JPH0560750B2 - - Google Patents

Info

Publication number
JPH0560750B2
JPH0560750B2 JP1058542A JP5854289A JPH0560750B2 JP H0560750 B2 JPH0560750 B2 JP H0560750B2 JP 1058542 A JP1058542 A JP 1058542A JP 5854289 A JP5854289 A JP 5854289A JP H0560750 B2 JPH0560750 B2 JP H0560750B2
Authority
JP
Japan
Prior art keywords
stone
piezoelectric element
thickness
biological thickness
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1058542A
Other languages
Japanese (ja)
Other versions
JPH02237557A (en
Inventor
Naohiko Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1058542A priority Critical patent/JPH02237557A/en
Publication of JPH02237557A publication Critical patent/JPH02237557A/en
Publication of JPH0560750B2 publication Critical patent/JPH0560750B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 この発明は、腎臓結石、尿管結石、胆石などの
体内の結石を、体外からの超音波の集束照射によ
つて非侵襲に破砕する結石破砕装置に関する。 B 従来技術 従来の結石破砕装置として、第2図あるいは第
3図に示すようなものが知られている。 第2図の結石破砕装置の概要は次のとおりであ
る。 形状が回転楕円体の反射体21の内部に、人体
の軟組織と同等な音響インピーダンスを有する脱
気水22が入れられ、反射体21の第1焦点F1
において水中放電、爆破等による衝撃波USを発
生させる部分がある。脱気水22の表面は膜23
で覆われ、その膜23に接する状態で患者Mが図
示しないベツドに仰臥している。ベツドの位置調
整により、患者Mの体内の結石Sを反射体21の
第2焦点F2に位置させる。 第1焦点F1で発生させた衝撃波USは、脱気水
22を介する状態で反射体21で反射され、患者
Mの体である生体内を伝播して第2焦点F2に集
束し、その集束された衝撃波USのエネルギーに
よつて結石Sを破砕する。 第3図の結石破砕装置の概要は次のとおりであ
る。 支持部1に球面状の凹所2が形成され、この球
面状凹所2の内底面に多数の圧電素子3i(i=
1,2…)が同心状に取り付けられている。各圧
電素子3iは、互いに同一の共振周波数cをもち、
それぞれが球面状凹所2の中心である焦点Fに向
けられている。 球面状凹所2には、脱気水4が充満状態で収容
され、表面が膜5で覆われている。なお、焦点F
が膜5の外部上方に位置するように球面状凹所2
の大きさが定められている。 主発振器6と個々の圧電素子3iとがそれぞれ
高電圧パルス発生器7を介して接続されている。 球面状凹所2の内底面の中央に、結石Sの位置
を検出するための診断用超音波撮影装置8が装着
されている。 この超音波撮影装置8は、患者Mの体軸方向に
沿つた第1の鉛直面内と、これに直交する第2の
鉛直面内とで超音波を掃引照射し、体内の各組織
からの反射波をピツクアツプすることにより、照
射角度とその照射方向に沿つた距離とで決められ
る生体組織各点の輝度データを収集する2つの超
音波プローブを備えている。 結石Sおよび体表面は、相対的に反射率が高い
ので高輝度となる。超音波断層像表示診断部9
は、輝度データを入力し、結石位置および体表面
位置を高輝度表示する。 膜5に患者Mの体表面が接するように患者Mを
仰臥させる。超音波断層像表示診断部9によつて
結石Sの位置を確認し、患者Mが仰臥しているベ
ツド(図示せず)の位置調整により、結石Sを圧
電素子3i群の焦点Fに位置させる。 そして、主発振器6を駆動し、各高電圧パルス
発生器7によつて高電圧パルスを発生して各圧電
素子3iに供給し、圧電変換によつて発生した超
音波パルスUSを、脱気水4および生体を通して、
焦点Fにある結石Sに向けて集中的に照射し、そ
の超音波振動によつて結石Sを破砕する。 なお、破砕された微細結石は、臓器から出てい
る管(腎臓結石の場合は尿管)を通して体外に排
出される。 C 発明が解決しようとする課題 超音波パルス(衝撃波)は、生体内での吸収に
より減衰する。その様子を第4図に示す。 第4図Aは、超音波パルスの体表面入射時にお
ける時間応答波形と周波数応答波形とを示し、第
4図Bは生体内を伝播して結石Sに達した時の超
音波パルスの時間応答波形と周波数応答波形とを
示す。 入射時において鋭い波形をもつ超音波パルスで
も、生体内伝播中の減衰によつて時間応答波形が
鈍化する。これを周波数応答波形で見ると、超音
波パルスの中心周波数(共振周波数)が入射時に
おいてcであつたものが、減衰によつてc′(<
c)のように低周波側に遷移する。 時間応答波形の鈍化(中心周波数の低周波側遷
移)の程度は、圧電素子の共振周波数が高いほ
ど、また、体表面から結石位置までの生体厚さが
大きいほど大きくなる。 すなわち、第5図に示すように、圧電素子3i
(i=1,2…)と結石Sとを結ぶ線上において
体表面と結石Sまでの生体厚さをLi(i=1,2
…)、共振周波数をすべて同一のc、体表面への
入射時の超音波パルスの強度をI0(同一)、結石位
置での超音波パルスの強度を生体厚さLiの関数と
してI(Li)とすると、減衰率αi(i=1,2…)
は、kを定数として、 αi=I(Li)/I0exp-k. c.Li …… で表される。 ところで、結石破砕効果は、すべての圧電素子
i(i=1,2…)から照射された超音波パル
スが結石位置において、同一波形をもつている場
合に最も優れたものとなる。 しかし、第5図から明らかなように、圧電素子
iの配置位置による生体厚さLiの大小関係は、 L1<L2<L3<L4 である。 従来においては、共振周波数cがすべての圧電
素子3iで同一である。したがつて、生体厚さL1
L2,L3,L4それぞれに対して結石位置での強度
I(L1),I(L2),I(L3),I(L4)の相対関係
は、I(L1)>I(L2)>I(L3)>I(L4)のように
相違し、かつ、時間応答波形の鈍化(中心周波数
の低周波側への遷移)の程度も互いに異なること
になり、充分な結石破砕効果が発揮されていなか
つたのである。 さらに、生体厚さLi(i=1,2…)は患者ご
とにまちまちである。つまり、生体厚さが大きい
患者では生体厚さが小さい患者に比べて減衰の程
度がより大きい。 このような変化にかかわらず一定の破砕効果を
あげるために、従来では、例えば、生体厚さが大
きい患者に対しては超音波パルスの照射回数を多
くし、生体厚さが小さい患者に対しては照射回数
を少なくする等の工夫が行われている。 しかし、どの程度の照射回数が最適であるかの
判断は医者の経験と勘とに頼つていたために、ど
の患者に対しても一定の結石破砕効果を得るとい
うことが非常にむずかしいという問題があつた。 この発明は、このような事情に鑑みてなされた
ものであつて、圧電素子の位置による生体厚さの
変化および患者ごとの生体厚さの変化にもかかわ
らず、常に一定の結石破砕効果が得られるように
することを目的とする。 D 課題を解決するための手段 この発明は、このような目的を達成するため
に、次のような構成をとる。 すなわち、この発明の結石破砕装置は、単一の
焦点に向かうように曲面に沿つて分布配列され、
共振周波数が中央部のものほど高く周辺部のもの
ほど低く設定された複数の圧電素子と、結石の位
置を検出する手段と、検出された結石位置に基づ
いて各圧電素子と結石との間の各生体厚さを検出
し、各検出生体厚さに応じて、より大きい検出生
体厚さの位置にある圧電素子にはより高い駆動電
圧を供給し、より小さい検出生体厚さの位置にあ
る圧電素子にはより低い駆動電圧を供給する駆動
電圧制御手段とを備えたことを特徴とするもので
ある。 E 作用 この発明の構成による作用は次のとおりであ
る。 すなわち、各圧電素子の配置位置による各圧電
素子と結石との間の想定される平均的な生体厚さ
は、中央部の圧電素子ほど小さく、周辺部の圧電
素子ほど大きい。そして、平均生体厚さが大きい
ほど減衰の程度が大きくなる。また、共振周波数
の違いによる減衰の程度は、共振周波数が高いほ
ど大きい。 そこで、各圧電素子の配置位置による平均生体
厚さの増・減変化に伴う減衰程度の増・減変化
を、共振周波数の減・増変化に伴う減衰程度の
減・増変化によつて補償する。 すなわち、上記の構成のように、複数の圧電素
子において、その共振周波数を中央部の圧電素子
ほど高く設定し、周辺部の圧電素子ほど低く設定
することによつて補償する。 この補償は、次のようにまとめると理解しやす
い。
A. Field of Industrial Application This invention relates to a stone crushing device that noninvasively crushes stones in the body, such as kidney stones, ureteral stones, and gallstones, by irradiating focused ultrasonic waves from outside the body. B. Prior Art As a conventional stone crushing device, one shown in FIG. 2 or 3 is known. The outline of the stone crushing device shown in Fig. 2 is as follows. Degassed water 22 having an acoustic impedance equivalent to that of human soft tissue is placed inside a reflector 21 having a spheroidal shape, and the first focus F 1 of the reflector 21 is
There are parts that generate shock waves US due to underwater discharges, explosions, etc. The surface of the degassed water 22 is a membrane 23
A patient M is lying on his back on a bed (not shown) in contact with the membrane 23. By adjusting the position of the bed, the stone S in the body of the patient M is positioned at the second focal point F2 of the reflector 21. The shock wave US generated at the first focus F 1 is reflected by the reflector 21 through the degassed water 22, propagates within the living body of the patient M, and is focused at the second focus F 2 . The stone S is crushed by the energy of the focused shock wave US. The outline of the stone crushing device shown in Fig. 3 is as follows. A spherical recess 2 is formed in the support portion 1, and a large number of piezoelectric elements 3 i (i=
1, 2...) are attached concentrically. Each piezoelectric element 3 i has the same resonance frequency c,
Each is directed towards a focal point F, which is the center of the spherical recess 2. The spherical recess 2 is filled with degassed water 4 and its surface is covered with a membrane 5. In addition, the focal point F
The spherical recess 2 is located above the outside of the membrane 5.
The size of is determined. The main oscillator 6 and the individual piezoelectric elements 3 i are each connected via a high voltage pulse generator 7 . A diagnostic ultrasonic imaging device 8 for detecting the position of the stone S is attached to the center of the inner bottom surface of the spherical recess 2. This ultrasonic imaging device 8 sweeps and irradiates ultrasonic waves in a first vertical plane along the body axis direction of the patient M and in a second vertical plane perpendicular to the vertical plane, thereby emitting ultrasonic waves from each tissue in the body. It is equipped with two ultrasonic probes that collect luminance data at each point in the living tissue, which is determined by the irradiation angle and the distance along the irradiation direction, by picking up reflected waves. Since the calculus S and the body surface have relatively high reflectance, they have high brightness. Ultrasonic tomographic image display diagnostic section 9
inputs brightness data and displays the stone position and body surface position in high brightness. The patient M is placed supine so that the surface of the patient M's body is in contact with the membrane 5. The position of the stone S is confirmed by the ultrasonic tomographic image display diagnostic section 9, and the stone S is positioned at the focal point F of the piezoelectric element 3 i group by adjusting the position of the bed (not shown) on which the patient M is lying supine. let Then, the main oscillator 6 is driven, each high voltage pulse generator 7 generates a high voltage pulse and supplies it to each piezoelectric element 3i , and the ultrasonic pulse US generated by piezoelectric conversion is degassed. Through water 4 and living organisms,
Irradiation is concentrated toward the stone S at the focal point F, and the stone S is crushed by the ultrasonic vibration. The crushed microstones are excreted from the body through a tube coming out of the organ (in the case of kidney stones, the ureter). C. Problems to be Solved by the Invention Ultrasonic pulses (shock waves) are attenuated by absorption within a living body. The situation is shown in Figure 4. FIG. 4A shows the time response waveform and frequency response waveform of the ultrasound pulse when it is incident on the body surface, and FIG. 4B shows the time response of the ultrasound pulse when it propagates in the living body and reaches the stone S. A waveform and a frequency response waveform are shown. Even if an ultrasonic pulse has a sharp waveform at the time of incidence, the time response waveform becomes blunt due to attenuation during propagation within the body. Looking at this as a frequency response waveform, the center frequency (resonance frequency) of the ultrasonic pulse was c at the time of incidence, but due to attenuation, it becomes c′ (<
It transitions to the lower frequency side as shown in c). The degree of slowing of the time response waveform (transition to the lower frequency side of the center frequency) increases as the resonant frequency of the piezoelectric element increases and as the biological thickness from the body surface to the calculus position increases. That is, as shown in FIG. 5, the piezoelectric element 3 i
On the line connecting (i=1,2...) and the stone S, the biological thickness from the body surface to the stone S is L i (i=1,2
), the resonance frequency is all the same c, the intensity of the ultrasound pulse at the time of incidence on the body surface is I 0 (same), and the intensity of the ultrasound pulse at the stone location is set as a function of the biological thickness L i ( L i ), then the attenuation rate α i (i=1,2...)
is expressed as α i =I(L i )/I 0 exp -k. c.Li . . . where k is a constant. By the way, the stone crushing effect is most excellent when the ultrasonic pulses emitted from all the piezoelectric elements 3 i (i=1, 2, . . . ) have the same waveform at the stone location. However, as is clear from FIG. 5, the magnitude relationship of the biological thickness L i depending on the placement position of the piezoelectric element 3 i is L 1 <L 2 <L 3 <L 4 . Conventionally, the resonant frequency c is the same for all piezoelectric elements 3i . Therefore, the biological thickness L 1 ,
The relative relationship between the intensities I( L 1 ) , I(L 2 ), I(L 3 ), and I(L 4 ) at the stone location for each of L 2 , L 3 , and L 4 is I(L 1 ) > I (L 2 ) > I (L 3 ) > I (L 4 ), and the degree of slowing of the time response waveform (transition of the center frequency to the lower frequency side) also differs from each other. However, the stone crushing effect was not sufficiently effective. Furthermore, the biological thickness L i (i=1, 2, . . . ) varies from patient to patient. In other words, the degree of attenuation is greater in patients with a large body thickness than in patients with a small body thickness. In order to achieve a constant crushing effect regardless of these changes, conventional methods have been used, for example, to increase the number of ultrasound pulses irradiated for patients with large biological thickness, and to increase the number of ultrasound pulses irradiated for patients with small biological thickness. Efforts are being made to reduce the number of irradiations. However, since the judgment of the optimal number of irradiations relied on the experience and intuition of the doctor, it was extremely difficult to achieve a certain level of stone-crushing effect for every patient. It was hot. This invention was made in view of the above circumstances, and it is possible to always obtain a constant stone crushing effect despite changes in the thickness of the body depending on the position of the piezoelectric element and changes in the thickness of the body depending on the patient. The purpose is to make it possible to D Means for Solving the Problems In order to achieve the above object, the present invention has the following configuration. That is, the stone crushing device of the present invention is distributed along a curved surface toward a single focal point,
A plurality of piezoelectric elements whose resonance frequencies are set higher in the center and lower in the peripheral areas, a means for detecting the position of the stone, and a means for detecting the position of the stone between each piezoelectric element and the stone based on the detected stone position. Each biological thickness is detected, and according to each detected biological thickness, a higher driving voltage is supplied to the piezoelectric element located at the position of the larger detected biological thickness, and the piezoelectric element located at the position of the smaller detected biological thickness is The device is characterized in that it is equipped with drive voltage control means for supplying a lower drive voltage to the element. E Effects The effects of the configuration of this invention are as follows. That is, the assumed average biological thickness between each piezoelectric element and the stone depending on the placement position of each piezoelectric element is smaller for the piezoelectric element in the center and larger for the piezoelectric element in the peripheral area. Furthermore, the greater the average biological thickness, the greater the degree of attenuation. Furthermore, the degree of attenuation due to a difference in resonance frequency is greater as the resonance frequency is higher. Therefore, the increase or decrease in the degree of attenuation due to the increase or decrease in the average biological thickness due to the placement position of each piezoelectric element is compensated for by the decrease or increase in the degree of attenuation due to the decrease or increase in the resonance frequency. . That is, as in the above configuration, compensation is achieved by setting the resonant frequency of the piezoelectric elements higher in the central piezoelectric elements and lower in the peripheral piezoelectric elements in the plurality of piezoelectric elements. This compensation is easy to understand when summarized as follows.

【表】 補償

〓高←
[Table] Compensation

〓High←

Claims (1)

【特許請求の範囲】[Claims] 1 単一の焦点に向かうように曲面に沿つて分布
配列され、共振周波数が中央部のものほど高く周
辺部のものほど低く設定された複数の圧電素子
と、結石の位置を検出する手段と、検出された結
石位置に基づいて各圧電素子と結石との間の各生
体厚さを検出し、各検出生体厚さに応じて、より
大きい検出生体厚さの位置にある圧電素子にはよ
り高い駆動電圧を供給し、より小さい検出生体厚
さの位置にある圧電素子にはより低い駆動電圧を
供給する駆動電圧制御手段とを備えたことを特徴
とする結石破砕装置。
1. A plurality of piezoelectric elements distributed along a curved surface toward a single focal point, the resonance frequency of which is higher in the center and lower in the periphery, and means for detecting the position of a stone; Detect each biological thickness between each piezoelectric element and the calculus based on the detected stone position, and according to each detected biological thickness, the piezoelectric element at the position of larger detected biological thickness has a higher A stone crushing device characterized by comprising: drive voltage control means for supplying a drive voltage and supplying a lower drive voltage to a piezoelectric element located at a position with a smaller detected biological thickness.
JP1058542A 1989-03-10 1989-03-10 Calculus grinding apparatus Granted JPH02237557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058542A JPH02237557A (en) 1989-03-10 1989-03-10 Calculus grinding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058542A JPH02237557A (en) 1989-03-10 1989-03-10 Calculus grinding apparatus

Publications (2)

Publication Number Publication Date
JPH02237557A JPH02237557A (en) 1990-09-20
JPH0560750B2 true JPH0560750B2 (en) 1993-09-02

Family

ID=13087330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058542A Granted JPH02237557A (en) 1989-03-10 1989-03-10 Calculus grinding apparatus

Country Status (1)

Country Link
JP (1) JPH02237557A (en)

Also Published As

Publication number Publication date
JPH02237557A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US11426611B2 (en) Ultrasound therapeutic and scanning apparatus
US6361500B1 (en) Three transducer catheter
JP6943768B2 (en) Ultrasonic Transducer Array for Ultrasound Thrombosis Treatment and Monitoring
US5713831A (en) Method and apparatus for arterial reperfusion through noninvasive ultrasonic action
US8298162B2 (en) Skin and adipose tissue treatment by nonfocalized opposing side shock waves
US9782608B2 (en) High intensity focused ultrasound treatment head and system
US8409099B2 (en) Focused ultrasound system for surrounding a body tissue mass and treatment method
US7988631B2 (en) Shock wave therapy device with image production
JPH03251240A (en) Ultrasonic medical treatment device
JPH06315482A (en) Medical treatment device to detect location of region in body of organism by sound wave
EP1795131B1 (en) High intensity focused ultrasound system
US20100036246A1 (en) Automatic fat thickness measurements
KR20190004701A (en) Ultrasound imaging and treatment devices
US20090216128A1 (en) Broadband Ultrasonic Probe
JPH0560750B2 (en)
JP2003339700A (en) Ultrasonic probe, and ultrasonic diagnostic equipment
Azuma et al. Schlieren observation of therapeutic field in water surrounded by cranium radiated from 500 kHz ultrasonic sector transducer
RU2741721C1 (en) Device for extracorporeal treatment of pelvic diseases with focused ultrasound
Sennoga Ultrasound imaging
JP3189293B2 (en) Ultrasound therapy equipment
JP3145084B2 (en) Ultrasound therapy equipment
Thorsen et al. Basic physics of ultrasonography
Goldstein Sources of Ultrasonic Exposure
Charge et al. Ultrasound Basics
JP3142535B2 (en) Ultrasound therapy equipment