JPH0560950B2 - - Google Patents

Info

Publication number
JPH0560950B2
JPH0560950B2 JP61265564A JP26556486A JPH0560950B2 JP H0560950 B2 JPH0560950 B2 JP H0560950B2 JP 61265564 A JP61265564 A JP 61265564A JP 26556486 A JP26556486 A JP 26556486A JP H0560950 B2 JPH0560950 B2 JP H0560950B2
Authority
JP
Japan
Prior art keywords
cells
artificial
grooves
cell
nerve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265564A
Other languages
Japanese (ja)
Other versions
JPS63119754A (en
Inventor
Jun Fukuda
Takushi Hirono
Keiichi Torimitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DAIGAKU
Original Assignee
TOKYO DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DAIGAKU filed Critical TOKYO DAIGAKU
Priority to JP61265564A priority Critical patent/JPS63119754A/en
Publication of JPS63119754A publication Critical patent/JPS63119754A/en
Publication of JPH0560950B2 publication Critical patent/JPH0560950B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面に接触する生体細胞または組織
が、増大した親和性と減少した防御反応とを示す
とともに、それらに細胞成長特異性を与える細胞
培養容器、人工臓器器材等の人工素子に関し、細
胞工学、組織培養学、医学並びに人工臓器学等に
跨がる技術分野において利用されるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application) The present invention provides a surface-contacting biological cell or tissue that exhibits increased affinity and reduced defensive response, as well as imparting to them cell growth specificity. It relates to artificial elements such as cell culture containers and artificial organ equipment, and is used in technical fields spanning cell engineering, tissue culture, medicine, and artificial organ science.

(従来の技術) 従来、動物細胞、植物細胞、細菌の細胞、カビ
細胞等、各種生体細胞の増殖・分化・発生等を人
工環境下でコントロールする細胞培養技術の進歩
は、2種類の異なつた技術改良、即ち、細胞と直
接接触する培養用容器の改良と、細胞に栄養を供
する培地の改良とに依つている。これらの内、過
去におけるアプローチの主流は後者であつた。
(Conventional technology) Advances in cell culture technology, which controls the growth, differentiation, and development of various living cells such as animal cells, plant cells, bacterial cells, and fungal cells, in an artificial environment have been made in two different ways. It relies on technological improvements: improvements in the culture vessels that come into direct contact with the cells, and improvements in the culture medium that provides nutrients to the cells. Of these, the latter has been the mainstream approach in the past.

特開昭60−18174号公報には、セラミツク焼結
体などの多孔質体を骨欠損部に補綴材として充填
し、コラーゲン繊維並びに骨破壊細胞に対する多
孔質体のバイオフイルターとしての作用を利用し
て新生骨を誘起する方法が提案されている。しか
しながら、この方法は骨成育阻害物質の侵入を阻
止することによる消極的新生骨誘起方法であつ
て、生体細胞または生体組織と直接接触する物体
の表面形状を改良することによつて積極的にその
成長速度を増大あるいは抑止したり、成長の方向
を制御したりする効果を奏するものではない。
JP-A No. 60-18174 discloses that a porous material such as a ceramic sintered body is filled into a bone defect as a prosthetic material, and the porous material acts as a biofilter against collagen fibers and bone destruction cells. A method for inducing new bone formation has been proposed. However, this method passively induces new bone formation by blocking the invasion of bone growth-inhibiting substances, and actively induces new bone formation by improving the surface shape of objects that come into direct contact with living cells or tissues. It does not have the effect of increasing or suppressing the growth rate or controlling the direction of growth.

一方、特開昭61−176339号公報には、骨内埋入
部に多数の通孔で連通した段違い交叉構造を形成
したブレード型骨内インプラントが提案されてい
る。この提案はインプラントの脱落、ガタツキを
防止するための機械的結合力の増大を目的とした
もので、前記同様に生体細胞や生体組織の成長速
度の増大あるいは抑止、成長方向の制御などの効
果を発揮させることを意図したものではない。
On the other hand, Japanese Unexamined Patent Publication No. 176339/1984 proposes a blade-type intraosseous implant in which the intraosseous implant portion has a stepped cross structure that communicates with the implant through a large number of holes. This proposal aims to increase the mechanical bonding force to prevent the implant from falling off and wobbling, and similarly to the above, it has the effect of increasing or inhibiting the growth rate of living cells and living tissues, and controlling the growth direction. It is not intended to be demonstrated.

また従来、生体中に長時間埋め込むことを意図
した人工臓器等の医療用器材は、結合組織細胞と
の反応性や親和性を高め、いわゆる防御反応を下
げることを狙い、その材質や巨視的形状の改良に
主力が注がれてきた。
Conventionally, medical devices such as artificial organs that are intended to be implanted in living organisms for long periods of time have been designed to improve their reactivity and affinity with connective tissue cells and reduce the so-called defensive response. Major efforts have been focused on improving the

しかして現在使用されている前記培養容器や人
工臓器においては、その巨視的な形状(板状、皿
状、筒状、等)も、そしてその材質も極めて多岐
に亘るが、それら容器や器具の表面で、細胞に直
接接触し、細胞増殖等に直接関わる部分の形状
は、さほど工夫が凝らされぬまゝに放置され、殆
どが平滑な表面加工を施してあるか、あるいは、
材料本来の平坦な表面形状のまゝであり、表面の
微細構造に着目した改良または研究は未だ提案さ
れた例を見ない。
However, the culture vessels and artificial organs currently in use vary greatly in their macroscopic shapes (plate-like, dish-like, cylindrical, etc.) and their materials, but the types of containers and equipment used vary greatly. The shape of the part of the surface that comes into direct contact with cells and is directly involved in cell proliferation, etc., is left without much thought, and most of the parts are treated with a smooth surface, or
The original flat surface shape of the material remains, and no improvement or research focusing on the fine structure of the surface has been proposed yet.

更に、生体細胞や組織の成長方向を制御する技
術、例えば、神経突起の成長を方向付ける技術と
して従来は、細胞をフイブロネクチン、ラミニ
ン、コラーゲン、ポリオルニチン、NGF(神経成
長因子)等の化学物質に沿つて、あるいはそれら
の存在部位に向かつて成長させることにより配向
成長させるというものがあつた。この方法では、
これらの化学物質を、個々の分子に方向性を与え
て配置させなければならず、従つて、極めて高度
の技術を必要とするばかりか、これらの手法は、
化学物質の不活性化に伴い、特性が失われるとい
う安定性における難点があつた。
Furthermore, conventional techniques for controlling the growth direction of biological cells and tissues, for example, techniques for directing the growth of neurites, involve treating cells with chemicals such as fibronectin, laminin, collagen, polyornithine, and NGF (nerve growth factor). There was a method of oriented growth by growing along or toward the site where they exist. in this way,
These chemical substances must be arranged by giving direction to each molecule, and therefore not only do they require extremely sophisticated techniques, but these methods also require
There was a problem with stability, as properties were lost as the chemical substance was inactivated.

また、従来の方法の一つとして、生体組織およ
び細胞での電場による電界方向への成長誘引も知
られているが、この方法では電場の生体組織に与
える影響が充分解明されていない等の問題があつ
た。
In addition, as a conventional method, inducing growth in the direction of the electric field using an electric field in biological tissues and cells is known, but this method has problems such as the influence of the electric field on biological tissues is not fully understood. It was hot.

(発明が解決しようとする問題点) 本発明者等は、従来等閑視されていた、人工素
子の表面における微細構造がそれと接触する生体
組織や細胞に特異な性質並びに挙動を与えること
を解明し、上述の種々の問題点を解決することに
成功し本発明を完成したものである。
(Problems to be Solved by the Invention) The present inventors have clarified that the fine structure on the surface of an artificial element, which had been neglected in the past, imparts unique properties and behaviors to living tissues and cells that come into contact with it. The present invention has been completed by successfully solving the various problems mentioned above.

本発明の第一の目的は、接触する生体細胞なら
びに組織が、増大した親和性と減少した生体防御
反応とを示す表面を具えた人工素子、例えば細
胞・組織等の培養容器、医療用器材等を提供する
にある。
A first object of the present invention is to provide an artificial element, such as a culture container for cells and tissues, a medical device, etc., which has a surface that exhibits increased affinity and decreased biological defense response to living cells and tissues that come into contact with it. is to provide.

本発明の別の目的は、細胞増殖の制御、細胞成
長の制御、更には神経再生の制御を可能にする人
工素子を取得せんとするものである。
Another object of the invention is to obtain an artificial element that makes it possible to control cell proliferation, cell growth, and even nerve regeneration.

本発明の更に別の目的は、効果の持続性と安全
性とを以つて上述の優れた性質を具えた人工素子
を安価・容易に提供するにある。
Still another object of the present invention is to provide inexpensively and easily an artificial element that has the above-mentioned excellent properties with a long-lasting effect and safety.

(問題点を解決するための手段) 上述の目的は、多数の微細起伏を刻設した表面
を具えてなり、該表面に接する結合組織、神経細
胞、グリア細胞、シユワン細胞、皮膚細胞、筋肉
細胞、腎臓細胞および肝臓細胞よりなる群から選
ばれる生体細胞または生体組織に対して細胞成長
特異性を示すことを特徴とする人工素子によつて
達成される。
(Means for Solving the Problems) The above-mentioned object is to provide a surface having a large number of fine undulations, connective tissue, nerve cells, glial cells, Schwan cells, skin cells, and muscle cells in contact with the surface. This is achieved by an artificial element characterized by exhibiting cell growth specificity for living cells or tissues selected from the group consisting of kidney cells and liver cells.

すなわち、本発明によれば、細胞培養用容器あ
るいは医療用器材などの人工素子において、結合
組織、神経細胞、グリア細胞、シユワン細胞、皮
膚細胞、筋肉細胞、腎臓細胞および肝臓細胞より
なる群から選ばれる生体細胞または生体組織と接
する表面に微細な起伏を機械的または化学的手法
によつて刻設することによつて、細胞や組織に対
する接着性や選択性を増し、細胞の増殖を制御す
ることが可能となるもので、更にこの起伏を条溝
となせば、かゝる条溝に沿つて配向した細胞の成
長や細胞群の形成を行なわせることもできる。
That is, according to the present invention, in artificial elements such as cell culture containers or medical equipment, cells selected from the group consisting of connective tissue, nerve cells, glial cells, Schwan cells, skin cells, muscle cells, kidney cells, and liver cells can be used. Increasing adhesion and selectivity to cells and tissues and controlling cell proliferation by carving fine undulations mechanically or chemically on the surface that comes into contact with living cells or tissues. Furthermore, if these undulations are formed into grooves, cells can grow and form cell groups oriented along such grooves.

(作用) 以下本発明の構成をその作用と共に詳述する。(effect) The structure of the present invention will be explained in detail below along with its operation.

本発明人工素子の生体細胞または組織と接触す
る表面部分は、多数の微細起伏によつて粗鬆面を
なすか、更に好ましくは多数の細条溝を有してな
る。かゝる細条溝は、例えば幅、深さともに約
0.1μm〜1000μmの範囲とすることがよく、必ず
しも互いに平行である必要もなく、又、幅深さも
均一であつたり規則的形状を備えている必要もな
い。すなわち人工素子の材質、形状に従つて微細
条溝の深さや幅は上記範囲内で適宜に変化し得
る。条溝断面形状も、V形、U形、ばち形等任意
に選定し得る。更に条溝は直線、曲線、波状のい
ずれの平面形状でもよく、それらが相互に重なり
合つて複雑な微細表面構造を作つた場合において
も上述の特異的効果を奏する。
The surface portion of the artificial device of the present invention that comes into contact with living cells or tissues has a rough surface with a large number of fine undulations, or more preferably has a large number of grooves. For example, the width and depth of such grooves are approximately
They are preferably in the range of 0.1 μm to 1000 μm, and do not necessarily need to be parallel to each other, nor do they need to be uniform in width and depth or have a regular shape. That is, depending on the material and shape of the artificial element, the depth and width of the fine grooves can be changed as appropriate within the above range. The cross-sectional shape of the grooves can also be arbitrarily selected such as V-shape, U-shape, dovetail shape, etc. Furthermore, the grooves may have any planar shape, such as straight lines, curves, or waves, and even when they overlap each other to form a complex microscopic surface structure, the above-mentioned specific effect can be achieved.

しかしながら、上記細条溝の形状・配列は、前
記範囲内の幅および深さを具えた直線細条溝を互
いに平行に配置することが最も好ましく、かくす
ることによつて細胞増殖の制御、細胞成長の制
御、さらには神経再生の制御を可能とするのみな
らず、生体組織や細胞を容易且つ確実に、しかも
適合性よく所望の方向に成長させ得るという驚く
べき作用が確認された。すなわち、結合組織性細
胞は溝の中に、反対に神経細胞等は畝の上に成長
する性質が顕著に現れ、条溝に沿つた配向成長が
達成される。
However, regarding the shape and arrangement of the above-mentioned grooves, it is most preferable to arrange straight grooves having widths and depths within the above-mentioned ranges in parallel with each other. It has been confirmed that this method not only makes it possible to control growth and even nerve regeneration, but also allows living tissues and cells to grow easily, reliably, and in a desired direction with good adaptability. That is, connective tissue cells have a remarkable tendency to grow in the grooves, whereas nerve cells and the like grow on the ridges, and oriented growth along the grooves is achieved.

さらに上記性質は人工素子の表面の起伏に生理
活性物質、好ましくは、例えばコラーゲン、ポリ
−L−リシン、ポリ−L−オルニチン、ラミニ
ン、フイブロネクチン、チツクプラズマ、LB因
子(人工脂質膜)およびNGF(神経成長因子)よ
りなる群から選ばれる物質を被着することによつ
て更に増強することができる。
Furthermore, the above-mentioned properties include biologically active substances, preferably collagen, poly-L-lysine, poly-L-ornithine, laminin, fibronectin, tick plasma, LB factor (artificial lipid membrane) and NGF ( Further enhancement can be achieved by depositing a substance selected from the group consisting of (nerve growth factor).

上述の微細起伏を刻設する人工素子の材質は特
に限定されないが、通常、石英ガラス;硬質ガラ
ス;軟質ガラス;有機高分子材料、例えばポリス
チレン、ポリ塩化ビニル等のプラスチツク、コラ
ーゲン、セルロース、寒天、等;金属;セラミツ
クス、例えばSiN、BN、アパタイト等;シリコ
ーンゴム;半導体、例えばSi、Ge、GeAs、InP、
GaSe、InSe等;より選ばれる少なくとも一種で
あり、また生体高分子、例えばコラーゲン板、プ
ラズマクロツトの表面等も包含する。
The material of the artificial element in which the above-mentioned fine undulations are carved is not particularly limited, but usually includes quartz glass; hard glass; soft glass; organic polymer materials such as plastics such as polystyrene and polyvinyl chloride, collagen, cellulose, agar, Metals; Ceramics, such as SiN, BN, apatite, etc.; Silicone rubber; Semiconductors, such as Si, Ge, GeAs, InP,
It is at least one selected from GaSe, InSe, etc., and also includes the surfaces of biopolymers such as collagen plates and plasma clots.

本発明人工素子、例えば容器、器材等の全体の
巨視的形態は、特に規定しない。すなわち、板
状、皿状、球状、繊維状、筒状、粒子状等目的、
用途に応じて任意に形成し得るが、少なくとも生
体細胞または組織と接する部分の表面に上記微細
起伏を具えることが肝要である。一般に、細胞培
養容器または人工臓器等の医療器材に適合される
人工素子は、平板、円形の皿、太さ10μm〜10cm
の円柱状または繊維状、直径100μm〜10cmの球、
あるいは外径10μm〜10cmの中空円筒形状等であ
る。
The overall macroscopic form of the artificial element of the present invention, such as a container, a device, etc., is not particularly defined. In other words, the purpose is plate-shaped, plate-shaped, spherical, fibrous, cylindrical, particle-shaped, etc.
Although it can be formed arbitrarily depending on the application, it is important that the surface has the above-mentioned fine undulations at least in the portion that comes into contact with living cells or tissues. In general, artificial elements suitable for medical equipment such as cell culture vessels or artificial organs are flat plates, circular dishes, and have a thickness of 10 μm to 10 cm.
Cylindrical or fibrous spheres with a diameter of 100 μm to 10 cm,
Alternatively, it may have a hollow cylindrical shape with an outer diameter of 10 μm to 10 cm.

本発明により、かような微細起伏を施した表面
には、従来の未加工の表面には見いだし得なかつ
た細胞増殖性、細胞接着性ならびに細胞配列制御
性等が付加されるという特異な作用を発揮する。
これらの作用は素子の前記材質の相異によつて差
があり、また素子の巨視的な形状によつてもその
程度に変化が認められる。更に素子と相対する細
胞や組織の種類、由来する動物の種類、性別、年
齢等によつても変化するものである。しかしなが
ら、本発明素子の作用である表面の微細起伏構造
に伴なつて生ずる特異な性質は、上記諸要因の影
響を超えて普遍的且つ顕著であつて、本発明の目
的を充分に達成することができる。
According to the present invention, the surface with such fine undulations has unique effects such as cell proliferation, cell adhesion, and cell arrangement control, which were not found on conventional unprocessed surfaces. Demonstrate.
These effects vary depending on the material of the element, and also vary to a certain degree depending on the macroscopic shape of the element. Furthermore, it varies depending on the type of cell or tissue that interacts with the element, the type of animal from which it is derived, sex, age, etc. However, the unique properties caused by the fine undulation structure on the surface, which is a function of the device of the present invention, are universal and remarkable beyond the influence of the above factors, and it is difficult to fully achieve the purpose of the present invention. I can do it.

第1図は、本発明による微細条溝加工を施した
石英ガラス板上における細胞の成長を模式的に示
した斜視拡大図である。
FIG. 1 is an enlarged perspective view schematically showing the growth of cells on a quartz glass plate subjected to microgroove processing according to the present invention.

同図において、石英ガラス板1上に断面U型の
直線微細条溝2の複数本を互いに平行に刻設し、
その面に生体細胞を接触して培養すれば、神経細
胞NCは微細条溝間の畝3の表面部分に、畝に沿
つて神経突起AXを再生させるが、グリア細胞な
どの結合組織細胞GCは条溝2の中に条溝に沿つ
て突起を成長させる。
In the figure, a plurality of linear fine grooves 2 with a U-shaped cross section are carved in parallel to each other on a quartz glass plate 1,
When living cells are brought into contact with the surface and cultured, neuronal cells NC regenerate neurites AX along the ridges on the surface of the ridges 3 between the fine grooves, but connective tissue cells such as glial cells GC A protrusion is grown in the groove 2 along the groove.

第2図は同様にガラス平板1上に刻設した微細
条溝2に沿つて細胞Cの成長する様子をイラスト
して示したものである。更に第3図には、プラス
チツク繊維1′表面に繊維軸に平行に刻設した微
細条溝2に沿つて細胞Cが成長する状態を示して
いる。
FIG. 2 similarly illustrates the growth of cells C along fine grooves 2 carved on a glass flat plate 1. Furthermore, FIG. 3 shows a state in which cells C grow along fine grooves 2 carved on the surface of plastic fibers 1' parallel to the fiber axis.

本発明人工素子に微細起伏を刻設するには、フ
オトレジスト法、レプリカ法、スクラツチ法、プ
レス法、エツチング法等を適宜に応用することが
できる。例えば、第2図に示したようなガラス
皿、ガラス板等の表面の加工にはフオトレジスト
を用いたリソグラフイー技術を適用することがよ
く、また第3図の繊維表面あるいはガラス球表面
並びにガラス管内部表面の微細加工にも同様の方
法を適用することができる。更に、プラスチツク
皿、繊維等の加工には主として三つの方法が用い
られる。すなわち、(1)上述のリソグラフイー法、
(2)リソグラフイーで加工したガラス板のレプリカ
を取る方法、および(3)微小な粒子あるいは繊維の
切断面により表面にスクラツチ条溝を付ける方法
である。更にまた、シリコンゴム、プラスチツク
チユーブ等の表面あるいはコラーゲンを素材とす
る繊維、プレート、チユーブ等の表面の微細加工
はガラスチユーブのレプリカをとる方法か、ある
いはスクラツチ法によることがよい。
In order to form fine undulations on the artificial element of the present invention, a photoresist method, a replica method, a scratch method, a press method, an etching method, etc. can be appropriately applied. For example, lithography technology using photoresist is often applied to processing the surfaces of glass dishes, glass plates, etc. as shown in Figure 2, and lithography techniques using photoresists are often applied to processing the surfaces of glass dishes, glass plates, etc. as shown in Figure 3. A similar method can be applied to micromachining the inner surface of the tube. Additionally, three main methods are used to process plastic dishes, fibers, etc. That is, (1) the above-mentioned lithography method;
(2) a method of taking a replica of a glass plate processed by lithography; and (3) a method of creating scratch grooves on the surface using cut surfaces of microscopic particles or fibers. Furthermore, microfabrication of the surfaces of silicone rubber, plastic tubes, etc. or collagen-based fibers, plates, tubes, etc. may be carried out by a method of making a replica of a glass tube, or by a scratch method.

第4図はレプリカ法によりプラスチツク、シリ
コンゴム等に微細構造を転写する方法の概要を説
明するもので、微細条溝構造を刻設した金属ない
しは石英ガラス板等の素材による原型4をもつて
基材1に転写したシリコンゴム等のレプリカ5を
本発明人工素子として実用に供する。
Figure 4 explains the outline of a method for transferring a fine structure onto plastic, silicone rubber, etc. using the replica method. A replica 5 of silicone rubber or the like transferred onto the material 1 is put to practical use as an artificial element of the present invention.

第5図は繊維状の材料の表面に微細条溝を刻設
する方法の一例を示すもので、内壁に軸方向の微
細条溝を刻設した金属またはガラス円筒を原型
4′として、内部に繊維を通過させ矢印方向に引
抜くことにより表面に微細条溝2を刻設した繊維
1′よりなる本発明人工素子が得られる。
Figure 5 shows an example of a method for carving fine grooves on the surface of a fibrous material. A metal or glass cylinder with fine grooves carved in the axial direction on the inner wall is used as a prototype 4'. By passing the fibers through and pulling them out in the direction of the arrow, an artificial element of the present invention consisting of fibers 1' having fine grooves 2 carved on the surface can be obtained.

第6図はスクラツチ法の典型的態様を示すもの
で、硬質材料よりなる櫛の歯状または鋸歯状の原
型4″を、それよりも硬度の小さいプラスチツク、
ゴム、その他各種材質の板1の表面に圧接して、
原型4″と板1とを矢印方向に相対運動せしめ、
板表面にスクラツチ性の傷を付けることにより、
微細条溝を刻設する。
FIG. 6 shows a typical embodiment of the scratch method, in which a comb-tooth or serration-shaped master model 4'' made of a hard material is made of a plastic material with a smaller hardness.
Pressed against the surface of a plate 1 made of rubber or various other materials,
The prototype 4'' and the plate 1 are caused to move relative to each other in the direction of the arrow,
By creating scratches on the board surface,
Carve fine grooves.

(実施例) 次に本発明を更に実施例について説明する。(Example) Next, the present invention will be further explained with reference to examples.

実施例 1 成熟マウスの脊髄後根神経節細胞を採取し、細
胞を単離するためにトリプシン、コラゲナーゼ等
の酵素で処理した後、幅0.5μm、深さ0.2μmの微
細条溝を刻設した石英ガラス上および、微細条溝
を有しない平滑面の石英ガラス上でそれぞれ培養
した。培養液は、ハムス(Hams)F−12培養液
とダルベツコ(Dulbecco)MEM液との1:1混
合液にプロゲステロン、インシユリン、トランス
フエリンを適宜添加したものである。培養は、5
%の二酸化炭素を含む空気中37℃で無血清条件下
に24〜48時間行なつた。培養の結果、神経突起が
ガラス板上で再生した状態を第7図および第8図
に示す。
Example 1 Spinal dorsal root ganglion cells from adult mice were collected and treated with enzymes such as trypsin and collagenase to isolate the cells, and then fine grooves with a width of 0.5 μm and a depth of 0.2 μm were carved. Cultures were carried out on quartz glass and on a smooth surface of quartz glass without fine grooves. The culture solution was a 1:1 mixture of Hams F-12 culture solution and Dulbecco MEM solution to which progesterone, insulin, and transferrin were added as appropriate. Culture is 5
The experiments were carried out under serum-free conditions for 24-48 hours at 37°C in air containing % carbon dioxide. As a result of the culture, neurites regenerated on the glass plate are shown in FIGS. 7 and 8.

微細条溝を設けない石英ガラス上における神経
突起の再生は第8図に示すように、軸索再生が起
こるが、その方向は一定しない。一方、微細条溝
を刻設した(微細条溝は可視光線の解像限界以下
の深さ0.2μm、幅0.5μmであるため観察されてい
ない)石英ガラス上では、第7図に示す如く微細
条溝の方向に沿つて配向した軸索再生が観察され
る。この場合、条溝から外れて突起を伸ばすもの
も認められるが、その長さは溝方向の突起の20%
以下に留まる。
When neurites are regenerated on quartz glass without micro-grooves, as shown in FIG. 8, axon regeneration occurs, but its direction is not constant. On the other hand, on silica glass with fine grooves carved (the fine grooves are not observed because they are below the resolution limit of visible light, with a depth of 0.2 μm and a width of 0.5 μm), the fine grooves are as shown in Figure 7. Axonal regeneration oriented along the direction of the sulcus is observed. In this case, some protrusions may extend beyond the groove, but their length is 20% of the protrusion in the groove direction.
Stay below.

ソーダガラス、プラスチツク、コラーゲン、ア
パタイト等の材料にそれぞれ微細条溝加工を施し
た素子を用い、神経細胞の種類、動物の種類、年
齢並びに神経周囲組織の種類を変えて、上記同様
の方法で培養した結果、若干の差異は認められる
ものの上記同様の結果が観察された。
Using elements made of materials such as soda glass, plastic, collagen, and apatite with microscopic grooves, the types of nerve cells, types of animals, ages, and types of perineural tissue were changed and cultured in the same manner as above. As a result, the same results as above were observed, although some differences were observed.

実施例 2 受精後15日目のニワトリ胎児の脊髄後根神経節
細胞と脊髄中の運動神経細胞を別々に取り出し、
幅5μm、深さ2μmの条溝加工したプラスチツク
板の溝の両端で同時に培養した。その結果、脊髄
後根神経節細胞と運動神経細胞は条溝に沿つて成
長し、それらの間で、高い効率でシナプス結合を
形成した。このとき、脊髄後根神経節細胞に加え
た電気刺激は運動神経細胞においても検出され、
シナプス結合に特有なしきい値特性が得られた。
(神経繊維、細胞に対する再生促進性) 実施例 3 本発明の素子のなかで、材質がガラスもしくは
プラスチツクでその表面に幅2−10μm、深さ0.5
−1μmの溝を有するものの上で、成熟マウスの
脊髄後根神経節細胞を、実施例1の方法で培養し
た。但し、本例では、培地にFCS(牛胎児の血清)
を加え、84時間培養する。脊髄後根神経節には神
経細胞の他シユワン細胞やグリア細胞が含まれ、
これらの細胞は培養中に増殖する。本発明素子の
上では神経細胞は90%以上溝の上で生育し、逆に
神経以外の細胞は90%以上溝の下で増殖する。こ
の性質の違いから神経細胞と他の細胞をたやすく
分離することができ、それぞれをわけて収集する
ことができる。(セルソーターの機能) 実施例 4 受精後15日目のニワトリより入手した繊維芽細
胞、シユワン細胞、皮膚細胞、骨格筋肉細胞、腎
臓細胞、肝臓細胞、を本発明素子上で培養する
と、特異な細胞増殖並びに細胞配置を示し、素子
形状と細胞選択性、細胞成長刺激性に固有の関係
があることが判明した。とりわけ、細胞配置に特
徴のある臓器由来の細胞組織の培養に著明な効果
が認められた。これらの特徴は、また、細胞の由
来する動物の種類、年齢、培養方法によつても大
きく左右された。それぞれの細胞に最適の素子材
質、溝形状、幅、深さなどがあたえられた。(異
なる種類の細胞に対する選択性) 実施例 5 石英ガラス板上に幅10μm、深さ3μmの微細条
溝を所定範囲に刻設し、その範囲外は平滑表面の
まゝに残した。その上に前記実施例1と同様な方
法で細胞培養を行なつたところ、第9図に示す如
く、条溝のある部分6においては、神経細胞や結
合組織の成長は条溝に沿つて起こるが、条溝加工
の施されていない部分7においては、その成長は
一定していなかつた。
Example 2 Dorsal root ganglion cells and motor neurons in the spinal cord of a chicken fetus 15 days after fertilization were separately taken out.
Cultures were simultaneously grown on both ends of the grooves of a plastic plate with grooves of 5 μm wide and 2 μm deep. As a result, dorsal root ganglion cells and motor neurons grew along the sulcus and formed synaptic connections between them with high efficiency. At this time, the electrical stimulation applied to spinal dorsal root ganglion cells is also detected in motor neurons,
Threshold characteristics specific to synaptic connections were obtained.
(Promoting regeneration of nerve fibers and cells) Example 3 Among the elements of the present invention, the material is glass or plastic, and the surface is 2-10 μm wide and 0.5 μm deep.
Adult mouse spinal dorsal root ganglion cells were cultured using the method of Example 1 on a -1 μm groove. However, in this example, FCS (fetal bovine serum) was added to the medium.
and culture for 84 hours. In addition to neurons, the spinal dorsal root ganglion contains Schwan cells and glial cells.
These cells proliferate during culture. On the device of the present invention, more than 90% of nerve cells grow on the grooves, and conversely, more than 90% of cells other than nerves grow under the grooves. Because of this difference in properties, nerve cells and other cells can be easily separated, and each type can be collected separately. (Function of cell sorter) Example 4 When fibroblasts, Schwan cells, skin cells, skeletal muscle cells, kidney cells, and liver cells obtained from a chicken on the 15th day after fertilization are cultured on the device of the present invention, unique cells are detected. It was found that there is a unique relationship between the device shape, cell selectivity, and cell growth stimulation. In particular, a remarkable effect was observed in culturing cell tissues derived from organs with characteristic cell arrangement. These characteristics were also greatly influenced by the type and age of the animal from which the cells were derived, and the culture method. The optimal element material, groove shape, width, depth, etc. were assigned to each cell. (Selectivity for different types of cells) Example 5 Fine grooves with a width of 10 μm and a depth of 3 μm were carved in a predetermined range on a quartz glass plate, and the area outside the range was left as a smooth surface. When cells were cultured thereon in the same manner as in Example 1, as shown in FIG. 9, in the grooved area 6, growth of nerve cells and connective tissue occurred along the grooves. However, in the portion 7 where the grooves were not processed, the growth was not constant.

実施例 6 前記実施例5で用いた石英ガラス板を用い、同
実施例と同様の方法で神経細胞を含まない単一種
類の細胞(結合組織細胞)の培養を行なつた。第
10図に示すごとく、条溝加工を施した部分6
と、施さない部分7とでは、細胞成長の配向性に
顕著な差が生ずるとともに、細胞接着性、細胞選
択性等にも差が見られた。
Example 6 Using the quartz glass plate used in Example 5, a single type of cell (connective tissue cell) not containing nerve cells was cultured in the same manner as in Example 5. As shown in Figure 10, the grooved part 6
There was a significant difference in the orientation of cell growth between the area 7 and the untreated area 7, and there were also differences in cell adhesion, cell selectivity, etc.

(発明の効果) 本発明は、細胞培養容器あるいは医療用器材に
おいて、結合組織、神経細胞、グリア細胞、シユ
ワン細胞、皮膚細胞、筋肉細胞、腎臓細胞および
肝臓細胞よりなる群から選ばれる生体組織または
生体細胞と接する表面に微細な起伏構造を機械的
または化学的に刻設することによつて、細胞や組
織に対して接着性や選択性を増し、細胞の増殖を
制御し、更にこの起伏を細条溝、特に互いに平行
な多数の直線状細条溝とすれば、細胞や組織を条
溝に沿つて配向成長させることができ、より性質
の優れた培養容器あるいは医療器材のための素子
となすことができる。
(Effects of the Invention) The present invention provides a cell culture container or a medical device in which biological tissue or tissue selected from the group consisting of connective tissue, nerve cells, glial cells, Schwan cells, skin cells, muscle cells, kidney cells, and liver cells is used. By mechanically or chemically carving fine undulations on the surface that comes into contact with living cells, we can increase adhesion and selectivity to cells and tissues, control cell proliferation, and further improve this undulation. By using striped grooves, especially many linear striped grooves that are parallel to each other, cells and tissues can be oriented and grown along the grooves. It can be done.

即ち、本発明素子の効果は次の通りに要約され
る。
That is, the effects of the device of the present invention can be summarized as follows.

1 細胞の成長促進効果 A 細胞分裂を促進し細胞増殖を加速する効
果。
1. Cell growth promoting effect A. Effect of promoting cell division and accelerating cell proliferation.

本素子の上で細胞を培養すると、細胞分裂
に要する時間が短くなり、単位時間(例えば
1日)内に増殖する細胞数が少なくとも2倍
以上に増加する。この際、細胞分裂に伴う
様々な現象、例えば細胞の核DNAや、タン
パク質の合成量の増加等が同時に観察され
る。このような効果は細胞分裂能力の優れた
細胞、即ち、肝臓細胞、腎臓細胞、皮膚細
胞、血管形成細胞に顕著である。
When cells are cultured on this device, the time required for cell division is shortened, and the number of cells that proliferate within a unit of time (for example, one day) increases by at least two times. At this time, various phenomena associated with cell division, such as increases in nuclear DNA and protein synthesis, are simultaneously observed. Such effects are remarkable in cells with excellent cell division ability, ie, liver cells, kidney cells, skin cells, and angiogenic cells.

B 細胞を成長させる効果。 Effect on growing B cells.

細胞分裂能力の無い細胞や、分裂能力の少
ない細胞については、細胞を大きくしたり、
あるいは細胞が伸ばしている繊維を長くする
効果が認められる。特に、神経細胞について
はその繊維が2〜5倍の長さとなり、骨格筋
肉繊維については長さが2〜3倍となるとと
もに直径が2〜4倍となる。
For cells that do not have the ability to divide or have little ability to divide, we can increase the size of the cells,
Alternatively, the effect of lengthening the fibers stretched by cells has been observed. In particular, the fibers of nerve cells increase in length by 2 to 5 times, and the length of skeletal muscle fibers increases by 2 to 3 times and the diameter by 2 to 4 times.

2 細胞機能の分化促進効果 生体内では、細胞は単独でその役割を果たす
だけではなく、周囲の細胞と協調し、機能を分
担しつつ役割を果たしている。本発明による素
子は、従来の素子には認められなかつたこのよ
うな高度な機能を発現させ得ることが確認され
た。
2 Effect of promoting differentiation of cell functions In the living body, cells not only play their roles independently, but also cooperate with surrounding cells and perform their roles while sharing functions. It has been confirmed that the device according to the present invention can exhibit such advanced functions that have not been observed in conventional devices.

A 本発明素子の上で肝臓細胞や腎臓細胞を培
養すると、細胞数が増えるのみならず、細胞
の高度な機能の発現が促進される。
A When liver cells and kidney cells are cultured on the device of the present invention, not only the number of cells increases, but also the expression of advanced functions of the cells is promoted.

即ち、肝臓の細胞については、解毒に直接
かかわる酵素、例えばベータグルクロニダー
ゼの活性が5倍以上に上昇する。このような
特殊酵素活性の上昇は、従来の培養環境では
実現されていなかつたものである。
That is, in liver cells, the activity of enzymes directly involved in detoxification, such as beta-glucuronidase, increases by more than five times. Such an increase in special enzyme activity has not been achieved in conventional culture environments.

また、腎臓の細胞については、細胞の尿生
成・排泄の機能と直接関わる複数の酵素の活
性上昇が認められる。
Furthermore, in kidney cells, increased activity of multiple enzymes directly related to the cellular urine production and excretion functions was observed.

更に、皮膚細胞については、多重の細胞が
配列することによると思われる角質蛋白の合
成の増加や、基底膜成分蛋白の合成促進等、
より分化した皮膚構造の形成を促していると
考えられる様々な現象が観察される。
Furthermore, regarding skin cells, there is an increase in the synthesis of keratin proteins, which is thought to be due to the arrangement of multiple cells, and promotion of synthesis of basement membrane component proteins, etc.
Various phenomena are observed that are thought to promote the formation of a more differentiated skin structure.

B 細胞分裂を生ずることが少ない筋肉細胞や
神経細胞についても、機能の分化を促進し
て、高度な機能を発現する。
B Even in muscle cells and nerve cells that rarely undergo cell division, functional differentiation is promoted to express advanced functions.

神経細胞については、既に述べたような神
経繊維の成長の方向付けをするだけでなく、
神経の特殊な機能、即ち神経回路網の形成に
伴う機能が発現する。即ち、神経細胞が化学
伝達物質を合成するための酵素、例えば、コ
リンアセチラーゼ、カテコラミン合成酵素の
活性が増加する。また、培養液中における化
学伝達物質の放出が数倍増加する。更に神経
細胞内で神経機能が高度化したことを示す各
種酵素の増加が認められる。
Regarding nerve cells, it not only directs the growth of nerve fibers as already mentioned, but also
Special functions of nerves, ie, functions associated with the formation of neural networks, are expressed. That is, the activity of enzymes used by nerve cells to synthesize chemical transmitters, such as choline acetylase and catecholamine synthase, increases. Also, the release of chemical mediators in the culture medium is increased several times. Furthermore, an increase in various enzymes was observed within the nerve cells, which indicates that the nerve function has become more advanced.

筋肉細胞については、その長さや直径が増
加するだけでなく、筋肉の収縮機能増加を示
すクレアチンリン酸化酵素の活性が上昇す
る。
For muscle cells, not only their length and diameter increase, but also the activity of creatine kinase, which indicates increased muscle contractile function, increases.

以上要するに、(1)従来のような細胞培養法を用
いた時には殆ど観察されない現象が、本発明素子
を用いると観察されること、(2)かかる現象は、細
胞の機能が非常に分化したことを示すと共に、生
体内で働いている状態に近付いていることを示す
ものと考えられる。
In summary, (1) phenomena that are hardly observed when using conventional cell culture methods are observed when using the device of the present invention, and (2) such phenomena are due to highly differentiated cell functions. This is considered to indicate that the state is approaching the state in which it works in the living body.

本発明素子は、従来公知の手法、すなわち単に
培養容器、医療器材等の表面に成長誘引性の化学
物質を塗布したり、熱や放電によつて加工するの
ではなく、素子表面に特殊な微細起伏、とりわけ
条溝構造の機械的または化学的加工を施すもので
あるから、加工技術も比較的簡単容易であり、ま
た大量生産も可能であるのみならず、安定した作
用、特性を長期間維持することができる。
The device of the present invention does not involve conventionally known methods such as simply coating the surfaces of culture vessels, medical equipment, etc. with growth-inducing chemicals or processing them using heat or electric discharge. Since the undulations, especially the groove structure, are mechanically or chemically processed, the processing technology is relatively simple and easy, and not only is mass production possible, but it also maintains stable action and characteristics for a long period of time. can do.

また、従来の方法の一つとして、生体組織及び
細胞での電場による電界方向への成長誘引も知ら
れているが、この方法では電場の生体組織に与え
る影響が十分解明されていない等の問題があつ
た。本発明素子は、これらの解明の一助をなす素
子として利用されるとともに、その特性をセルソ
ーターとしても利用出来る。
In addition, as a conventional method, inducing growth in the direction of the electric field using an electric field in biological tissues and cells is known, but this method has problems such as the influence of the electric field on biological tissues is not fully understood. It was hot. The device of the present invention can be used as a device that helps clarify these issues, and its characteristics can also be used as a cell sorter.

とりわけ、本発明素子は、その細胞選択性並び
に細胞配列制御性に特に優れており、特異な細胞
配列の必要な臓器、器官に留置する医用器材の素
子たりうる。すなわち、従来、生体中に長時間埋
めこむことを意図した医療用器材は、生体の、い
わゆる防御反応を下げる事を狙い、材質や形状の
改良に主力がそそがれてきていた。しかし本発明
素子は、表面加工の方法によつて、特異な細胞群
に特異な調和性を持たせるとともに、素子表面に
細胞の配列を制御する特異な細胞選択性を持つて
いるため、その性質を利用して、各種の医療用機
材の表面被覆用の素子として利用出来る。とりわ
け結合組織細胞との反応性、親和性が高いので、
素子の材質と、溝加工の工夫により、生体防御反
応の低い特性を持つ医療用器材として応用でき
る。
In particular, the device of the present invention is particularly excellent in its cell selectivity and cell arrangement controllability, and can be used as an element for medical equipment to be placed in an organ or an organ that requires a specific cell arrangement. That is, conventionally, for medical devices intended to be implanted in a living body for a long period of time, efforts have been focused on improving the material and shape of the device with the aim of lowering the so-called defensive response of the living body. However, the device of the present invention uses a surface processing method to give unique cell groups a unique harmony, and also has unique cell selectivity that controls the arrangement of cells on the device surface. It can be used as a surface coating element for various medical equipment. It has particularly high reactivity and affinity with connective tissue cells,
Depending on the material of the element and the groove processing, it can be used as a medical device with low biological defense response.

以上説明したように、本発明は、化学物質や電
場を用いた場合に考えられる様な問題点がなく、
簡便にかつ確実に所望の方向に生体組織及び細胞
を育成できるという利点がある。従つて、本発明
は特異的なシナプス形成等のバイオテクノロジー
や損傷の治癒促進等の医療、細胞からの物質を抽
出する新しい方法を提供する等、物質生産にも応
用できるものである。
As explained above, the present invention does not have the problems that can occur when using chemical substances or electric fields.
There is an advantage that biological tissues and cells can be easily and reliably grown in a desired direction. Therefore, the present invention can be applied to biotechnology such as specific synapse formation, medical treatment such as promotion of injury healing, and material production, such as providing a new method for extracting materials from cells.

特に強調しておきたいのは、本発明が、培養容
器材質、大きさ、形状等に制限されず、従来進め
られていた素材の材質、形状の改良を損なうこと
なく、巨視的形状を変えることなく、むしろ、従
来技術のうえに、付け加わる技術として利用され
るということである。本発明による、微細な表面
加工により、現有の培養容器、医療用器材に、そ
れまでになかつた性質であるところの細胞選択性
や、細胞増殖制御性がくわわり、一層性能が高ま
ると考えられる。さらに、本発明素子は、その元
の材質にあまり規定されず、一種類ないしは多種
類の材質よりなる容器、器材に適応が可能であ
り、従来考えられなかつた性質をもつ新たな容
器、医療用器材が生まれる可能性が高く、下記の
用途において将来性が期待される画期的発明とい
える。
What I would like to particularly emphasize is that the present invention is not limited to the culture vessel material, size, shape, etc., and can change the macroscopic shape without impairing the conventional improvements in material quality and shape. Rather, it is used as an additional technology on top of conventional technology. It is believed that the fine surface processing of the present invention will add previously unseen properties such as cell selectivity and cell proliferation control to existing culture vessels and medical equipment, further improving their performance. . Furthermore, the device of the present invention is not limited by its original material, and can be applied to containers and equipment made of one or more types of materials. It is a ground-breaking invention that has a high possibility of being used as a device, and is expected to have a promising future in the following applications.

1 人工臓器、生体内に留置する医用器材。とり
わけ人工血管、人工心臓、ペースメーカーの表
面素子として。また、神経縫合、移植用の材
料、素子として。
1. Artificial organs, medical devices placed in living bodies. Especially as surface elements for artificial blood vessels, artificial hearts, and pacemakers. Also used as materials and elements for nerve sutures and transplants.

2 バイオチツプ、バイオコンピユーター。2 Biochip, biocomputer.

3 細胞分離装置(セルソーター)、細胞クロー
ン化装置 4 臓器移植、脳、神経移植用器材
3 Cell separation equipment (cell sorter), cell cloning equipment 4 Equipment for organ transplants, brain and nerve transplants

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、本発明人工素子上に生体細
胞が成長する状態を説明する、それぞれ拡大斜視
図、平面図および斜視図であり、第4図は本発明
人工素子を製作する方法を説明するための概要側
面図、第5図および第6図は本発明人工素子の別
の具体例を製作する方法を説明するための斜視
図、第7図は本発明人工素子上に神経突起が再生
する状態を示す顕微鏡写真より写生した図、第8
図は従来公知の人工素子上に神経突起が再生する
状態を示す顕微鏡写真より写生した図、第9図お
よび第10図は本発明人工素子の効果を示すため
の顕微鏡写真より写生した図である。 1…ガラス板、1′…プラスチツク繊維、2…
微細条溝、3…畝、4,4′,4″…原型、5…レ
プリカ。
Figures 1 to 3 are an enlarged perspective view, a plan view, and a perspective view, respectively, illustrating the state in which living cells grow on the artificial device of the present invention, and Figure 4 is a method for manufacturing the artificial device of the present invention. 5 and 6 are perspective views illustrating a method of manufacturing another embodiment of the prosthetic device of the present invention, and FIG. Figure 8, sketched from a microscopic photograph showing the state of regeneration.
The figure is a drawing taken from a microscopic photograph showing the state in which neurites regenerate on a conventionally known artificial element, and Figures 9 and 10 are taken from a microscope photograph to show the effects of the artificial element of the present invention. . 1...Glass plate, 1'...Plastic fiber, 2...
Fine grooves, 3...ridges, 4, 4', 4''...original model, 5...replica.

Claims (1)

【特許請求の範囲】 1 多数の微細起伏を刻設した表面を具えてな
り、該表面に接する結合組織、神経細胞、グリア
細胞、シユワン細胞、皮膚細胞、筋肉細胞、腎臓
細胞および肝臓細胞よりなる群から選ばれる生体
細胞または生体組織に対して細胞成長特異性を示
すことを特徴とする人工素子。 2 微細起伏が細条溝である特許請求の範囲第1
項記載の人工素子。 3 細条溝が幅約0.1〜1000μm、深さ約0.1〜
1000μmの寸法を有する特許請求の範囲第2項記
載の人工素子。 4 細条溝が互いに平行である特許請求の範囲第
3項記載の人工素子。 5 微細起伏表面に更に生物活性物質を被着した
前記特許請求の範囲各項のいずれかに記載の人工
素子。 6 生物活性物質がコラーゲン、ポリ−L−リシ
ン、ポリ−L−オルニチン、ラミニン、フイブロ
ネクチン、チツクプラズマ、人工脂質膜(LB膜
等)、神経成長因子よりなる群から選ばれる特許
請求の範囲第5項記載の人工素子。 7 前記人工素子が石英ガラス、硬質ガラス、軟
質ガラス、有機高分子材料、金属、セミツクス、
シリコーンゴム、半導体よりなる群から選ばれた
少なくとも一種の物質を含んでなる前記特許請求
の範囲各項のいずれかに記載の人工素子。
[Scope of Claims] 1. A cell comprising a surface carved with a large number of minute undulations, and comprising connective tissue, nerve cells, glial cells, Schwan cells, skin cells, muscle cells, kidney cells, and liver cells in contact with the surface. An artificial element characterized by exhibiting cell growth specificity for living cells or living tissues selected from the group. 2 Claim 1 in which the fine undulations are striped grooves
Artificial elements as described in section. 3 The narrow grooves are approximately 0.1 to 1000 μm wide and approximately 0.1 to 1000 μm deep.
Artificial element according to claim 2, having dimensions of 1000 μm. 4. The artificial element according to claim 3, wherein the grooves are parallel to each other. 5. The artificial element according to any one of the claims above, further comprising a biologically active substance coated on the finely undulated surface. 6. Claim 5 in which the biologically active substance is selected from the group consisting of collagen, poly-L-lysine, poly-L-ornithine, laminin, fibronectin, tick plasma, artificial lipid membrane (LB membrane, etc.), and nerve growth factor. Artificial elements as described in section. 7 The artificial element is quartz glass, hard glass, soft glass, organic polymer material, metal, semiconductors,
An artificial element according to any one of the claims, comprising at least one substance selected from the group consisting of silicone rubber and semiconductors.
JP61265564A 1986-11-10 1986-11-10 Artificial element having cell growth specificity Granted JPS63119754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265564A JPS63119754A (en) 1986-11-10 1986-11-10 Artificial element having cell growth specificity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265564A JPS63119754A (en) 1986-11-10 1986-11-10 Artificial element having cell growth specificity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3042272A Division JPH0669487B2 (en) 1991-02-15 1991-02-15 Method for promoting and controlling biological cell growth and functional differentiation

Publications (2)

Publication Number Publication Date
JPS63119754A JPS63119754A (en) 1988-05-24
JPH0560950B2 true JPH0560950B2 (en) 1993-09-03

Family

ID=17418862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265564A Granted JPS63119754A (en) 1986-11-10 1986-11-10 Artificial element having cell growth specificity

Country Status (1)

Country Link
JP (1) JPS63119754A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777392B2 (en) * 1988-06-22 1998-07-16 大日本印刷株式会社 Cell culture substrate and method for producing the same
JP2004180835A (en) * 2002-12-02 2004-07-02 Toshiba Ceramics Co Ltd Biomedical member
JP2008272385A (en) * 2007-05-07 2008-11-13 National Institute Of Advanced Industrial & Technology Biological implant material, its production method, and application
JP5386929B2 (en) * 2008-10-27 2014-01-15 ニプロ株式会社 Nerve regeneration substrate and parts for nerve regeneration substrate
JP6176703B2 (en) * 2013-03-28 2017-08-09 株式会社Lsiメディエンス Hepatocyte culture substrate and hepatocyte culture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944517A (en) * 1972-09-04 1974-04-26
JPS6018174A (en) * 1983-07-09 1985-01-30 住友セメント株式会社 New bone inducing method and ceramic material
JPS61176339A (en) * 1985-01-29 1986-08-08 京セラ株式会社 Blade shaped bone implant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944517A (en) * 1972-09-04 1974-04-26
JPS6018174A (en) * 1983-07-09 1985-01-30 住友セメント株式会社 New bone inducing method and ceramic material
JPS61176339A (en) * 1985-01-29 1986-08-08 京セラ株式会社 Blade shaped bone implant

Also Published As

Publication number Publication date
JPS63119754A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
CA1215013A (en) Method of altering growth and development and suppressing contamination by microorganisms in cell or tissue culture
JPS6133593B2 (en)
Rose A hierarchy of self-limiting reactions as the basis of cellular differentiation and growth control
DE3521684A1 (en) METHOD FOR COATING POLYMERS
JP2008054566A (en) Method for culturing chondrocyte cell, base material for culturing chondrocyte cell, material for regeneration of biomedical tissue containing chondrocyte cell and chondrocyte cell
DE1915970A1 (en) Process for the manufacture of products based on active protein substances
JPH07509638A (en) Production of graft tissue from extracellular matrix
WO1990000595A1 (en) Floating cell culture device and method
Wang et al. Biomimetic topography: bioinspired cell culture substrates and scaffolds
WO2004070023A1 (en) Anterior ocular-associated cell sheet, three-dimensional construct and process for producing the same
GB2094832A (en) Process for culturing anchorage dependent cells
Koch et al. Tissue engineering with chondrocytes
JPH04322657A (en) Growth of organic cell and method of promoting and controlling functional differentiation
EP1263980A1 (en) Method and device for producing shaped microbial cellulose for use as biomaterial, especially for microsurgery
CN111534477A (en) Method for culturing primary epithelial stem cell balls of lung tissue of mouse
JPH0560950B2 (en)
Ihara et al. Formation of hair follicles from a single-cell suspension of embryonic rat skin by a two-step procedure in vitro
JP2628536B2 (en) Cell culture substrate
JP2004533288A (en) Porous and non-porous matrices based on chitosan and hydroxycarboxylic acids
RU2328527C1 (en) Microcarrier for growing substrate-dependent animal cells in vitro
JPS63196273A (en) Substrate for cell culture
EP3561045B1 (en) Method for culturing and differentiating cells
JPH02181628A (en) Immobilization of biologically active part on substrate, immobilization of living cell on substrate and cultivation of cell
RU2014359C1 (en) Three-dimensional bioactive carrier for mammalian cells and tissues cultivation
DE19725318A1 (en) Cell culture apparatus for three=dimensional cell or tissue cultivation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term