JPH0560706A - Method and device for gas concentration monitoring - Google Patents

Method and device for gas concentration monitoring

Info

Publication number
JPH0560706A
JPH0560706A JP22574191A JP22574191A JPH0560706A JP H0560706 A JPH0560706 A JP H0560706A JP 22574191 A JP22574191 A JP 22574191A JP 22574191 A JP22574191 A JP 22574191A JP H0560706 A JPH0560706 A JP H0560706A
Authority
JP
Japan
Prior art keywords
temperature
condensation
gas
time
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22574191A
Other languages
Japanese (ja)
Other versions
JP2734242B2 (en
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22574191A priority Critical patent/JP2734242B2/en
Publication of JPH0560706A publication Critical patent/JPH0560706A/en
Application granted granted Critical
Publication of JP2734242B2 publication Critical patent/JP2734242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable a gas concentration to be monitored accurately in a real time by reducing a temperature on a condensation surface which is exposed to a gas environ ment in a short time and then measuring time from a time when the temperatures starts to be reduced to that when a gas starts to be condensed. CONSTITUTION:A condensation surface 10 is in contact with an inner surface of a gas transportation pipe 7 and a temperature of the condensation surface 10 is cooled and heated by a Peltier element 6. The element 6 controls temperature by a program temperature control unit 8 based on a signal of a temperature sensor 11. A semiconductor laser beam from an lighting light source 4 is focused and emitted to the condensation surface 10 through a window 5 and the returning light is led to a light detector 1 which observes a reflection factor. A unit 8 operates to repeat a cycle for allowing a temperature of the condensation surface 10 to be reduced by approximately 10 deg.C in approximately 40 seconds from a reference temperature and then to be returned to the reference temperature in approximately 20 seconds. A condensation judging unit 9 obtains a gas concentration from a gas concentration-time curve which is calibrated previously according to a difference between a time when reduction in temperature of the condensation surface 10 is started and that when condensation is initiated and a return light intensity changes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CVD装置等に用い
る、原料ガスの濃度をモニタする方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for monitoring the concentration of raw material gas used in a CVD apparatus or the like.

【0002】[0002]

【従来の技術】従来、有機金属ガス等を用いて、CVD
を行う方法及び装置では、キャリアガスの流量及び、原
料ガスリザーバの温度を一定にする等の手段により、原
料ガスの濃度を制御していた。しかしながら、この方法
では、原料供給時の濃度を直接モニタしないために、原
料物の消費等により、CVD雰囲気中のガス濃度が変動
しやすい問題点があった。
2. Description of the Related Art Conventionally, CVD has been performed using an organic metal gas or the like.
In the method and apparatus for performing the above, the concentration of the raw material gas is controlled by means such as keeping the flow rate of the carrier gas and the temperature of the raw material gas reservoir constant. However, this method has a problem that the gas concentration in the CVD atmosphere tends to fluctuate due to consumption of the raw material or the like because the concentration at the time of supplying the raw material is not directly monitored.

【0003】[0003]

【発明が解決しようとする課題】従来、CVD等の原料
ガスの圧力を測定する手段としては、キャリガスを用い
ないで封じ込めた容器内圧を圧力計で直接測る方法が知
られている。しかしながら、CVD等成膜に原料ガスを
使うような用途では、キャリアガスを用いて、原料ガス
をフローさせることが必要であり、この方法は適用でき
ない。つまり、従来の方法及び装置では、原料ガスの濃
度を正確に実時間でモニタする手段がない。そのため、
CVD時の成膜速度等の変動が起こり易く、実用性の高
い装置を構成することが困難であった。
Conventionally, as a means for measuring the pressure of a raw material gas such as CVD, there has been known a method of directly measuring the internal pressure of a sealed container without using a carry gas with a pressure gauge. However, in applications such as CVD where the source gas is used for film formation, it is necessary to flow the source gas using a carrier gas, and this method cannot be applied. That is, the conventional method and apparatus have no means for accurately monitoring the concentration of the raw material gas in real time. for that reason,
It is difficult to configure a highly practical device because the film forming rate during CVD is likely to change.

【0004】本発明の目的は、従来の方法及び装置の問
題であった原料ガスの濃度を実時間で、正確にモニタす
る方法及び装置を提供することにある。
An object of the present invention is to provide a method and an apparatus for accurately monitoring the concentration of a raw material gas in real time, which has been a problem of the conventional method and apparatus.

【0005】[0005]

【課題を解決するための手段】本発明のガス濃度モニタ
方法は、ガス雰囲気中にさらされる凝縮面の温度を、短
時間の内に低下及びもとの温度に回復させて、前記凝縮
面でのガスの凝縮の有無を検知し、温度低下開始時から
ガス凝縮の始まりまでの時間を測定し、その時間より雰
囲気のガス濃度を決定することを特徴とする。
The gas concentration monitoring method of the present invention is to reduce the temperature of a condensation surface exposed to a gas atmosphere within a short time and restore it to the original temperature, and The presence or absence of gas condensation is detected, the time from the start of temperature decrease to the start of gas condensation is measured, and the gas concentration of the atmosphere is determined from that time.

【0006】本発明のガス濃度モニタ装置は、ガス雰囲
気を保持する容器内に凝縮面を設け、その温度を短時間
に低下及びもとの温度に回復し得るプログラム温度調節
ユニットにより、前記凝縮面の温度制御を行う装置と、
前記凝縮面に照明光源からの照明光を照射して、その戻
り光の強度から、凝縮面の反射率変化を観測する光検出
器に導く光学系と、前記凝縮面の温度低下開始時刻か
ら、前記光検出器の出力信号に強度変化の起こる時刻ま
での時間から、ガス雰囲気の濃度を決定する凝縮判定ユ
ニットとからなることを特徴とする。
In the gas concentration monitoring device of the present invention, a condensing surface is provided in a container holding a gas atmosphere, and the condensing surface is reduced by a program temperature adjusting unit capable of lowering the temperature in a short time and recovering the original temperature. A device for controlling the temperature of
Irradiating the condensed surface with illumination light from an illumination light source, from the intensity of the returned light, an optical system leading to a photodetector for observing the reflectance change of the condensed surface, and the temperature decrease start time of the condensed surface, And a condensation determination unit that determines the concentration of the gas atmosphere from the time until the intensity change occurs in the output signal of the photodetector.

【0007】[0007]

【作用】CVD装置等で用いられる原料ガスは、温度の
低下に伴い、液相、もしくは固相に凝縮する。凝縮温度
は、原料ガスの温度−飽和蒸気圧曲線から一意的に求め
ることができるので、逆に原料ガスの濃度を凝縮温度か
ら求めることができる。本発明では、原料ガス雰囲気中
の容器の一部に、温度を数分以内の短時間の内に、数1
0℃程度冷却できる構成を設けることにより、冷却開始
から、凝縮面にわずかな凝縮が起こるまでの時間を測定
し、この時間から、雰囲気中のガス濃度を実時間で測定
することを可能とする。更に、一旦凝縮が観測された後
は、同程度の短時間の内に、冷却前の温度に凝縮面の温
度を戻すことにより、多量の凝縮により生ずる不感時間
(測定のできない時間)を最小限にする。こうすること
により、数分オーダーの短い時間周期で、繰り返しガス
濃度をモニタする事ができる。凝縮の検出は、凝縮面に
照明光を照射し、その反射光強度の変化を観測すること
により行う。凝縮が起こる前は、凝縮面には何もないの
で、一定強度の戻り光が観測されるが、一旦凝縮が始ま
ると、凝縮に伴う表面のモフォロジーの変化により反射
率が急激に低下するので、凝縮の開始を検出する事がで
きる。
The raw material gas used in the CVD apparatus or the like is condensed into a liquid phase or a solid phase as the temperature decreases. Since the condensing temperature can be uniquely obtained from the temperature-saturated vapor pressure curve of the raw material gas, conversely, the concentration of the raw material gas can be obtained from the condensing temperature. In the present invention, the temperature of a part of the container in the atmosphere of the raw material gas is set to a few 1
By providing a structure capable of cooling at about 0 ° C, it is possible to measure the time from the start of cooling to the time when slight condensation occurs on the condensation surface, and from this time, it is possible to measure the gas concentration in the atmosphere in real time. .. Furthermore, once condensation is observed, the dead time (time that cannot be measured) caused by a large amount of condensation is minimized by returning the temperature of the condensation surface to the temperature before cooling within the same short time. To By doing so, the gas concentration can be repeatedly monitored in a short time cycle of the order of several minutes. The condensation is detected by illuminating the condensation surface with illumination light and observing the change in the reflected light intensity. Before condensation occurs, there is nothing on the condensation surface, so return light with a constant intensity is observed, but once condensation begins, the reflectance sharply decreases due to the change in surface morphology accompanying condensation, so The start of condensation can be detected.

【0008】凝縮が起こるまでの時間は、凝縮面の冷却
速度が遅い場合には、凝縮面の温度がその温度で決まる
原料ガスの飽和ガス濃度に達するまでの時間で決まる。
その場合には、通常知られている原料ガスの温度−飽和
蒸気圧曲線からガス濃度をモニタする事ができる。もち
ろん、冷却速度と凝縮面の温度の関係から、凝縮の始ま
るまでの時間からもガス濃度を求めることができる。一
方冷却速度が速い場合には、凝縮面の温度低下に、凝縮
が追従できず、温度−飽和蒸気圧曲線から予想される時
間よりも凝縮の起こる時間が遅れる場合が生じる。この
場合にも、凝縮面の、大きさや、原料ガスの種類が同じ
であれば、蒸気の凝縮が起こるまでの時間と原料ガス濃
度は、1対1の対応を示すので、予め、時間とガス濃度
の関係を測定し校正表を作成しておくことで、時間か
ら、ガス濃度を求めることができる。
When the cooling rate of the condensing surface is slow, the time until condensation occurs is determined by the time until the temperature of the condensing surface reaches the saturated gas concentration of the raw material gas determined by the temperature.
In that case, the gas concentration can be monitored from the temperature-saturated vapor pressure curve of the raw material gas that is generally known. Of course, from the relationship between the cooling rate and the temperature of the condensation surface, the gas concentration can be obtained from the time until the condensation starts. On the other hand, when the cooling rate is high, the condensation cannot follow the temperature decrease on the condensation surface, and the condensation may occur later than the time expected from the temperature-saturated vapor pressure curve. Also in this case, if the size of the condensing surface and the type of the raw material gas are the same, the time until the vapor condensation occurs and the raw material gas concentration show a one-to-one correspondence. By measuring the relationship between the concentrations and preparing a calibration table, the gas concentration can be obtained from the time.

【0009】この方法の利点は、測定に伴う原料ガスの
分解や消費が起こらないために、測定にともなう原料濃
度の変化や、不純物の混入などのおそれが原理的にない
点である。本発明では、測定の時間応答を速めるため
に、凝縮面の大きさを数100μm程度の小さい領域に
狭めることが有効である。そうすることで、凝縮面の熱
容量を小くすると同時に、凝縮領域への気相からの原料
供給速度を大きくとれ、結果として、温度低下から凝縮
に至るまでの応答を速くすることができる。同時に凝縮
量も非常にわずかの量に抑えることが可能となるので、
凝縮に伴う原料雰囲気の濃度変化の割合を無視できる程
度に低くすることができる。1回の測定時間は、1分程
度の短時間の内に終了することができ、繰り返し、濃度
をモニタする事により、高い精度で実時間のガス濃度の
変化を測定することができる利点もある。
The advantage of this method is that the decomposition or consumption of the raw material gas accompanying the measurement does not occur, so that there is no possibility of a change in the raw material concentration or contamination of impurities accompanying the measurement in principle. In the present invention, in order to accelerate the time response of measurement, it is effective to narrow the size of the condensing surface to a small region of about several 100 μm. By doing so, the heat capacity of the condensing surface can be reduced, and at the same time, the feed rate of the raw material from the vapor phase to the condensing region can be increased, and as a result, the response from the temperature decrease to the condensation can be accelerated. At the same time, the amount of condensation can be suppressed to a very small amount,
It is possible to reduce the rate of change in concentration of the raw material atmosphere due to condensation to a negligible level. One measurement time can be completed within a short time of about 1 minute, and by repeatedly monitoring the concentration, there is also an advantage that the gas concentration change in real time can be measured with high accuracy. ..

【0010】[0010]

【実施例】以下、キャリアガスに水素ガスを用い、原料
ガスにジメチル金アセチルアセトナートをレーザCVD
装置に輸送する場合につき、本発明のガス濃度モニタ方
法及び装置を適用した実施例につき図面を参照して詳細
に説明する。
[Example] Hereinafter, hydrogen gas was used as a carrier gas, and dimethyl gold acetylacetonate was used as a source gas by laser CVD.
An example in which the gas concentration monitoring method and device of the present invention are applied to the case of transportation to the device will be described in detail with reference to the drawings.

【0011】図1は、本発明の方法及び装置の一実施例
の構成を示す模式図である。原料ガス雰囲気を輸送する
配管7の内面の一部に凝縮面10が接し、凝縮面10の
温度はペルチェ素子6により、冷却及び加熱が可能な構
成となっている。ペルチェ素子6は、凝縮面の直下に設
けられた温度センサ11の信号をもとに、プログラム温
度調節ユニット8により、温度を制御する構成となって
いる。一方、凝縮面10の対面側にレーザビームを導入
する窓5を設け、照明光源4から、0.8μmの波長の
半導体レーザ光を凝縮面10に集光して照射すると同時
に、凝縮面10からの戻り光を検出し、反射率を観測す
る光検出器1に導くハーフミラー2とレンズ3からなる
光学系を設ける。プログラム温度調節ユニット8は、凝
縮面10の温度を、基準温度から、40秒の時間で10
℃低下させ、次の20秒で基準温度に戻す温度サイクル
を繰り返すよう動作する。凝縮判定ユニット9は、凝縮
面の温度低下の始まった時刻と、凝縮が始まり、戻り光
強度が、変化する時刻との差を求め、この時間を校正値
と比較して、ガス濃度を表示する構成となって成ってい
る。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the method and apparatus of the present invention. The condensing surface 10 is in contact with a part of the inner surface of the pipe 7 that transports the raw material gas atmosphere, and the temperature of the condensing surface 10 can be cooled and heated by the Peltier element 6. The Peltier element 6 is configured to control the temperature by the program temperature adjusting unit 8 based on the signal from the temperature sensor 11 provided immediately below the condensation surface. On the other hand, a window 5 for introducing a laser beam is provided on the opposite side of the condensing surface 10, and a semiconductor laser beam having a wavelength of 0.8 μm is condensed and irradiated from the illumination light source 4 to the condensing surface 10 at the same time. An optical system including a half mirror 2 and a lens 3 is provided for guiding the return light to the photodetector 1 for observing the reflectance. The program temperature adjusting unit 8 changes the temperature of the condensing surface 10 from the reference temperature to 10 seconds in 40 seconds.
It is operated to repeat the temperature cycle of lowering the temperature by 0 ° C. and returning to the reference temperature in the next 20 seconds. The condensation determination unit 9 obtains the difference between the time when the temperature of the condensation surface starts to decrease and the time when the condensation starts and the return light intensity changes, and this time is compared with a calibration value to display the gas concentration. It is made up of structures.

【0012】図2は、以上述べた、プログラム温度調節
ユニット8の動作と凝縮面10の反射率の変化の応答を
示す図である。図2(a)は、凝縮面10の温度の変化
の様子を示し、その温度変化に対応して変化する反射率
を図2(b)に示す。
FIG. 2 is a diagram showing the response of the operation of the programmed temperature control unit 8 and the change in the reflectance of the condensation surface 10 described above. FIG. 2A shows how the temperature of the condensation surface 10 changes, and FIG. 2B shows the reflectance that changes in response to the temperature change.

【0013】基準温度T0 から凝縮面10の温度が低下
すると、反射率は、凝縮面10に凝縮が起こった瞬間か
ら、急激に低下を始める。このときの時刻と温度低下を
始めたときの時刻の差から、あらかじめ校正して得た、
ガス濃度−時間曲線より、ガス濃度を求める。この場合
の冷却速度は、0.25℃/sと比較的ゆっくりしてい
るため、ガス濃度−時間曲線は、温度−飽和蒸気圧曲線
から求められるものと同じであった。
When the temperature of the condensing surface 10 decreases from the reference temperature T 0 , the reflectance starts to rapidly decrease from the moment the condensation occurs on the condensing surface 10. Obtained by calibrating in advance from the difference between the time at this time and the time when the temperature starts to decrease,
The gas concentration is calculated from the gas concentration-time curve. Since the cooling rate in this case was relatively slow at 0.25 ° C./s, the gas concentration-time curve was the same as that obtained from the temperature-saturated vapor pressure curve.

【0014】上記の構成で得られた実際の測定結果を述
べる。原料のジメチル金アセチルアセトナートは、室温
で固体で、蒸気圧は8mTorrである。原料を詰めた
リザーバの温度を20℃に保った状態で、水素キャリア
流量を、20から200sccmの間で変化させたとき
の、原料ガスの濃度の変化を調べた。凝縮面の基準温度
を20℃とした。凝縮面は研磨した銅基板で戻り光の反
射率は凝縮がない状態では、60%であった。凝縮開始
の判別基準の反射率は、30%(50%減の反射率)と
した。水素キャリア流量が、20sccmでは、反射率
の変化の始まる時間は、冷却開始後3秒と短く、校正値
から求められたガス濃度は、7mTorrと求められ
た。一方、水素流量が200sccmの場合には、反射
率変化の起こる時間は、冷却開始後30秒と長くなり、
0.3mTorrと低い濃度であることが求められた。
このことは、リザーバ温度が一定であっても、キャリア
ガスの流量が多ければ、原料ガスを同じ温度条件及びキ
ャリア流量条件で輸送させると徐々にガス濃度が減少す
る事が判明した。この原因は、リザーバ内の原料固体表
面の表面積が、原料の消費に連れて低下したためと推測
される。
The actual measurement results obtained with the above configuration will be described. The starting material, dimethyl gold acetylacetonate, is a solid at room temperature and has a vapor pressure of 8 mTorr. With the temperature of the reservoir filled with the raw material kept at 20 ° C., the change in the concentration of the raw material gas was examined when the hydrogen carrier flow rate was changed between 20 and 200 sccm. The reference temperature of the condensation surface was set to 20 ° C. The condensing surface was a polished copper substrate, and the reflectance of the returning light was 60% without condensation. The reflectance as the criterion for determining the start of condensation was 30% (reflectance of 50% reduction). When the hydrogen carrier flow rate was 20 sccm, the time when the change in the reflectance started was as short as 3 seconds after the start of cooling, and the gas concentration obtained from the calibration value was obtained as 7 mTorr. On the other hand, when the flow rate of hydrogen is 200 sccm, the time period for which the reflectance change occurs is as long as 30 seconds after the start of cooling,
A low concentration of 0.3 mTorr was required.
This indicates that even if the reservoir temperature is constant, if the flow rate of the carrier gas is large, the gas concentration gradually decreases when the source gas is transported under the same temperature condition and carrier flow rate condition. It is presumed that this is because the surface area of the solid surface of the raw material in the reservoir decreased as the raw material was consumed.

【0015】この様に従来の方法及び装置では、原料ガ
スの濃度を直接モニタする手段がないために、後段のC
VD等で、原料ガスの濃度変化に伴う堆積特性のばらつ
き等を生じたのに対し、本発明を用いれば、原料ガスの
濃度を常にモニタすることができるために、濃度が常に
一定値に成るよう、原料リザーバの温度等にフィードバ
ックすることも可能となり、CVD装置の制御性並びに
実用性を大幅に高めることが可能となる。また、本発明
では、原料ガスのみが凝縮するので、キャリアガスの影
響を受けることなく、原料ガスの分圧(濃度)をモニタ
できるので、測定値にキャリアガスの圧力変動等による
誤差が入らない点も利点である。
As described above, in the conventional method and apparatus, since there is no means for directly monitoring the concentration of the raw material gas, the C in the latter stage is
In VD and the like, variations in the deposition characteristics due to changes in the concentration of the raw material gas, etc. occur, whereas the use of the present invention allows the concentration of the raw material gas to be constantly monitored, so that the concentration is always a constant value. As described above, it is possible to feed back the temperature of the raw material reservoir, etc., and it is possible to significantly improve the controllability and practicality of the CVD apparatus. Further, in the present invention, since only the raw material gas is condensed, the partial pressure (concentration) of the raw material gas can be monitored without being affected by the carrier gas, so that the measurement value does not include an error due to the pressure fluctuation of the carrier gas. The point is also an advantage.

【0016】以上のべた実施例では、原料ガスに、ジメ
チル金アセチルアセトナートを用いた場合について紹介
したが、本発明において、他の原料ガスとして、ジメチ
ルアルミニウムハイドライド等の、液体原料ガスを用い
ることができることは言うまでもない。この場合は、凝
縮面10上には、凝縮の開始時点で液滴が形成されるの
で照射光が表面で散乱され、反射率が低下する。
In the above-mentioned embodiments, the case where dimethyl gold acetylacetonate is used as the raw material gas has been introduced. However, in the present invention, a liquid raw material gas such as dimethyl aluminum hydride is used as the other raw material gas. It goes without saying that you can do it. In this case, since droplets are formed on the condensation surface 10 at the start of condensation, the irradiation light is scattered on the surface and the reflectance is reduced.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、C
VD等に用いられる、原料ガスの濃度を、短時間で、正
確にモニタする事が可能となる。また、本発明によれ
ば、測定により、原料ガスの消費や分解等の問題を起こ
すことがないので、実用性に優れる利点がある。装置と
しても構成が簡単で安価にできることから、信頼性に優
れかつコストのかからない実用性の高い装置を作れる利
点もある。
As described above, according to the present invention, C
It is possible to accurately monitor the concentration of the raw material gas used for VD or the like in a short time. Further, according to the present invention, there is no problem such as consumption and decomposition of the raw material gas due to the measurement, and therefore, there is an advantage that it is excellent in practicality. Since the structure of the device is simple and can be made inexpensive, there is also an advantage that it is possible to make a highly practical device that is highly reliable and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法及び装置を具体化した一実施例の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment embodying the method and apparatus of the present invention.

【図2】本発明の原理を説明する模式図である。FIG. 2 is a schematic diagram illustrating the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 光検出器 2 ハーフミラー 3 レンズ 4 照明光源 5 窓 6 ペルチェ素子 7 配管 8 プログラム温度調節ユニット 9 凝縮判定ユニット 10 凝縮面 11 温度センサ 1 Photodetector 2 Half mirror 3 Lens 4 Illumination light source 5 Window 6 Peltier element 7 Piping 8 Program temperature adjustment unit 9 Condensation determination unit 10 Condensation surface 11 Temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス雰囲気中にさらされる凝縮面の温度
を、短時間の内に低下及びもとの温度に回復させる工程
と、前記凝縮面でのガスの凝縮の有無を検知する工程
と、温度低下開始時からガス凝縮の始まりまでの時間を
測定し、その時間より雰囲気のガス濃度を決定する工程
とを有することを特徴とするガス濃度モニタ方法。
1. A step of decreasing the temperature of a condensation surface exposed to a gas atmosphere and recovering it to the original temperature in a short time, and a step of detecting the presence or absence of gas condensation on the condensation surface. Measuring the time from the start of temperature decrease to the beginning of gas condensation, and determining the gas concentration of the atmosphere from the time, the gas concentration monitoring method.
【請求項2】 ガス雰囲気を保持する容器内に凝縮面を
設け、その温度を短時間に低下及びもとの温度に回復し
得るプログラム温度調節ユニットにより、前記凝縮面の
温度制御を行う装置と、前記凝縮面に照明光源からの照
明光を照射して、その戻り光の強度から、凝縮面の反射
率変化を観測する光検出器に導く光学系と、前記凝縮面
の温度低下開始時から、前記光検出器の出力信号に強度
変化の起こるまでの時間から、ガス雰囲気の濃度を決定
する凝縮判定ユニットとからなることを特徴とするガス
濃度モニタ装置。
2. An apparatus for controlling the temperature of the condensing surface by providing a condensing surface in a container holding a gas atmosphere, and using a program temperature adjusting unit capable of lowering the temperature in a short time and recovering the original temperature. , Irradiating the condensed surface with illumination light from an illumination light source, from the intensity of the returned light, an optical system for guiding to a photodetector for observing the reflectance change of the condensed surface, and from the start of the temperature decrease of the condensed surface. And a condensation determination unit that determines the concentration of the gas atmosphere from the time until the intensity of the output signal of the photodetector changes.
JP22574191A 1991-09-05 1991-09-05 Gas concentration monitoring method and apparatus Expired - Lifetime JP2734242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22574191A JP2734242B2 (en) 1991-09-05 1991-09-05 Gas concentration monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22574191A JP2734242B2 (en) 1991-09-05 1991-09-05 Gas concentration monitoring method and apparatus

Publications (2)

Publication Number Publication Date
JPH0560706A true JPH0560706A (en) 1993-03-12
JP2734242B2 JP2734242B2 (en) 1998-03-30

Family

ID=16834111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22574191A Expired - Lifetime JP2734242B2 (en) 1991-09-05 1991-09-05 Gas concentration monitoring method and apparatus

Country Status (1)

Country Link
JP (1) JP2734242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139216A (en) * 2007-12-06 2009-06-25 Seiko Instruments Inc Mirror surface cooling type dew point recorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139216A (en) * 2007-12-06 2009-06-25 Seiko Instruments Inc Mirror surface cooling type dew point recorder

Also Published As

Publication number Publication date
JP2734242B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US5665214A (en) Automatic film deposition control method and system
US5350236A (en) Method for repeatable temperature measurement using surface reflectivity
TW201222655A (en) Substrate processing apparatus
US10153182B2 (en) Substrate processing apparatus
JP2002543415A (en) System and method for calibrating a pyrometer in a heat treatment chamber
CN103649702B (en) The temperature-measuring method of semiconductor layer and temperature measuring apparatus
JPH0214543A (en) Method and apparatus for measurement and control of temperature of wafer of thin film
TWI343474B (en) Methods and apparatus for determining the temperature of a substrate
US5364187A (en) System for repeatable temperature measurement using surface reflectivity
JPH0560706A (en) Method and device for gas concentration monitoring
TWI729274B (en) Film forming device and film forming method
JPH01124726A (en) Heating device
JPS5948786B2 (en) Molecular beam crystal growth method
JP3078199B2 (en) Concentration control method and substrate processing apparatus using the same
JPS59192904A (en) Device for measuring film thickness
JPH0561574B2 (en)
JP3734773B2 (en) Method and apparatus for detecting end point of dry etching
JPS6135516A (en) Semiconductor heat processing control method
JPS6040600Y2 (en) sauce supply device
JP2009058274A (en) Crystallinity evaluation device of silicon semiconductor thin film and crystallinity evaluation method using it
JPH1062129A (en) Film thickness measuring method
TW202407300A (en) Optical sensor for remote temperature measurements
JPH05132393A (en) Chemical vapor deposition apparatus
JPH0625851A (en) Device for controlling thickness of formed film
JPH0712524A (en) Film thickness measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125