JPH0560723A - Manufacture of enzyme electrode - Google Patents

Manufacture of enzyme electrode

Info

Publication number
JPH0560723A
JPH0560723A JP3224368A JP22436891A JPH0560723A JP H0560723 A JPH0560723 A JP H0560723A JP 3224368 A JP3224368 A JP 3224368A JP 22436891 A JP22436891 A JP 22436891A JP H0560723 A JPH0560723 A JP H0560723A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
buffer solution
derivative
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3224368A
Other languages
Japanese (ja)
Inventor
Yoshiko Yokota
佳子 横田
Yoshihisa Kishimoto
芳久 岸本
Tetsuo Takano
哲雄 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3224368A priority Critical patent/JPH0560723A/en
Publication of JPH0560723A publication Critical patent/JPH0560723A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve reproducibility and responsiveness by executing electrolytic polymerization in a buffer solution which is kept at specified pH and by controlling the amount of immobilization of enzyme by the pH and the time of impression of potential for the electrolytic polymerization. CONSTITUTION:An electroconductive base (a metal such as platinum, carbon or the like) as an electrode is brought into contact with a buffer solution (phosphoric acid buffer solution or the like) which contains pyrrole and/or a derivative thereof (obtained by substituting various kind of group for hydrogen at the 3- and 4- positions of pyrrole)(the concentration is about 0.01 to 0.5M), oxidoreductase (glucose oxidase or the like) and an electrolyte (potassium chloride of about 0.01 to 1M or the like) and which is kept at pH 5 to 7, and thereby electrolytic polymerization of the pyrrole and/or the derivative thereof is executed at a constant potential of about 1.0 to 2.0V. On the occasion, the amount of immobilization of enzyme can be controlled highly precisely by the pH of the buffer solution and the time of impression of the potential. According to this constitution, an immobilized-enzyme electrode wherein enzyme is immobilized in a prescribed amount in an electroconductive macromolecular film formed on the surface of the electroconductive base and constituted of polypyrrole and/or the derivative thereof can be prepared.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酵素電極の製造方法に
関し、特に、血液、尿等の体液成分中に含有する微量の
生体基質濃度を測定する酵素センサーとして適した酵素
電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an enzyme electrode, and more particularly to a method for producing an enzyme electrode suitable as an enzyme sensor for measuring the concentration of a trace amount of biological substrate contained in body fluid components such as blood and urine. ..

【0002】[0002]

【従来の技術】酵素の優れた基質特異性を利用した分析
法が、臨床分析化学、食品製造、環境化学等の分野で注
目されている。とりわけ、臨床分析化学の分野では、従
来から、グルコース、尿素、尿酸などを選択的に検出し
うる酵素電極が知られている。これら酵素電極は、一般
には、電極と酵素固定膜とから構成され、酵素反応によ
る物質変化を電極により電気信号の変化量として読み取
ることにより、その酵素が特異的に作用する基質の濃度
を測定するものである。
2. Description of the Related Art Analytical methods utilizing the excellent substrate specificity of enzymes have attracted attention in the fields of clinical analytical chemistry, food manufacturing, environmental chemistry and the like. In particular, in the field of clinical analytical chemistry, enzyme electrodes capable of selectively detecting glucose, urea, uric acid and the like have been conventionally known. These enzyme electrodes are generally composed of an electrode and an enzyme-immobilized membrane, and the substance change due to the enzyme reaction is read by the electrode as a change amount of an electric signal to measure the concentration of a substrate on which the enzyme specifically acts. It is a thing.

【0003】酵素電極の一例としては、酵素反応により
生成あるいは消費される過酸化水素、酸素等の電極活性
な物質を電極でモニターすることにより、生体基質濃度
を測定するものがある。しかし、このような原理に基づ
く酵素電極は、次のような問題がある。
An example of an enzyme electrode is one in which the concentration of a biological substrate is measured by monitoring an electrode active substance such as hydrogen peroxide or oxygen produced or consumed by an enzymatic reaction at the electrode. However, the enzyme electrode based on such a principle has the following problems.

【0004】基質が反応するためには、化学量論的な
酸素を必要とするが、測定系では溶存酸素量が不足する
ので、試料血液を希釈したり、何らかの方法で酸素を補
給する等の手段を講じる必要がある。 過酸化水素を電気的にモニターする場合、試料溶液中
に過酸化水素と同様の電位で酸化される物質、例えばア
スコルビン酸のような還元性物質が存在すると、測定電
流にこれら妨害物質の酸化電流が上乗せされ、測定誤差
を生じる。そこで、これら誤差を取り除くための種々の
手段が必要であった。
Stoichiometric oxygen is required for the reaction of the substrate, but since the amount of dissolved oxygen is insufficient in the measurement system, the sample blood is diluted or oxygen is supplemented by some method. We need to take steps. When electrically monitoring hydrogen peroxide, if a substance that oxidizes at the same potential as hydrogen peroxide, such as a reducing substance such as ascorbic acid, is present in the sample solution, the oxidation current of these interfering substances is added to the measurement current. Is added, which causes a measurement error. Therefore, various means for removing these errors have been required.

【0005】このように、酵素反応に伴い生成あるいは
消費される物質の濃度を測定する原理に基づくセンサー
は、溶存酸素の影響や妨害物質の影響という問題があ
る。また、酵素固定膜を酸素、過酸化水素電極に装着す
るという形態を必要とするため、微小化にも限界があ
る。一方、これらの問題点を解決するため、ポリピロー
ルやポリアニリン等の導電性高分子を利用した酵素電
極、電子メディエーターを利用した酵素電極が提案され
ている。これらの酵素電極は、酵素反応に伴う電子移動
を直接検知するものであるため、溶存酸素量の影響を受
けないという利点を有する。
As described above, the sensor based on the principle of measuring the concentration of the substance produced or consumed by the enzymatic reaction has a problem of influence of dissolved oxygen and influence of interfering substances. Further, there is a limit to miniaturization because it requires a form in which an enzyme-immobilized membrane is attached to oxygen and hydrogen peroxide electrodes. On the other hand, in order to solve these problems, an enzyme electrode using a conductive polymer such as polypyrrole or polyaniline and an enzyme electrode using an electron mediator have been proposed. Since these enzyme electrodes directly detect the electron transfer associated with the enzyme reaction, they have the advantage that they are not affected by the amount of dissolved oxygen.

【0006】電子メディエーターを利用した酵素電極
は、カーボンペースト等の中にフェロセン類、ベンゾキ
ノン、フェリシアン化イオン、N−メチルフェナジニウ
ム等の電子メディエーターを封じ込め、カーボンペース
ト電極表面に酵素を固定化し、適当な高分子膜で被覆し
たものである。これは酵素反応に伴う電子移動を、電子
メディエーターにおける電子移動として検出するもので
ある。
An enzyme electrode using an electron mediator encloses an electron mediator such as ferrocene, benzoquinone, ferricyanide ion, and N-methylphenazinium in carbon paste or the like to immobilize the enzyme on the surface of the carbon paste electrode. , Coated with a suitable polymer film. This is to detect the electron transfer accompanying the enzymatic reaction as the electron transfer in the electron mediator.

【0007】従って、溶存酸素量の影響を受けないとい
う利点の他、この時の電極電位は前出の過酸化水素をモ
ニターする時の電位 (Ag/AgCl 対比約0.7V) に比べ著し
く小さい (Ag/AgCl 対比約0.1〜0.2V)ため、妨害物質の
酸化も起こりにくく、その結果、高精度に測定できると
いう利点がある。しかし、この電子メディエーターを利
用した酵素電極では、電導度が低く応答性および応答時
間の点で不十分である他、電子メディエーターをカーボ
ンペースト中に分散させた形態をとるため、電子メディ
エーターの溶出、脱離に伴う経時的な応答性の低下とい
う問題を含む。
[0007] Therefore, in addition to the advantage that it is not affected by the amount of dissolved oxygen, the electrode potential at this time is significantly smaller than the potential when monitoring hydrogen peroxide as described above (about 0.7 V relative to Ag / AgCl) ( Since it is about 0.1 to 0.2 V compared to Ag / AgCl, oxidation of interfering substances is unlikely to occur, and as a result, there is an advantage that highly accurate measurement can be performed. However, in the enzyme electrode using this electron mediator, the conductivity is low and the response and response time are insufficient, and since the electron mediator is in the form of being dispersed in the carbon paste, elution of the electron mediator, This includes the problem of a decrease in responsiveness over time due to desorption.

【0008】また、導電性高分子を利用した酵素電極の
製造方法としては、特開昭64-28556号公報に開示される
ように、あらかじめ重合した導電性高分子膜上に公知方
法により酵素を固定化する方法や、特開昭62-115285 公
報に開示されるように、導電性高分子の電解重合時に重
合膜中に酵素を捕捉する方法が知られている。これらの
導電性高分子を用いた酵素電極では、酵素反応により生
じる電子を、導電性高分子のπ電子共役系を介して移動
させるため、溶存酸素量に依存せず目的物質の濃度を測
定できる。
Further, as a method for producing an enzyme electrode using a conductive polymer, as disclosed in JP-A-64-28556, the enzyme is formed on a previously polymerized conductive polymer film by a known method. There are known methods of immobilizing and methods of capturing an enzyme in a polymerized film during electropolymerization of a conductive polymer, as disclosed in JP-A-62-115285. In the enzyme electrode using these conductive polymers, the electrons generated by the enzymatic reaction are transferred through the π-electron conjugated system of the conductive polymer, so the concentration of the target substance can be measured without depending on the amount of dissolved oxygen. ..

【0009】しかし、前者の、予め重合した導電性高分
子膜上に、酵素を固定化する方法では、重合と酵素の固
定化が別工程となり、煩雑であるのに加え、酵素と導電
性高分子との間の電気的な接触が十分でないため、効率
良く電子移動がなされない場合がある。一方、後者の、
導電性高分子の電解重合時に酵素を捕捉する方法とし
て、上記特開昭62-115285 号公報に記載の方法では、中
性の水溶液中の電解重合方法により行っている。しか
し、この方法では、反応液の酵素含有量によってしか酵
素固定化量の制御を行うことができず、しかも酵素固定
化量を高精度に制御することは困難であり、従って酵素
電極製造における再現性は十分ではなかった。
However, in the former method of immobilizing the enzyme on the prepolymerized conductive polymer membrane, the polymerization and the immobilization of the enzyme are separate steps, and in addition to being complicated, the enzyme and the high conductivity of the enzyme are high. Electrons may not be efficiently transferred due to insufficient electrical contact with molecules. On the other hand, the latter,
As a method for trapping an enzyme during electropolymerization of a conductive polymer, the method described in JP-A-62-115285 mentioned above is performed by an electropolymerization method in a neutral aqueous solution. However, with this method, the amount of enzyme immobilized can be controlled only by the content of the enzyme in the reaction solution, and it is difficult to control the amount of enzyme immobilized with high accuracy. The sex was not enough.

【0010】[0010]

【発明が解決しようとする課題】本発明は、導電性高分
子の電解重合時に、重合膜中に酵素を捕捉して酵素電極
を製造する方法において、固定化酵素量を高精度に制御
して、再現性よく酵素電極を製造でき、しかも応答性に
優れた酵素電極を得られる方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing an enzyme electrode by trapping an enzyme in a polymerized film during electropolymerization of a conductive polymer, and controlling the amount of immobilized enzyme with high accuracy. Another object of the present invention is to provide a method capable of producing an enzyme electrode with good reproducibility and obtaining an enzyme electrode having excellent responsiveness.

【0011】[0011]

【課題を解決するための手段】本発明者らは、以下のよ
うな知見を得て、本発明を完成させた。導電性高分子の
電解重合時に酵素を共存させて、導電性高分子膜中に酵
素を固定する場合、酵素の導電性高分子中への捕捉は、
電極近傍に存在する酵素が、重合時に物理的に高分子鎖
中に捕捉されることによる他、水溶液中で弱い陰イオン
として存在する酵素が、一種のドーパントとして作用
し、電気化学的に捕捉されることによるものと推定し
た。この後者の作用に基づく酵素の捕捉では、水溶液中
の電解質陰イオンとの競争反応になるため、より多くの
酵素を捕捉するためには、重合反応を徐々に行う方が望
ましいと考えられる。
The present inventors have completed the present invention by obtaining the following knowledge. When an enzyme is allowed to coexist during the electropolymerization of a conductive polymer and the enzyme is immobilized in the conductive polymer film, the capture of the enzyme in the conductive polymer is
In addition to the enzyme existing near the electrode being physically trapped in the polymer chain during polymerization, the enzyme existing as a weak anion in the aqueous solution acts as a kind of dopant and is electrochemically trapped. It was estimated that this was due to Since the trapping of the enzyme based on this latter action is a competitive reaction with the electrolyte anion in the aqueous solution, it is considered preferable to gradually carry out the polymerization reaction in order to trap more enzyme.

【0012】一方、ポリピロールの成膜速度は水溶液中
のpHに大きく依存し、pHを下げることにより成膜速度が
向上する。さらに、本発明者等は、電解重合時、電極近
傍のpHは重合に伴い徐々に変化するため、ピロールの成
膜速度、ひいては上記ドーピング競争反応を一定に保つ
ことができず、酵素固定化量を高精度に制御することが
できないことを見出した。これらの知見に基づき、本発
明者等は、電解重合を緩衝液中で行えば、溶液中および
電極近傍のpHを一定に保ち、従って上記ドーピング競争
反応を一定に保つことができるため、電圧印加時間によ
り固定化酵素量を容易に制御しうることを見出し、本発
明を完成させた。
On the other hand, the film forming rate of polypyrrole largely depends on the pH in the aqueous solution, and the film forming rate is improved by lowering the pH. Further, the present inventors, during the electropolymerization, the pH in the vicinity of the electrode gradually changes with the polymerization, the film formation rate of pyrrole, and thus the doping competition reaction cannot be kept constant, and the enzyme immobilization amount It has been found that can not be controlled with high precision. Based on these findings, the present inventors have found that, if electrolytic polymerization is carried out in a buffer solution, the pH in the solution and in the vicinity of the electrodes can be kept constant, and therefore the above-mentioned doping competition reaction can be kept constant. The inventors have found that the amount of immobilized enzyme can be easily controlled depending on the time, and have completed the present invention.

【0013】本発明は、ピロールおよび/またはその誘
導体、酸化還元酵素、および電解質を含む溶液中に、導
電性基体を接触させ、電解重合を行わせることにより、
前記導電性基体表面上に形成されたポリピロールおよび
/またはその誘導体の重合膜に酵素を固定して、酵素電
極を製造する方法において、前記電解重合をpH5〜7に
保持した緩衝液中で行い、緩衝液のpHおよび電解重合の
電位印加時間により酵素固定化量を制御して所定の応答
性を有する酵素電極を再現性よく製造することを特徴と
する酵素電極の製造方法、を要旨とする。
In the present invention, a conductive substrate is brought into contact with a solution containing pyrrole and / or a derivative thereof, a redox enzyme, and an electrolyte to carry out electrolytic polymerization.
In a method for producing an enzyme electrode by immobilizing an enzyme on a polymerized film of polypyrrole and / or its derivative formed on the surface of a conductive substrate, the electrolytic polymerization is performed in a buffer solution maintained at pH 5 to 7, A method for producing an enzyme electrode is characterized in that an enzyme electrode having a predetermined responsiveness is produced with good reproducibility by controlling the amount of enzyme immobilized by controlling the pH of a buffer solution and a potential application time of electrolytic polymerization.

【0014】[0014]

【作用】電解重合により導電性高分子を形成するモノマ
ーとしては、ピロールの他、ピロールの3位や4位の水
素を各種の基で置換したものや、窒素上の水素を置換し
たピロール誘導体の1種以上を使用できる。ピロールと
その誘導体の1種以上との混合物も使用できる。ピロー
ルおよび/またはその誘導体の濃度は、特に限定されな
いが、0.01〜0.5 M程度が好適である。モノマー濃度が
低すぎるとポリピロール膜の形成が悪く、また高すぎる
濃度のモノマーは水に対して溶解困難となる。
As a monomer for forming a conductive polymer by electrolytic polymerization, in addition to pyrrole, those in which hydrogen at the 3- and 4-positions of pyrrole is substituted with various groups, and pyrrole derivatives in which hydrogen on nitrogen is substituted are used. One or more can be used. Mixtures of pyrrole and one or more of its derivatives can also be used. The concentration of pyrrole and / or its derivative is not particularly limited, but is preferably about 0.01 to 0.5M. If the monomer concentration is too low, the formation of the polypyrrole film is poor, and if the monomer concentration is too high, it becomes difficult to dissolve it in water.

【0015】本発明方法で使用する酸化還元酵素は、対
象とする物質や目的とする化学反応に応じ、酵素の基質
特異性及び反応特異性を考慮して適宜選択することがで
きる。使用しうる酵素は、特に制限されないが、例えば
グルコースオキシダーゼ、アルコールデヒドロゲナー
ゼ、ペルオキシダーゼ、カタラーゼ、乳酸デヒドロゲナ
ーゼ、ガラクトースオキシダーゼ等が挙げられる。ま
た、酸化還元酵素と補酵素との組み合わせも可能であ
る。
The oxidoreductase used in the method of the present invention can be appropriately selected in consideration of the target substance and the intended chemical reaction in consideration of the substrate specificity and reaction specificity of the enzyme. The enzyme that can be used is not particularly limited, and examples thereof include glucose oxidase, alcohol dehydrogenase, peroxidase, catalase, lactate dehydrogenase, galactose oxidase and the like. A combination of oxidoreductase and coenzyme is also possible.

【0016】本発明方法における電解質としては、水溶
液の支持電解質として一般に用いられているものが使用
でき、例えばNaCl、KCl 、Na2SO4、K2SO4 、NaClO4、KC
lO4 、トリフロロ酢酸ナトリウム、トリフロロ酢酸カリ
ウム、パラトルエンスルホン酸ナトリウム、パラトルエ
ンスルホン酸カリウム等が例示できる。支持電解質の濃
度は、水溶液がイオン電導性を保持しうる程度であれば
よく、通常0.01〜1M程度、好ましくは0.05〜0.5 Mの
範囲である。
As the electrolyte in the method of the present invention, those generally used as a supporting electrolyte for an aqueous solution can be used. For example, NaCl, KCl, Na 2 SO 4 , K 2 SO 4 , NaClO 4 , KC can be used.
Examples include lO 4 , sodium trifluoroacetate, potassium trifluoroacetate, sodium paratoluenesulfonate, potassium paratoluenesulfonate and the like. The concentration of the supporting electrolyte may be such that the aqueous solution can maintain ionic conductivity, and is usually in the range of 0.01 to 1M, preferably 0.05 to 0.5M.

【0017】本発明方法において、水溶液中のpHを一定
に保つための緩衝液は、所望のpHに一定に保持するとと
もに、緩衝液の成分化合物が、電解重合時に電気化学的
に酸化されたり還元されたりせずに安定に存在するもの
であればよい。このような観点から、本発明で使用する
緩衝溶液としては、フタル酸緩衝液、酢酸緩衝液、リン
酸緩衝液、クエン酸緩衝液等が好適である。
In the method of the present invention, the buffer solution for maintaining a constant pH in the aqueous solution is maintained at a desired pH, and the component compounds of the buffer solution are electrochemically oxidized or reduced during electrolytic polymerization. It may be stable as long as it does not exist. From this point of view, the buffer solution used in the present invention is preferably a phthalate buffer solution, an acetate buffer solution, a phosphate buffer solution, a citrate buffer solution, or the like.

【0018】本発明では上記緩衝液のpHを5〜7に保持
して電解重合反応を行う。5以下のpHでは重合反応が急
速に進み、短時間で成膜でされるため、前述のドーピン
グ競争反応において支持電解質のアニオンドープが支配
的になり、十分な酵素捕捉がなされない。逆に、pH7以
上では、成膜速度が遅く、膜自体が不均一になるととも
に、酵素の捕捉量は大きくなるが、得られる導電性成膜
自体の導電度が低下する。その結果、酵素電極として得
られる応答電流が小さくなる。
In the present invention, the electrolytic polymerization reaction is carried out while maintaining the pH of the above buffer solution at 5 to 7. At a pH of 5 or less, the polymerization reaction proceeds rapidly and a film is formed in a short time, so the anion doping of the supporting electrolyte becomes dominant in the above-mentioned doping competition reaction, and sufficient enzyme trapping cannot be performed. On the other hand, at pH 7 or higher, the film formation rate is slow, the film itself becomes non-uniform, and the amount of enzyme trapped increases, but the conductivity of the obtained conductive film itself decreases. As a result, the response current obtained as the enzyme electrode is reduced.

【0019】緩衝液に接触させる導電性基体としては、
白金、金、銀等の金属電極、カーボン電極、ITO(in
dium-tin-oxide) ガラス電極等、酵素の活性に影響を及
ぼさないものであれば特に限定されない。
As the conductive substrate to be brought into contact with the buffer solution,
Metal electrodes such as platinum, gold, silver, carbon electrodes, ITO (in
(dium-tin-oxide) It is not particularly limited as long as it does not affect the activity of the enzyme such as a glass electrode.

【0020】本発明方法においては、ピロールおよび/
またはその誘導体、酸化還元酵素および電解質を含み、
pH5〜7に保持した緩衝溶液中に、電極として前述の導
電性基体を接触させ、1.0 〜2.0 V程度の定電位におい
てピロールおよび/またはその誘導体の電解重合を行わ
せる。その際、緩衝液のpHおよび電位印加時間により酵
素固定化量を制御する。これにより、ポリピロールおよ
び/またはその誘導体からなる導電性高分子膜中に所定
の量で酵素が固定化された、酵素固定化電極が得られ
る。
In the method of the present invention, pyrrole and / or
Or a derivative thereof, including a redox enzyme and an electrolyte,
The above-mentioned conductive substrate is brought into contact with a buffer solution kept at pH 5 to 7 as an electrode to carry out electrolytic polymerization of pyrrole and / or its derivative at a constant potential of about 1.0 to 2.0V. At that time, the amount of enzyme immobilization is controlled by the pH of the buffer solution and the potential application time. As a result, an enzyme-immobilized electrode in which a predetermined amount of enzyme is immobilized in a conductive polymer film made of polypyrrole and / or its derivative can be obtained.

【0021】本発明の酵素電極で測定しうる物質として
は、グルコース等の糖分、乳酸、アルコール等の血液や
尿中の微量生体物質や、食品加工プロセスにおける糖
分、アルコール分等がある。本発明酵素電極を用いれ
ば、上記のような物質を選択的に高精度で、しかも長期
にわたって繰り返し分析することが可能である。また、
物質の測定に限らず、バイオリアクター等に使用するこ
とも可能である。
Substances that can be measured with the enzyme electrode of the present invention include sugars such as glucose, trace biological substances in blood and urine such as lactic acid and alcohol, sugars and alcohols in food processing processes. By using the enzyme electrode of the present invention, it is possible to selectively and highly accurately analyze the above substances repeatedly over a long period of time. Also,
Not only the measurement of a substance but also a bioreactor or the like can be used.

【0022】[0022]

【実施例】【Example】

【0023】[0023]

【実施例1】0.1 Mピロールと35mgのグルコースオキシ
ダーゼ(シグマ社製、VII 型、211.2 U/mg) の共存下、
電解質として0.1 M塩化カリウムを含む1/15Mリン
酸緩衝液(pH 7.0)10ml を、白金ワイヤ (直径:0.5mm、
長さ:7 mm)を作用極、白金箔を対極、Ag/AgCl を参照電
極として1.4 V(vs.Ag/AgCl)の定電位で、50分間電
解重合を行い、酵素固定化電極を得た。表1に示すよう
に電位印加時間を100分、120 分とした場合についても
同様に実施した。
Example 1 In the coexistence of 0.1 M pyrrole and 35 mg glucose oxidase (manufactured by Sigma, type VII, 211.2 U / mg),
10 ml of 1/15 M phosphate buffer (pH 7.0) containing 0.1 M potassium chloride as an electrolyte was added to a platinum wire (diameter: 0.5 mm,
(Length: 7 mm) as working electrode, platinum foil as counter electrode, and Ag / AgCl as reference electrode at a constant potential of 1.4 V (vs. Ag / AgCl) for 50 minutes to carry out electrolytic polymerization to obtain an enzyme-immobilized electrode. .. As shown in Table 1, the same operation was performed when the potential application time was 100 minutes and 120 minutes.

【0024】得られた酵素固定化電極を、8M尿素水溶
液に暗所で12時間以上浸漬した。次に、得られたフラ
ビンアデニンジヌクレオチド脱離溶液の、520 nmでの蛍
光強度から、固定化された酵素量を算出した。各電位印
加時間における固定化酵素量を表1に示す。
The obtained enzyme-immobilized electrode was immersed in an 8M urea aqueous solution for 12 hours or more in the dark. Next, the amount of immobilized enzyme was calculated from the fluorescence intensity at 520 nm of the obtained flavin adenine dinucleotide elimination solution. The amount of immobilized enzyme at each potential application time is shown in Table 1.

【0025】50分の電位印加時間で得られた酵素固定化
電極を作用極とし、白金板を対極、Ag/AgClを参照電極
として用い、0.5 V(Ag/AgCl 対比) の電位を印加して、
1/15Mリン酸緩衝液中、窒素飽和下または空気飽和下で
攪拌しながらグルコース標準溶液(0.1M)を滴下して
基質応答性を測定した。この結果を図1に示す。図1よ
り明らかなように、グルコース濃度に対する応答電流
は、窒素飽和下、空気飽和下ともに通常の血糖値測定の
直線性が保たれている。
Using the enzyme-immobilized electrode obtained at a potential application time of 50 minutes as a working electrode, a platinum plate as a counter electrode, and Ag / AgCl as a reference electrode, a potential of 0.5 V (compared with Ag / AgCl) was applied. ,
Substrate responsiveness was measured by dropwise addition of a glucose standard solution (0.1 M) in a 1/15 M phosphate buffer with stirring under nitrogen saturation or air saturation. The result is shown in FIG. As is apparent from FIG. 1, the response current with respect to the glucose concentration maintains the linearity of the normal blood glucose level measurement under both nitrogen saturation and air saturation.

【0026】[0026]

【実施例2】pH6の1/15Mリン酸緩衝液を用いた以外は
実施例1と同様にして酵素電極を作製した。この電極の
固定化酵素量を実施例1と同様して求めた結果を表1に
示す。
Example 2 An enzyme electrode was prepared in the same manner as in Example 1 except that a 1 / 15M phosphate buffer solution having a pH of 6 was used. Table 1 shows the results of the amount of immobilized enzyme on this electrode determined in the same manner as in Example 1.

【0027】[0027]

【実施例3】pH5の1/15Mリン酸緩衝液を用いた以外は
実施例1と同様にして酵素電極を作製した。この電極の
固定化酵素量を実施例1と同様して求た結果を表1に示
す。
Example 3 An enzyme electrode was prepared in the same manner as in Example 1 except that a 1 / 15M phosphate buffer solution having a pH of 5 was used. Table 1 shows the results of obtaining the amount of immobilized enzyme on this electrode in the same manner as in Example 1.

【0028】[0028]

【比較例1】電解重合液のpHを7.5 とした以外は実施例
1と同様にして酵素電極を作製した。この方法では、ポ
リピロール膜の成膜速度が遅く、均一の膜とはならなか
った。
[Comparative Example 1] An enzyme electrode was prepared in the same manner as in Example 1 except that the pH of the electrolytic polymerization solution was 7.5. According to this method, the film formation rate of the polypyrrole film was slow and the film was not uniform.

【0029】[0029]

【比較例2】電解重合液のpHを4.5 とした以外は実施例
1と同様にして酵素電極を作製した。この方法で得られ
た電極を用いて実施例1と同様にしてグルコース応答性
を測定したところ、ほとんど応答が得られなかった。
[Comparative Example 2] An enzyme electrode was prepared in the same manner as in Example 1 except that the pH of the electrolytic polymerization solution was 4.5. When the glucose responsiveness was measured using the electrode obtained by this method in the same manner as in Example 1, almost no response was obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明方法の酵素電極製造方法によれ
ば、導電性高分子の電解重合を緩衝溶液中で行うことに
より、溶液のpHおよび電位印加時間によって固定化酵素
量の制御が高精度で可能となる。従って、酵素電極製造
における再現性が向上し、目的物質の測定を高精度で行
うことができる酵素電極を製造できる。また、本発明方
法で得られる酵素電極は、酵素反応に伴う電子移動を直
接検知する方式をとるので、溶存酸素の多少に影響を受
けず、また電気化学的妨害物質に影響されることもなく
応答性に優れた酵素電極である。
According to the method for producing an enzyme electrode of the present invention, the electropolymerization of a conductive polymer is carried out in a buffer solution, so that the amount of immobilized enzyme can be controlled with high accuracy by adjusting the pH of the solution and the potential application time. It becomes possible with. Therefore, the reproducibility in the production of the enzyme electrode is improved, and the enzyme electrode capable of measuring the target substance with high accuracy can be produced. Further, the enzyme electrode obtained by the method of the present invention adopts a method of directly detecting the electron transfer accompanying the enzymatic reaction, and therefore is not affected by the amount of dissolved oxygen and is not affected by the electrochemical interfering substance. It is an enzyme electrode with excellent responsiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で作製した酵素電極の基質応答性を示
すグラフである。
FIG. 1 is a graph showing the substrate responsiveness of the enzyme electrode prepared in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ピロールおよび/またはその誘導体、酸
化還元酵素、および電解質を含む溶液中に、導電性基体
を接触させ、電解重合を行わせることにより、前記導電
性基体表面上に形成されたポリピロールおよび/または
その誘導体の重合膜に酵素を固定して、酵素電極を製造
する方法において、前記電解重合をpH5〜7に保持した
緩衝液中で行い、緩衝液のpHおよび電解重合の電位印加
時間により酵素固定化量を制御して所定の応答性を有す
る酵素電極を再現性よく製造することを特徴とする、酵
素電極の製造方法。
1. A polypyrrole formed on the surface of a conductive substrate by bringing the conductive substrate into contact with a solution containing pyrrole and / or a derivative thereof, a redox enzyme, and an electrolyte to carry out electrolytic polymerization. In the method for producing an enzyme electrode by immobilizing an enzyme on a polymerized film of a derivative thereof and / or a derivative thereof, the electrolytic polymerization is carried out in a buffer solution maintained at pH 5 to 7, and the pH of the buffer solution and a potential application time of the electrolytic polymerization are applied. A method for producing an enzyme electrode, which comprises producing an enzyme electrode having a predetermined responsiveness with good reproducibility by controlling the amount of enzyme immobilized by the method.
JP3224368A 1991-09-04 1991-09-04 Manufacture of enzyme electrode Withdrawn JPH0560723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224368A JPH0560723A (en) 1991-09-04 1991-09-04 Manufacture of enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224368A JPH0560723A (en) 1991-09-04 1991-09-04 Manufacture of enzyme electrode

Publications (1)

Publication Number Publication Date
JPH0560723A true JPH0560723A (en) 1993-03-12

Family

ID=16812662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224368A Withdrawn JPH0560723A (en) 1991-09-04 1991-09-04 Manufacture of enzyme electrode

Country Status (1)

Country Link
JP (1) JPH0560723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096016A (en) * 2005-09-29 2007-04-12 Japan Aviation Electronics Industry Ltd Conductive thin film and flexible member using it
KR20180126355A (en) * 2017-05-17 2018-11-27 삼성전자주식회사 Bio sensor and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096016A (en) * 2005-09-29 2007-04-12 Japan Aviation Electronics Industry Ltd Conductive thin film and flexible member using it
JP4614445B2 (en) * 2005-09-29 2011-01-19 日本航空電子工業株式会社 Conductive thin film, flexible member using the same, transparent electrode member, and electromagnetic shielding coating film
KR20180126355A (en) * 2017-05-17 2018-11-27 삼성전자주식회사 Bio sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Mixed ferrocene-glucose oxidase-carbon-paste electrode for amperometric determination of glucose
EP1194585B1 (en) Amperometric sensor
Geise et al. Electropolymerized 1, 3-diaminobenzene for the construction of a 1, 1′-dimethylferrocene mediated glucose biosensor
Foulds et al. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors
Cass et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose
JP4018082B2 (en) Electrochemical biosensor
US4127448A (en) Amperometric-non-enzymatic method of determining sugars and other polyhydroxy compounds
EP1235069A1 (en) Biosensor
Gavalas et al. Improved operational stability of biosensors based on enzyme-polyelectrolyte complex adsorbed into a porous carbon electrode
Li et al. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol–gel film onto Prussian Blue modified electrode
CA2416207A1 (en) Electrochemical method for measuring chemical reaction rates
Karube et al. Microbiosensors for acetylcholine and glucose
JPH0419503B2 (en)
Sprules et al. Development of a disposable amperometric sensor for reduced nicotinamide adenine dinucleotide based on a chemically modified screen-printed carbon electrode
Xu et al. Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion
Cooper et al. Biomolecular sensors for neurotransmitter determination: electrochemical immobilization of glutamate oxidase at microelectrodes in a poly (o-phenylenediamine) film
Arai et al. Pyruvate sensor based on pyruvate oxidase immobilized in a poly (mercapto-p-benzoquinone) film
JP2636637B2 (en) Manufacturing method of enzyme electrode
Lin et al. Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide
Salimi et al. Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film
JP2616331B2 (en) Biosensor
Zahir et al. Fabrication of directly polymerized 4-vinylpyridine onto a pencil 2B graphite paste electrode for glucose monitoring
JPH0560723A (en) Manufacture of enzyme electrode
EP4227420A1 (en) Electrode for measuring glucose and electrochemical sensor including the same
JP3035572B2 (en) Cholesterol sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203