JPH0560477B2 - - Google Patents

Info

Publication number
JPH0560477B2
JPH0560477B2 JP4916485A JP4916485A JPH0560477B2 JP H0560477 B2 JPH0560477 B2 JP H0560477B2 JP 4916485 A JP4916485 A JP 4916485A JP 4916485 A JP4916485 A JP 4916485A JP H0560477 B2 JPH0560477 B2 JP H0560477B2
Authority
JP
Japan
Prior art keywords
group
anomer
nucleoside
compound
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4916485A
Other languages
Japanese (ja)
Other versions
JPS61207400A (en
Inventor
Kaoru Okamoto
Toshio Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Zoki Pharmaceutical Co Ltd
Original Assignee
Nippon Zoki Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zoki Pharmaceutical Co Ltd filed Critical Nippon Zoki Pharmaceutical Co Ltd
Priority to JP4916485A priority Critical patent/JPS61207400A/en
Publication of JPS61207400A publication Critical patent/JPS61207400A/en
Publication of JPH0560477B2 publication Critical patent/JPH0560477B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプリン誘導体とD−リボース誘導体と
を縮合反応しヌクレオシド化合物を製造する方法
に関する。 (従来の技術) ヌクレオシド化合物はリボ核酸の構成成分であ
る以外に、補酵素や抗生物質としてその有用性が
認められている。例えば、特定tRNAに存在し、
アンチコドンの第一番目に位置しヌクレオシドQ
と呼ばれている修飾ヌクレオシドは、その制癌作
用が期待されている。又、ストレプトミセス・ヒ
グロスコピクスの一菌株が生産するカデグオマイ
シン(特開昭58−92693号公報)も抗腫瘍ヌクレ
オシド化合物の一つとして注目されている。しか
し、これらヌクレオシド化合物は天然には極微量
しか存在せず。大量に製造する方法が望まれてお
り、例えば、ヌクレオシドQとカデグオマイシン
の合成法が「T.Ohgiet al.,J.Am.Chem.Soc.,
101,3629(1979)」、「T.Kondo et al.,
Tetrahedron Letters,24(34),3647(1983)」
等に発表されている。 又、一般的なヌクレオシドの合成法は、多くの
出版物に収載されている(例えば、高木康敬他
「核酸」,(昭45.4.30)、朝倉書店、73頁−78頁
等)。 (発明が解決しようとする問題点) 本発明は、ヌクレオシド化合物を効率よく製造
する方法を提供することを課題とする。 (問題点を解決するための手段) 本発明者らはヌクレオシド化合物の合成法につ
いて研究するうち、プリン誘導体とD−リボース
誘導体とを縮合反応しヌクレオシド化合物を製造
する方法、特にβ−アノマー体ヌクレオシドを選
択的に製造する方法を見出し、本発明を完成し
た。 本発明は、一般式() (式中、R1はアルコキシアルキル基、R2は水素、
低級アルキル基、アルキルチオ基、R3は水素、
低級アルキル基を表す)で表される化合物と、 一般式() (式中、R4はアシル基、アルアルキル基を表
す)で表される化合物とを反応させて、 一般式() (式中、R1はアルコキシアルキル基、R2は水
素、低級アルキル基、アルキルチオ基、R3は水
素、低級アルキル基、R4はアシル基、アルアル
キル基を表す。又、破線はα及びβの両アノマー
体を含むことを表す)で表されるヌクレオシド化
合物を製造する方法である。 上記の一般式において、R1はメトキシメチル、
エトキシメチル、メトキシエチル、エトキシエチ
ル基等のアルコキシアルキル基を表し、R2は水
素、低級アルキル基又は後にアミノ基に変換する
場合にはメチルチオ基等のアルキルチオ基を表
し,R3は水素若しくは低級アルキル基、好まし
くはメチル基、R4は一般のヌクレオシド化学に
おいて使用されている任意の保護基、例えば、ア
セチル、ベンゾイル基等のアシル基又はトリチ
ル、ベンジル基等のアルアルキル基、好ましくは
トリチル基を表す。 上記反応は、水素化アルキル金属等の強塩基、
好ましくは水素化ナトリウム存在下、陰イオン性
複素環化合物を可溶化する極性溶媒、例えばジメ
チルホルムアミド中、室温にて1乃至数時間行う
ことで目的を達せられる。 一般式()で表されるクロル化糖は、「R.S.
Klein et al.,J.Carbohydrates,Nucleosides,
Nucleotides,,265(1974)」の方法に従つて
D−(−)−リボースから容易に合成でき、そのク
ロル基はβ配位である。上記の縮合反応はSN
型反応で進むと考えられており、従つて、反応生
成物のヌクレオシドはα−アノマー体が優先的に
生成する。 しかし、ヌクレオシドQやカデグオマイシン等
の天然のヌクレオシド化合物はβ−アノマー体で
あるので、かかる化合物の製造上はヌクレオシド
化合物合成中間体のβアノマー体が必要である。 本発明は上記反応系中にハロゲン塩を共存さ
せ、一般式()で表される化合物のハロゲンを
反転させることにより、生成するヌクレオシド化
合物のα/β−アノマー体比を調節する一般式
()で表されるヌクレオシド化合物の製造方法
である。 本発明製造方法によつて生成したα,β−アノ
マー混合体はシリカゲルクロマトグラフイーや
HPLC等の通常の方法によつてα体とβ体への分
離が可能な場合と、分離が困難な場合がある。分
離困難な場合は通常用いられている方法により、
置換基を脱離若しくは変換することにより目的を
達することができる。例えば、3,4−ジヒドロ
−3−メトキシメチル−5−メチル−2−メチル
チオ−7−(2,3−O−イソプロピリデン−5
−O−トリフエニルメチル−D−リボフラノシ
ル)−7H−ピロロ〔2,3−d〕ピリミジン−4
−オンは、2位のメチルチオ基をアセチルアミノ
化し、糖部分の脱トリチル化を行つた後、シリカ
ゲルカラムクロマトグラフイーにより容易に分離
できる。 (実施例) 以下に、実施例により本発明製造方法の一例を
示す。尚、下記実施例中の化合物は、蒸溜、クロ
マトグラフイー、再結晶等の通常の手段により精
製し、融点測定、IR,NMR,UV、マススペク
トル、旋光度等により同定を行つた。 実施例 1 臭化ナトリウム7.0gを減圧下乾燥後、これに
4.2gの3,4−ジヒドロ−3−メトキシメチル
−5−メチル−2−メチルチオ−7H−ピロロ
〔2,3−d〕ピリミジン−4−オン(化合物
1)、12.0gの2,3−O−イソプロピリデン−
5−O−トリフエニルメチル−β−D−リボフラ
ノシル塩化物(化合物2)及び水素化ナトリウム
1.1gを加え、再び乾燥し窒素置換した。次に、
乾燥ジメチルホルムアミド60mlを加え、室温下数
時間攪拌後、反応混合物を氷水中に注ぎ酢酸エチ
ルで抽出した。有機層を水、飽和塩化ナトリウム
水で洗い、無水硫酸ナトリウム上で乾燥後、減圧
下溶媒を留去し粗生成物を得た。これをシリカゲ
ルカラムで精製して9.5gの3,4−ジヒドロ−
3−メトキシメチル−5−メチル−2−メチルチ
オ−7−(2,3−O−イソプロピリデン−5−
O−トリフエニルメチル−D−リボフラノシル)
−7H−ピロロ〔2,3−d〕ピリミジン−4−
オン(化合物3)を得た。(収率81%) UV(MeOH):λmax=307nm λmax=271nm IR(Neat),(α/β=1/2:2925,1690,
1517,1448,1206,1097,782,760,703
cm-1 NMR(CDCl3),(α/β=1/2): δ=1.36(s,3H),1.62(s,3H),1.94
(s,3H),2.27(d,3H,J=1.0Hz),
2.44(d,3H,J=1.0Hz),2.53(d,
3H),3.15(dd,1H,J1=2.4Hz,J2=10.3
Hz),3.33(dd,1H,J1=2.4Hz,J2=10.5
Hz),3.35(dd,1H,J1=2.4Hz,J2=10.5
Hz),3.44(s,3H),3.45(s,3H),3.62
(dd,1H,J1=2.2Hz,J2=10.3Hz),4.3−
4.4(m,1H),4.84(dd,1H,J1=3.2Hz,
J2=6.4Hz),4.95(d,1H,J=6.1Hz),
5.0−5.1(m,1H),5.56and5.58
(ABquartet,2H,J=12.0Hz),6.26(d,
1H,J=3.4Hz),6.60(d,1H,J=1.0
Hz),6.97(d,1H,J=1.0Hz),7.08(d,
1H,J=3.9Hz),7.1−7.6(m,15H)EI
Mass:m/z653(M+) 実施例 2 上記実施例1で得られた化合物3の置換基を以
下の方法で変換して、α−アノマー体とβ−アノ
マー体に分離した。 化合物3を6.4g乾燥後、アセトアミド32gと
水素化ナトリウム3.2gを加え窒素置換した。油
浴中135℃で2.5時間攪拌し、減圧下アセトアミド
を留去し残査に氷を加え、塩化アンモニウムで中
和後ベンゼンで抽出した。ベンゼン層を水、飽和
塩化ナトリウムで洗浄後、無水硫酸ナトリウム上
で乾燥し溶媒を留去した。生成物をシリカゲルカ
ラムで精製した後、塩化メチレンに溶かした。冷
却後、冷臭化水素ガスの塩化メチレン溶液330ml
を加え10分間攪拌した。更に室温で20分間攪拌し
た後、飽和炭酸水素ナトリウム水を加え、有機層
を無水硫酸ナトリウム上で乾燥し溶媒を留去し
た。得られた粗生成物をシリカゲルカラムで精製
し、n−ヘキサン・ベンゼンより再結晶して白色
針状結晶の5−アセチルアミノ−3,4−ジヒド
ロ−3−メトキシメチル−5−メチル−7−(2,
3−O−イソプロピリデン−D−リボフラノシ
ル)−7H−ピロロ〔2,3−d〕ピリミジン−4
−オンのβ−アノマー体1.48g及びα−アノマー
体0.85gを得た。(収率:β−アノマー体44%,
α−アノマー体25%) 融点:α−アノマー体;145−147℃ β−アノマー体;182−184℃ UV(MeOH):α−アノマー体; λmax=304nm λmax=207nm β−アノマー体; λmax=302nm λmax=208nm IR(KBr):α−アノマー体;3440,3300,1693,
1675,1588,1293,1110,1069,854,770
cm-1 β−アノマー体;3478,3299,1702,
1661,1590,1302,1109,1070,852,725
cm-1 NMR(CDCl3):α−アノマー体;δ=1.32(s,
3H),1.51(s,3H),1.7(br.s,1H),
2.38(d,3H,J=1.5Hz),2.42(s,
3H),3.42(s,3H),3.7−3.9(m,2H),
4.3−4.4(m,1H),4.7−5.0(m,2H),
5.51(br.s,2H),6.48(d,1H,J=7.5
Hz),6.88(d,1H,J=1.5Hz),8.39(br.
s,1H), β−アノマー体;δ=1.37(s,3H),1.60(s,
3H),2.36(d,3H,J=1.0Hz),2.37
(s,3H),3.20(br.s,1H),3.45(s,
3H),3.7−3.95(m,2H),4.30(q,1H,
J=3.0Hz),5.06(dd,1H,J1=2.4Hz,J2
=6.5Hz),5.15(dd,1H,J1=3.6Hz,J2
6.5Hz),5.46and5.61(ABquartet,2H,J
=11.0Hz),5.84(d,1H,J=3.6Hz),
6.63(d,1H,J=1.0Hz),8.38(br.s,
1H) 〔α〕D: α−アノマー体;〔α11 D=−71.3°(C=0.11,
CHCl3) β−アノマー体;〔α26 D=−30.5°(C=0.20,
CHCl3)EI Mass:m/z422(M+) 本発明製造方法は、反応系中にハロゲン塩を共
存させ、クロル化糖のβ位のハロゲンを反転させ
α/β−アノマー体比を調節しうる点に特徴を有
するものであるが、表1に、本発明製造方法によ
るヌクレオシド化合物のα/β−アノマー体生成
比の変化、即ち、化合物1と化合物2とをジメチ
ルホルムアミド中、水素化ナトリウム存在下縮合
反応させ、生成した化合物(3)のα/β−アノマー
体比を調べた結果の一例を示す。 【表】 (発明の効果) 以上の実験結果より明らかなように、本発明製
造方法は生成する化合物3のα/β−アノマー体
比を調節することが可能で、特に、β−アノマー
体ヌクレオシドを選択的に製造したい場合に有用
である。即ち、従来の方法では3/1であつたα/
β−アノマー体比が本発明によれば、例えば臭化
ナトリウムを共存させることにより1/2にするこ
とができる等の著しい効果を有するものである。
従つて、本製造方法によりβ−アノマー体ヌクレ
オシド合成中間体を、従来方法の約2.5倍の収量
で得ることができ、ヌクレオシドQやカデグオマ
イシン等を合成するに有用なヌクレオシド合成中
間体を選択的に高収率で得ることが可能になる。 又、前記一般式()で表される化合物は、ヌ
クレオシドQやカデグオマイシンのみならず、他
の多くのヌクレオシド化合物を製造する際の合成
中間体として用いることが可能であり、本発明は
様々なヌクレオシド化合物、特にそのβ−アノマ
ー体を製造する方法として非常に有用である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a nucleoside compound by condensing a purine derivative and a D-ribose derivative. (Prior Art) In addition to being a component of ribonucleic acid, nucleoside compounds are recognized to be useful as coenzymes and antibiotics. For example, present in a specific tRNA,
Nucleoside Q located at the first position of the anticodon
The modified nucleoside, called ``Nucleoside,'' is expected to have anticancer effects. Cadeguomycin (Japanese Unexamined Patent Publication No. 1982-92693) produced by a strain of Streptomyces hygroscopicus has also attracted attention as an antitumor nucleoside compound. However, these nucleoside compounds exist in extremely small amounts in nature. A method for producing large quantities is desired, and for example, a method for synthesizing nucleoside Q and cadeguomycin has been proposed by T. Ohgie et al., J. Am. Chem. Soc.
101, 3629 (1979),” T. Kondo et al.
Tetrahedron Letters, 24 (34), 3647 (1983).
etc. has been published. Further, general methods for synthesizing nucleosides are described in many publications (for example, Yasutaka Takagi et al., "Nucleic Acids", (April 30, 1972), Asakura Shoten, pp. 73-78, etc.). (Problems to be Solved by the Invention) An object of the present invention is to provide a method for efficiently producing a nucleoside compound. (Means for Solving the Problems) While researching methods for synthesizing nucleoside compounds, the present inventors discovered a method for producing nucleoside compounds by condensation reaction of purine derivatives and D-ribose derivatives, particularly for β-anomeric nucleosides. We have discovered a method for selectively producing , and completed the present invention. The present invention is based on the general formula () (In the formula, R 1 is an alkoxyalkyl group, R 2 is hydrogen,
Lower alkyl group, alkylthio group, R 3 is hydrogen,
(represents a lower alkyl group) and a compound represented by the general formula () (In the formula, R 4 represents an acyl group or an aralkyl group) by reacting with a compound represented by the general formula () (In the formula, R 1 represents an alkoxyalkyl group, R 2 represents hydrogen, a lower alkyl group, or an alkylthio group, R 3 represents hydrogen, a lower alkyl group, and R 4 represents an acyl group or an aralkyl group. This is a method for producing a nucleoside compound represented by (indicating that it contains both anomer forms of β). In the above general formula, R 1 is methoxymethyl,
Represents an alkoxyalkyl group such as ethoxymethyl, methoxyethyl, or ethoxyethyl group, R 2 represents hydrogen, a lower alkyl group, or an alkylthio group such as a methylthio group when later converted to an amino group, and R 3 represents hydrogen or a lower alkyl group. an alkyl group, preferably a methyl group, R 4 is any protecting group used in general nucleoside chemistry, such as an acyl group such as acetyl or benzoyl group or an aralkyl group such as trityl or benzyl group, preferably a trityl group represents. The above reaction requires a strong base such as an alkyl metal hydride,
This objective can be achieved by carrying out the reaction preferably in the presence of sodium hydride in a polar solvent that solubilizes the anionic heterocyclic compound, such as dimethylformamide, at room temperature for one to several hours. The chlorinated sugar represented by the general formula () is “RS
Klein et al., J. Carbohydrates, Nucleosides,
It can be easily synthesized from D-(-)-ribose according to the method of Nucleotides, 1 , 265 (1974), and its chlor group is in the β-coordination. The above condensation reaction is S N 2
It is thought that the reaction proceeds as a type reaction, and therefore, the α-anomer form of the reaction product nucleoside is preferentially produced. However, since natural nucleoside compounds such as nucleoside Q and cadeguomycin are β-anomeric forms, the β-anomeric form of a nucleoside compound synthesis intermediate is required for the production of such compounds. The present invention utilizes the general formula () to control the α/β-anomer ratio of the produced nucleoside compound by coexisting a halogen salt in the reaction system and inverting the halogen of the compound represented by the general formula (). This is a method for producing a nucleoside compound represented by The α,β-anomer mixture produced by the production method of the present invention can be analyzed by silica gel chromatography or
There are cases where it is possible to separate the α-form and β-form by conventional methods such as HPLC, and there are cases where separation is difficult. If separation is difficult, use commonly used methods.
The objective can be achieved by eliminating or converting substituents. For example, 3,4-dihydro-3-methoxymethyl-5-methyl-2-methylthio-7-(2,3-O-isopropylidene-5
-O-triphenylmethyl-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine-4
-one can be easily separated by silica gel column chromatography after acetylaminating the 2-position methylthio group and detritylating the sugar moiety. (Example) An example of the manufacturing method of the present invention will be shown below by way of Example. The compounds in the following Examples were purified by conventional means such as distillation, chromatography, and recrystallization, and identified by melting point measurement, IR, NMR, UV, mass spectra, optical rotation, etc. Example 1 After drying 7.0 g of sodium bromide under reduced pressure,
4.2 g of 3,4-dihydro-3-methoxymethyl-5-methyl-2-methylthio-7H-pyrrolo[2,3-d]pyrimidin-4-one (compound 1), 12.0 g of 2,3-O -isopropylidene-
5-O-triphenylmethyl-β-D-ribofuranosyl chloride (compound 2) and sodium hydride
1.1 g was added, and the mixture was dried again and replaced with nitrogen. next,
After adding 60 ml of dry dimethylformamide and stirring at room temperature for several hours, the reaction mixture was poured into ice water and extracted with ethyl acetate. The organic layer was washed with water and saturated sodium chloride water, dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain a crude product. This was purified using a silica gel column and 9.5 g of 3,4-dihydro-
3-methoxymethyl-5-methyl-2-methylthio-7-(2,3-O-isopropylidene-5-
O-triphenylmethyl-D-ribofuranosyl)
-7H-pyrrolo[2,3-d]pyrimidine-4-
(Compound 3) was obtained. (Yield 81%) UV (MeOH): λmax = 307nm λmax = 271nm IR (Neat), (α/β = 1/2: 2925, 1690,
1517, 1448, 1206, 1097, 782, 760, 703
cm -1 NMR (CDCl 3 ), (α/β = 1/2): δ = 1.36 (s, 3H), 1.62 (s, 3H), 1.94
(s, 3H), 2.27 (d, 3H, J=1.0Hz),
2.44 (d, 3H, J=1.0Hz), 2.53 (d,
3H), 3.15 (dd, 1H, J 1 = 2.4Hz, J 2 = 10.3
Hz), 3.33 (dd, 1H, J 1 = 2.4Hz, J 2 = 10.5
Hz), 3.35 (dd, 1H, J 1 = 2.4Hz, J 2 = 10.5
Hz), 3.44 (s, 3H), 3.45 (s, 3H), 3.62
(dd, 1H, J 1 = 2.2Hz, J 2 = 10.3Hz), 4.3−
4.4 (m, 1H), 4.84 (dd, 1H, J 1 = 3.2Hz,
J 2 = 6.4Hz), 4.95 (d, 1H, J = 6.1Hz),
5.0−5.1 (m, 1H), 5.56and5.58
(ABquartet, 2H, J=12.0Hz), 6.26(d,
1H, J = 3.4Hz), 6.60 (d, 1H, J = 1.0
Hz), 6.97 (d, 1H, J=1.0Hz), 7.08 (d,
1H, J = 3.9Hz), 7.1-7.6 (m, 15H) EI
Mass: m/z653 (M + ) Example 2 The substituents of Compound 3 obtained in Example 1 above were converted by the following method to separate it into an α-anomer form and a β-anomer form. After drying 6.4 g of Compound 3, 32 g of acetamide and 3.2 g of sodium hydride were added, and the air was replaced with nitrogen. The mixture was stirred in an oil bath at 135°C for 2.5 hours, acetamide was distilled off under reduced pressure, ice was added to the residue, and the mixture was neutralized with ammonium chloride and extracted with benzene. The benzene layer was washed with water and saturated sodium chloride, dried over anhydrous sodium sulfate, and the solvent was distilled off. The product was purified with a silica gel column and then dissolved in methylene chloride. After cooling, add 330 ml of cold hydrogen bromide gas to methylene chloride solution.
was added and stirred for 10 minutes. After further stirring at room temperature for 20 minutes, saturated aqueous sodium bicarbonate was added, the organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained crude product was purified using a silica gel column and recrystallized from n-hexane/benzene to obtain white needle-like crystals of 5-acetylamino-3,4-dihydro-3-methoxymethyl-5-methyl-7- (2,
3-O-isopropylidene-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine-4
1.48 g of β-anomer and 0.85 g of α-anomer of -one were obtained. (Yield: β-anomer 44%,
α-anomer 25%) Melting point: α-anomer; 145-147℃ β-anomer; 182-184℃ UV (MeOH): α-anomer; λmax=304nm λmax=207nm β-anomer; λmax= 302nm λmax=208nm IR (KBr): α-anomer; 3440, 3300, 1693,
1675, 1588, 1293, 1110, 1069, 854, 770
cm -1 β-anomer; 3478, 3299, 1702,
1661, 1590, 1302, 1109, 1070, 852, 725
cm -1 NMR (CDCl 3 ): α-anomer; δ = 1.32 (s,
3H), 1.51 (s, 3H), 1.7 (br.s, 1H),
2.38 (d, 3H, J=1.5Hz), 2.42 (s,
3H), 3.42 (s, 3H), 3.7-3.9 (m, 2H),
4.3-4.4 (m, 1H), 4.7-5.0 (m, 2H),
5.51 (br.s, 2H), 6.48 (d, 1H, J=7.5
Hz), 6.88 (d, 1H, J=1.5Hz), 8.39 (br.
s, 1H), β-anomer; δ = 1.37 (s, 3H), 1.60 (s,
3H), 2.36 (d, 3H, J=1.0Hz), 2.37
(s, 3H), 3.20 (br.s, 1H), 3.45 (s,
3H), 3.7-3.95 (m, 2H), 4.30 (q, 1H,
J = 3.0Hz), 5.06 (dd, 1H, J 1 = 2.4Hz, J 2
= 6.5Hz), 5.15 (dd, 1H, J 1 = 3.6Hz, J 2 =
6.5Hz), 5.46and5.61(ABquartet, 2H, J
= 11.0Hz), 5.84 (d, 1H, J = 3.6Hz),
6.63 (d, 1H, J=1.0Hz), 8.38 (br.s,
1H) [α] D : α-anomer; [α 11 D = −71.3° (C = 0.11,
CHCl 3 ) β-anomer; [α 26 D = −30.5° (C = 0.20,
CHCl 3 ) EI Mass: m/z422 (M + ) The production method of the present invention involves coexisting a halogen salt in the reaction system, inverting the halogen at the β-position of the chlorinated sugar, and adjusting the α/β-anomer ratio. Table 1 shows the changes in the production ratio of α/β-anomers of nucleoside compounds according to the production method of the present invention. An example of the results of examining the α/β-anomer ratio of compound (3) produced by condensation reaction in the presence of the compound (3) is shown below. [Table] (Effects of the Invention) As is clear from the above experimental results, the production method of the present invention makes it possible to adjust the α/β-anomer ratio of Compound 3, and in particular, the β-anomer nucleoside This is useful when you want to selectively manufacture . In other words, α/ which was 3/1 in the conventional method
According to the present invention, the β-anomer ratio can be reduced to 1/2 by coexisting sodium bromide, which is a remarkable effect.
Therefore, by this production method, β-anomeric nucleoside synthesis intermediates can be obtained in a yield approximately 2.5 times that of the conventional method, and nucleoside synthesis intermediates useful for synthesizing nucleoside Q, cadeguomycin, etc. can be selectively obtained. This makes it possible to obtain high yields. Furthermore, the compound represented by the general formula () can be used not only as a synthetic intermediate for producing nucleoside Q and cadeguomycin, but also many other nucleoside compounds. It is very useful as a method for producing compounds, especially their β-anomers.

Claims (1)

【特許請求の範囲】 1 一般式 () (式中、R1はアルコキシアルキル基、R2は水
素、低級アルキル基、アルキルチオ基、R3水素、
低級アルキル基を表す)で表される化合物と、 一般式 () (式中、R4はアシル基、アルアルキル基を表す)
で表される化合物とを反応させて、 一般式 () (式中、R1はアルコキシアルキル基、R2は水
素、低級アルキル基、アルキルチオ基、R3は水
素、低級アルキル基、R4はアシル基、アルアル
キル基を表す)で表されるヌクレオシド化合物を
製造する方法。
[Claims] 1 General formula () (In the formula, R 1 is an alkoxyalkyl group, R 2 is hydrogen, lower alkyl group, alkylthio group, R 3 is hydrogen,
(representing a lower alkyl group) and a compound represented by the general formula () (In the formula, R 4 represents an acyl group or an aralkyl group)
By reacting with a compound represented by the general formula () (In the formula, R 1 represents an alkoxyalkyl group, R 2 represents hydrogen, a lower alkyl group, or an alkylthio group, R 3 represents hydrogen, a lower alkyl group, and R 4 represents an acyl group or an aralkyl group) How to manufacture.
JP4916485A 1985-03-11 1985-03-11 Production of nucleoside compound Granted JPS61207400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4916485A JPS61207400A (en) 1985-03-11 1985-03-11 Production of nucleoside compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4916485A JPS61207400A (en) 1985-03-11 1985-03-11 Production of nucleoside compound

Publications (2)

Publication Number Publication Date
JPS61207400A JPS61207400A (en) 1986-09-13
JPH0560477B2 true JPH0560477B2 (en) 1993-09-02

Family

ID=12823438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4916485A Granted JPS61207400A (en) 1985-03-11 1985-03-11 Production of nucleoside compound

Country Status (1)

Country Link
JP (1) JPS61207400A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU25500A (en) * 1999-05-11 2003-08-29 Pfizer Products Inc. Process for the synthesis of nucleosite analogues

Also Published As

Publication number Publication date
JPS61207400A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
US4145531A (en) Process for producing 2'-substituted-D-ribofuranosyl purine compounds
US5336770A (en) Transglycosilation process for producing acyclic nucleosides
JP4593917B2 (en) Method for preparing purine nucleosides
JP3042073B2 (en) Nucleoside derivative and method for producing the same
EP0638586B1 (en) Nucleoside derivatives and methods for producing them
JP3029806B2 (en) Glycosidation of colchicine derivative and product thereof
EP0389110B1 (en) Process for the preparation of 2'-deoxy-5-trifluoromethyl-beta-uridine
EP0427587B1 (en) Process for the preparation of AZT (3'-azido-3'-deoxy-thymidine) and related compounds
US5006646A (en) Process for preparing 2'-deoxy-5-trifluoromethyl-beta-uridine
JPH0560477B2 (en)
US3419544A (en) Novel preparation of 1,2,3,5-tetraacyl-beta-d-ribofuranoses
JPH0217199A (en) Production of 2'-deoxy-beta-adenosine
Ponpipom et al. The Reaction of O-Benzylidene Sugars with N-Bromosuccinimide.: VI. A New Synthesis of 2′-Deoxyuridine and some of its Selectively Substituted Derivatives
EP0842942B1 (en) D-pentofuranose derivatives and process for the preparation thereof
CA2552583A1 (en) Improved synthesis of 2-substituted adenosines
JPH03227997A (en) Production of nucleoside derivative
US5811540A (en) 5-O-pyrimidyl-2,3-dideoxy-1-thiofuranoside derivative, and production method and use thereof
Pickering et al. Synthesis of novel bicyclic nucleosides related to natural griseolic acids
Larsen et al. Synthesis of 2, 3’-Anhydro-2’-deoxyuridines and 2’, 3’-Didehydro-2’, 3’-dideoxyuridines Using Polymer Supported Fluoride
JPS63264596A (en) Production of didehydronucleosides
JP3499896B2 (en) Method for producing 2'-deoxynucleosides
HUT57225A (en) Process for producing 2-deoxy-d-threo-pentofuranozides and intermadiates for them
JPH05170760A (en) Production of thionucleo- side
JP3023804B2 (en) Method for producing 3'-deoxy-3'-fluorothymidine
SU666184A1 (en) Method of producing 2',3'-didesoxy-3'-fluoro pyrimidine nucleosides or acyl derivatives thereof