JPH0560640B2 - - Google Patents
Info
- Publication number
- JPH0560640B2 JPH0560640B2 JP62119660A JP11966087A JPH0560640B2 JP H0560640 B2 JPH0560640 B2 JP H0560640B2 JP 62119660 A JP62119660 A JP 62119660A JP 11966087 A JP11966087 A JP 11966087A JP H0560640 B2 JPH0560640 B2 JP H0560640B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- ambient temperature
- fire
- sensitive element
- detection signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 34
- 230000007423 decrease Effects 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Fire-Detection Mechanisms (AREA)
Description
【発明の詳細な説明】
[技術分野]
本発明は、防災システムに使用される熱感知器
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a heat sensor used in a disaster prevention system.
[背景技術]
従来、防災システムに使用されるこの種の熱感
知器は、周囲温度の上昇率が予め設定された値以
上になつたとき、あるいは周囲温度が予め設定さ
れた検知温度以上になつたときに、火災検知信号
(例えば、Hレベル)を出力するようになつてい
た。しかしながら、このような従来例にあつて
は、火災検知信号がデジタル信号1,0となつて
いたので、熱感知器を集中監視する自火報システ
ムの受信機が設置されている防災センタあるいは
事務所では、火災発生現場の様子がわからず、適
切な対処ができないという問題があつた。[Background Art] Conventionally, this type of heat sensor used in disaster prevention systems detects when the rate of increase in ambient temperature exceeds a preset value, or when the ambient temperature exceeds a preset detection temperature. It was designed to output a fire detection signal (for example, H level) when the fire occurred. However, in such conventional cases, the fire detection signal was a digital signal of 1, 0, so the fire alarm system receiver that centrally monitors the heat detector was installed at the disaster prevention center or office. However, there was a problem that the situation at the scene of the fire was not known and it was not possible to take appropriate measures.
[発明の目的]
本発明は上記の点に鑑みて為されたものであ
り、その目的とするところは、自火報システムの
受信機側で火災発生現場の様子が容易に把握でき
る熱感知器を提供することにある。[Object of the Invention] The present invention has been made in view of the above points, and its purpose is to provide a heat detector that allows the receiver side of a self-fire alarm system to easily grasp the situation at the scene of a fire. Our goal is to provide the following.
[発明の開示]
(構成)
本発明は、周囲温度に対して応答の速い第1の
感熱素子と、周囲温度に対して応答の遅い第2の
感熱素子と、両感熱素子出力の差動信号を増幅し
て火災検知信号として出力するアナログ出力回路
とで構成され、周囲温度の上昇率に対応したアナ
ログ信号よりなる火災検知信号を連続して自火報
システムの受信機に送るようにした熱感知器にお
いて、受信機側から制御信号により第2の感熱素
子を所定の固定抵抗に置き換えて動作モードを温
度上昇検知モードから周囲温度検知モードに切り
替える動作モード切り替え用スイツチを設けたも
のである。[Disclosure of the Invention] (Structure) The present invention includes a first heat-sensitive element that has a quick response to ambient temperature, a second heat-sensitive element that has a slow response to ambient temperature, and a differential signal between the outputs of both heat-sensitive elements. The heat alarm system consists of an analog output circuit that amplifies and outputs the fire detection signal as a fire detection signal, and continuously sends a fire detection signal consisting of an analog signal corresponding to the rate of increase in ambient temperature to the receiver of the self-fire alarm system. The sensor is provided with an operation mode switching switch that replaces the second heat-sensitive element with a predetermined fixed resistor and switches the operation mode from temperature rise detection mode to ambient temperature detection mode in response to a control signal from the receiver side.
(実施例)
第1図は本発明の温度上昇検知手段を設けた熱
感知器の基本構成を示すもので、周囲温度に対し
て応答の速いサーミスタよりなる第1の感熱素子
TH1と、周囲温度に対して応答の遅いサーミス
タよりなる第2の感熱素子TH2と、両感熱素子
TH1,TH2出力の差動信号を増幅して火災検知
信号Vfとして出力端子Toから出力するオペアン
プOPおよびバイアス設定用抵抗R1〜R3よりなる
アナログ出力回路AOとで構成されている。ここ
に、実施例では、一定温度における両感熱素子
TH1,TH2の抵抗値を等しくしてある。また、
電源入力端子TH1,TH2に印加される直流電源
は、定電圧回路VRを介して抵抗R1,R2の直列回
路の両端およびオペアンプOPの電源端子に印加
されている。(Example) Fig. 1 shows the basic configuration of a heat sensor equipped with a temperature rise detection means of the present invention.
TH 1 , a second thermal element TH 2 consisting of a thermistor that responds slowly to the ambient temperature, and both thermal elements.
It consists of an operational amplifier OP that amplifies the differential signal of the TH 1 and TH 2 outputs and outputs it as a fire detection signal Vf from the output terminal To, and an analog output circuit AO consisting of bias setting resistors R 1 to R 3 . Here, in the example, both heat-sensitive elements at a constant temperature
The resistance values of TH 1 and TH 2 are made equal. Also,
The DC power applied to the power input terminals TH 1 and TH 2 is applied via the constant voltage circuit VR to both ends of the series circuit of the resistors R 1 and R 2 and to the power supply terminal of the operational amplifier OP.
以下、実施例の動作について説明する。いま、
周囲温度が一定の場合すなわち火災が発生してい
ない場合には、両感熱素子TH1,TH2の抵抗値
Rt1、Rt2が等しくなつているため、オペアンプ
OPの電圧増幅率G(Rt2/Rt1)は1となり、火災
検知信号VfはA点の電圧VAと等しくなつている。
次に、周囲温度が急に上昇すると、応答の速い感
熱素子TH1の抵抗値Rt1が減少するが、応答の遅
い感熱素子TH2の抵抗値Rt2は殆ど減少しないの
で、電圧増幅率Gは、1よりも大きくなつて火災
検知信号Vf(G×VA)の電圧レベルが周囲温度の
上昇率に応じて高くなる。例えば、周囲温度が一
定の場合における感熱素子TH1,TH2の抵抗値
Rt1、Rt2が、
20℃……1MΩ
40℃……500KΩ
60℃……250KΩ
に設定されており、A点の電圧VAが1Vに設定さ
れている場合において、周囲温度が一定(例えば
20℃)のときには、火災検知信号Vf(=VA)は
1Vになつている。ここに、周囲温度が20℃から
急に40℃に上昇した場合には、感熱素子TH1は
500KΩになるが、感熱素子TH2は1MΩのままで
あるので、火災検知信号Vfは2Vとなる。また、
周囲温度が20℃から急に60℃に上昇した場合に
は、同様にして火災検知信号Vfは4Vとなる。さ
らにまた、周囲温度が40℃から急に60℃に上昇し
た場合には、同様にして火災検知信号VFは2Vと
なる。つまり、火災検知信号Vfは、周囲温度の
上昇率に比例して増加する。したがつて、自火報
装置の受信機側では、火災検知信号Vfの電圧レ
ベルに基いて火災が発生しているかどうかを判断
することができる上、火災に伴う温度上昇が引き
続き発生しているか、あるいは火災が収まつて温
度が下降しているかを区別することができ、火災
に適切に対処することができる。 The operation of the embodiment will be described below. now,
When the ambient temperature is constant, that is, when there is no fire, the resistance values of both heat-sensitive elements TH 1 and TH 2
Since Rt 1 and Rt 2 are equal, the operational amplifier
The voltage amplification factor G (Rt 2 /Rt 1 ) of OP is 1, and the fire detection signal Vf is equal to the voltage V A at point A.
Next, when the ambient temperature suddenly rises, the resistance value Rt 1 of the fast-responsive heat-sensitive element TH 1 decreases, but the resistance value Rt 2 of the slow-response heat-sensitive element TH 2 hardly decreases, so the voltage amplification factor G becomes larger than 1, and the voltage level of the fire detection signal Vf (G×V A ) increases in accordance with the rate of increase in ambient temperature. For example, the resistance values of heat-sensitive elements TH 1 and TH 2 when the ambient temperature is constant
When Rt 1 and Rt 2 are set to 20°C...1MΩ 40°C...500KΩ 60°C...250KΩ, and the voltage V A at point A is set to 1V, the ambient temperature is constant (e.g.
20℃), the fire detection signal Vf (=V A ) is
It has become 1V. Here, if the ambient temperature suddenly rises from 20℃ to 40℃, the thermal element TH 1 will
However, since the heat sensitive element TH 2 remains at 1MΩ, the fire detection signal Vf becomes 2V. Also,
Similarly, when the ambient temperature suddenly rises from 20°C to 60°C, the fire detection signal Vf becomes 4V. Furthermore, when the ambient temperature suddenly rises from 40°C to 60°C, the fire detection signal VF becomes 2V in the same way. That is, the fire detection signal Vf increases in proportion to the rate of increase in ambient temperature. Therefore, on the receiver side of the self-fire alarm system, it is possible to determine whether a fire has occurred based on the voltage level of the fire detection signal Vf, and also to determine whether the temperature rise associated with the fire is still occurring. It is possible to distinguish whether the fire has subsided or the temperature has decreased, and the fire can be dealt with appropriately.
第2図は他の熱感知器の基本構成を示すもの
で、TH1,TH2の直列回路に安定化された直流
電源を印加し、接続点(B点)の電圧を電流増幅
して出力するバツフアBFにてアナログ出力回路
AOを形成したものである。 Figure 2 shows the basic configuration of another heat sensor. A stabilized DC power supply is applied to the series circuit of TH 1 and TH 2 , and the voltage at the connection point (point B) is amplified and output. Analog output circuit at buffer BF
This is what formed the AO.
以下、実施例の動作について説明する。いま、
周囲温度が急に上昇すると、感熱素子TH1の抵
抗値Rt1が直ちに減少するものの、感熱素子TH2
の抵抗値Rt2は殆ど減少しないので、C点の電圧
Vcが高くなり、この電圧Vcが火災検知信号Vfと
して出力されるようになつている。この場合、バ
ツフアBFにてボルテージホロア回路が形成され
ており、出力インピーダンスを引き下げることが
できるようになつている。 The operation of the embodiment will be described below. now,
When the ambient temperature suddenly increases, although the resistance value Rt 1 of the heat-sensitive element TH 1 immediately decreases, the resistance value Rt 1 of the heat-sensitive element TH 2 decreases immediately.
Since the resistance value Rt 2 hardly decreases, the voltage at point C
Vc becomes higher, and this voltage Vc is output as the fire detection signal Vf. In this case, a voltage follower circuit is formed by the buffer BF, making it possible to lower the output impedance.
第3図は、本発明一実施例を示すもので、第1
図と同様の熱感知器において、受信機側からの制
御信号により第2の感熱素子TH1を所定の固定
抵抗R4に置き換えて動差モードを温度上昇検知
モードから周囲温度検知モードに切り替える動作
モード切り替え用スイツチSWを設けたものであ
る。なお、スイツチSWは切り替え制御端子Tcに
入力される制御信号によつて切り替えられる。 FIG. 3 shows one embodiment of the present invention.
In a heat sensor similar to the one shown in the figure, the second heat-sensitive element TH 1 is replaced with a predetermined fixed resistor R 4 and the differential mode is switched from temperature rise detection mode to ambient temperature detection mode using a control signal from the receiver side. It is equipped with a mode change switch SW. Note that the switch SW is switched by a control signal input to the switching control terminal Tc.
いま、スイツチSWがイ側に切り替えられてい
る場合には、実施例1と同様に、周囲温度の上昇
率に対応した火災検知信号Vfを出力端子Toを介
して出力する実施例1と同様の熱検知動作を行
い、スイツチSWがロ側に切り替えられている場
合には、周囲温度の上昇に対応した電圧レベル
(=R4/Rt1)の火災検知信号Vfが出力端子Toを
介して出力されるようになつている。したがつ
て、切り替え制御端子Tcに入力される制御信号
によつて動作モードを、温度上昇検知モード、周
囲温度検知モードとに切り替えることができ、自
火報システムの受信機側から、現場の上昇に応じ
た動作モードを適宜選択して状況に応じた監視を
行うことができるようになつている。 Now, when the switch SW is switched to the A side, the same process as in the first embodiment is performed, in which the fire detection signal Vf corresponding to the rate of increase in ambient temperature is output via the output terminal To. When a heat detection operation is performed and the switch SW is switched to the low side, a fire detection signal Vf at a voltage level (=R 4 /Rt 1 ) corresponding to the rise in ambient temperature is output via the output terminal To. It is becoming more and more common. Therefore, the operation mode can be switched between the temperature rise detection mode and the ambient temperature detection mode by the control signal input to the switching control terminal Tc, and the receiver side of the self-fire alarm system can detect the rising temperature at the scene. It is now possible to perform monitoring according to the situation by appropriately selecting an operation mode according to the situation.
なお、第2図の熱感知器においても、感熱素子
TH1を固定抵抗に置き換えれば周囲温度検知モ
ードとなることは言うまでもない。 Furthermore, in the heat sensor shown in Fig. 2, the heat-sensitive element is
Needless to say, if TH 1 is replaced with a fixed resistor, it becomes ambient temperature detection mode.
[発明の効果]
本発明は上述のように構成されており、周囲温
度に対して応答の速い第1の感熱素子出力と、応
答の遅い第2の感熱素子出力との差動信号に基づ
いて火災の初期(温度上昇率小)あるいは火災の
拡大(温度上昇率大)を判断する温度上昇検知モ
ードと、第2の感熱素子を固定抵抗に置き換える
ことにより第1の感熱素子出力に基づいて周囲温
度を検知して火災の状況を判断する周囲温度検知
モードとを受信機側から現場の状況に応じて選択
することができ、現場の状況および火災の状況に
応じた防災シヤツタの制御などを受信機側でより
適切に行えるという効果がある。[Effects of the Invention] The present invention is configured as described above, and is based on a differential signal between the output of the first heat-sensitive element, which responds quickly to the ambient temperature, and the output of the second heat-sensitive element, which responds slowly to the ambient temperature. There is a temperature rise detection mode that determines the initial stage of a fire (small temperature rise rate) or the spread of a fire (large temperature rise rate), and a temperature rise detection mode that determines the initial stage of a fire (small temperature rise rate) or the spread of a fire (large temperature rise rate). Ambient temperature detection mode, which detects the temperature and determines the fire situation, can be selected from the receiver side according to the situation at the site, and receives control of disaster prevention shutters, etc. according to the situation at the site and the fire situation. This has the effect of allowing the machine to perform the process more appropriately.
第1図は本発明に係る熱感知器の基本例の回路
図、第2図は他の基本例の回路図、第3図は本発
明一実施例の回路図である。
TH1,TH2は感熱素子、AOはアナログ出力回
路である。
FIG. 1 is a circuit diagram of a basic example of a heat sensor according to the present invention, FIG. 2 is a circuit diagram of another basic example, and FIG. 3 is a circuit diagram of an embodiment of the present invention. TH 1 and TH 2 are heat sensitive elements, and AO is an analog output circuit.
Claims (1)
と、周囲温度に対して応答の遅い第2の感熱素子
と、両感熱素子出力の差動信号を増幅して火災検
知信号として出力するアナログ出力回路とで構成
され、周囲温度の上昇率に対応したアナログ信号
よりなる火災検知信号を連続して自火報システム
の受信機に送るようにした熱感知器において、受
信機側からの制御信号により第2の感熱素子を所
定の固定抵抗に置き換えて動作モードを温度上昇
検知モードから周囲温度検知モードに切り替える
動作モード切り替え用スイツチを設けたことを特
徴とする熱感知器。1 A first heat-sensitive element that responds quickly to ambient temperature, a second heat-sensitive element that responds slowly to ambient temperature, and an analog that amplifies the differential signal of the output of both heat-sensitive elements and outputs it as a fire detection signal. In a heat sensor that continuously sends a fire detection signal consisting of an analog signal corresponding to the rate of increase in ambient temperature to the receiver of the self-fire alarm system, the control signal from the receiver side A heat sensor comprising an operation mode switching switch that replaces the second heat-sensitive element with a predetermined fixed resistor and switches the operation mode from a temperature rise detection mode to an ambient temperature detection mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11966087A JPS63284695A (en) | 1987-05-15 | 1987-05-15 | Heat sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11966087A JPS63284695A (en) | 1987-05-15 | 1987-05-15 | Heat sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63284695A JPS63284695A (en) | 1988-11-21 |
JPH0560640B2 true JPH0560640B2 (en) | 1993-09-02 |
Family
ID=14766918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11966087A Granted JPS63284695A (en) | 1987-05-15 | 1987-05-15 | Heat sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63284695A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836490B2 (en) * | 1974-05-13 | 1983-08-09 | 松下電工株式会社 | Handout Taihakumaku no Seizouhouhou |
JPS605429U (en) * | 1983-06-20 | 1985-01-16 | ティーディーケイ株式会社 | propeller agitator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54108685U (en) * | 1978-01-14 | 1979-07-31 | ||
JPS5836490U (en) * | 1981-08-31 | 1983-03-09 | 松下電工株式会社 | Differential spot type sensor |
-
1987
- 1987-05-15 JP JP11966087A patent/JPS63284695A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836490B2 (en) * | 1974-05-13 | 1983-08-09 | 松下電工株式会社 | Handout Taihakumaku no Seizouhouhou |
JPS605429U (en) * | 1983-06-20 | 1985-01-16 | ティーディーケイ株式会社 | propeller agitator |
Also Published As
Publication number | Publication date |
---|---|
JPS63284695A (en) | 1988-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4505600A (en) | Temperature sensor | |
US4112356A (en) | Semiconductor gas detector circuit | |
JP3231887B2 (en) | Heat detector | |
JPH0560640B2 (en) | ||
JPH0719008Y2 (en) | Current measuring device | |
EP0454972A2 (en) | A high gain differential-to single ended amplifier having a tee network feedback loop | |
US4550313A (en) | Fire detecting system | |
US3943766A (en) | Flame ionization detector status indicator | |
JP3210875B2 (en) | Compensated fire detector | |
JPS6224398A (en) | Analog signal output type environment information detector | |
US4337434A (en) | Compensator for slowly responding sensors | |
JPH0236034B2 (en) | ||
US3258761A (en) | Kraus differential annunciator | |
JPH0517688Y2 (en) | ||
JPH01216416A (en) | Temperature detector | |
JPH0743985Y2 (en) | Control circuit for electric carpet | |
JPS5928333Y2 (en) | differential fire detector | |
JP3116128B2 (en) | Fire detector | |
WO1983000574A1 (en) | Temperature controlling or detecting device | |
JP2569878B2 (en) | Temperature sensor circuit disconnection detection method | |
JPS62235834A (en) | Optical input level detection circuit for optical receiver | |
JPH0718988Y2 (en) | Pressure sensor | |
JPH04172805A (en) | Rc filter circuit | |
JPH035994Y2 (en) | ||
JP3064135B2 (en) | Combustion detection circuit |