向となるように受光素子を配置
したことを特徴とする光ビーム検出装置。
1. A light beam detection device which is arranged on a scanning line of a light beam and which detects the light beam to generate a synchronization signal, wherein a light receiving element having a light receiving surface of a predetermined size is used, and the light receiving element receives light. A light beam detecting device, wherein the light receiving element is arranged so that the scanning direction of the light beam with respect to the surface is the direction in which the maximum output is obtained from the light receiving element.
JP3246438A 1991-09-02 1991-09-02 Light beam detector Pending JPH0560988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246438A JPH0560988A (en) 1991-09-02 1991-09-02 Light beam detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246438A JPH0560988A (en) 1991-09-02 1991-09-02 Light beam detector

Publications (1)

Publication Number Publication Date
JPH0560988A true JPH0560988A (en) 1993-03-12

Family

ID=17148470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246438A Pending JPH0560988A (en) 1991-09-02 1991-09-02 Light beam detector

Country Status (1)

Country Link
JP (1) JPH0560988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259399A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Optical scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259399A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Optical scanner
JP4561421B2 (en) * 2005-03-17 2010-10-13 富士ゼロックス株式会社 Optical scanning device

Similar Documents

Publication Publication Date Title
US4918306A (en) Apparatus for adjusting a beam position detecting device
EP0295863A2 (en) Optical printer of scanning type
US6194713B1 (en) Scanning optical device having a rotatable adjustable holder
EP0324364A2 (en) A laser optical apparatus
US5712719A (en) Optical scanning device
JPH10227621A (en) Surface inspecting apparatus and method
US5621562A (en) Optical Scanning device
JP2777353B2 (en) Photodetector
JP2973550B2 (en) Laser beam scanning optical device
JPH0560988A (en) Light beam detector
JP2575570Y2 (en) Optical scanning device
JPH08110488A (en) Optical scanning device
JP2908652B2 (en) Light scanning light source device
JPH0521226U (en) Mirror angle adjustment device
JPH10319336A (en) Multibeam light source device and optical deflection scanner using the same
JPH06148490A (en) Optical member holding mechanism and light beam scanning optical system
JP2002350753A (en) Optical scanner
JPS595227A (en) Beam detector
JP2822255B2 (en) Scanning optical device
JP2716504B2 (en) Optical scanning device
JP2000258710A (en) Light source device
JP4360074B2 (en) Optical scanning device
JPH11326797A (en) Light beam scanning device
JPH08234129A (en) Optical scanner
JP2592713Y2 (en) Reflection mirror mounting mechanism

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970401