JPH0560409B2 - - Google Patents

Info

Publication number
JPH0560409B2
JPH0560409B2 JP9593086A JP9593086A JPH0560409B2 JP H0560409 B2 JPH0560409 B2 JP H0560409B2 JP 9593086 A JP9593086 A JP 9593086A JP 9593086 A JP9593086 A JP 9593086A JP H0560409 B2 JPH0560409 B2 JP H0560409B2
Authority
JP
Japan
Prior art keywords
mold
pine
film
raw material
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9593086A
Other languages
Japanese (ja)
Other versions
JPS62251106A (en
Inventor
Toyohiko Okina
Ichiro Tsushima
Satoshi Kawabata
Akinori Teranishi
Hiroshi Goto
Tetsuo Ooyama
Rikio Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK filed Critical Inoue MTP KK
Priority to JP9593086A priority Critical patent/JPS62251106A/en
Publication of JPS62251106A publication Critical patent/JPS62251106A/en
Publication of JPH0560409B2 publication Critical patent/JPH0560409B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、表面皮膜を有する強化プラスチツ
クの成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention relates to a method of molding reinforced plastics having a surface coating.

(従来の技術) 強化プラスチツクは、ガラス繊維等の繊維状補
強材を組み合わせて成形することにより、著しく
強度を増大させたプラスチツクであり、特に剛性
の高いものは構造材として広く用いられている。
(Prior Art) Reinforced plastics are plastics whose strength has been significantly increased by molding them in combination with fibrous reinforcing materials such as glass fibers, and those with particularly high rigidity are widely used as structural materials.

ところで、その剛性の高い強化プラスチツクの
代表的な成形方法としては、不飽和ポリエステ
ル樹脂をガラス繊維マツトに塗布しながらそのマ
ツトを積層成形する方法、成形型内にガラス繊
維補強材を装置し、その上から不飽和ポリエステ
ル樹脂を注入して加熱プレスを施して成形する方
法、多量の充てん剤、ガラス繊維、樹脂、硬化
剤を混練し、パテ状にしたのち加熱した金型によ
り圧縮成形する方法等がある。
By the way, typical molding methods for highly rigid reinforced plastic include a method in which unsaturated polyester resin is applied to a glass fiber mat and the mat is laminated and molded; A method in which unsaturated polyester resin is injected from above and heat pressed to form the product, a method in which a large amount of filler, glass fiber, resin, and hardening agent are kneaded, made into a putty, and then compression molded in a heated mold. There is.

(発明が解決しようとする問題点) しかし、いずれの成形方法にあつても、それら
によつて得られる剛性の高い強化プラスチツク
は、繊維補強材の存在によつて表面にピンホール
(微細な孔)を生じ易く外観の損なわれたものと
なり易いので、その強化プラスチツクを製品外部
の構成材として、そのまま使用し難いという問題
がある。
(Problem to be solved by the invention) However, regardless of the molding method, the highly rigid reinforced plastic obtained by these methods has pinholes (fine pores) on the surface due to the presence of fiber reinforcement. ) and the appearance is likely to be impaired, so there is a problem in that it is difficult to use the reinforced plastic as it is as a component for the outside of the product.

この発明は前記の点に鑑みなされたもので、表
面外観が良好な剛性の高い強化プラスチツクを得
ることのできる製造方法を提供せんとするもので
ある。
The present invention was made in view of the above points, and it is an object of the present invention to provide a manufacturing method capable of producing a highly rigid reinforced plastic with a good surface appearance.

(問題点を解決するための手段) この発明は成形型のキヤビテイ面に平均分子量
500〜50000のウレタン系塗料を塗布して皮膜を形
成し、そのキヤビテイ内にマツト状繊維補強材を
配置し、そのキヤビテイ内に不飽和モノアルコー
ルとポリイソシアネート及び触媒とからなるポリ
マー原料を注入してマツト状繊維補強材に含浸さ
せ、反応硬化させて、マツト状繊維補強材にポリ
マーが含浸硬化してなる基材を形成し、同時に該
基材と皮膜との接着一体化を行うことを特徴とす
るものである。
(Means for Solving the Problems) This invention provides an average molecular weight on the cavity surface of the mold.
500 to 50,000 urethane paint is applied to form a film, a pine-like fiber reinforcement material is placed in the cavity, and a polymer raw material consisting of unsaturated monoalcohol, polyisocyanate, and catalyst is injected into the cavity. The polymer is impregnated into a pine-like fiber reinforcing material and cured by reaction to form a base material in which the pine-like fiber reinforcing material is impregnated with a polymer and cured, and at the same time, the base material and the film are bonded and integrated. That is.

(作用) 不飽和モノアルコール、例えばフマレートエス
テルモノアルコールは、ポリイソシアネート、例
えば液状変性4,4′−ジフエニルメタンジイソシ
アネート(MDI)と反応し、()式で示す構造
のものとなる。
(Function) An unsaturated monoalcohol, such as a fumarate ester monoalcohol, reacts with a polyisocyanate, such as liquid modified 4,4'-diphenylmethane diisocyanate (MDI), resulting in a structure represented by the formula ().

この反応において、過酸化物触媒を含む場合に
は二種類の二重結合も更に反応して、不飽和ポリ
エステルの如く強度及び剛性の高い高架橋密度ポ
リマーとなる。ここに、高架橋密度ポリマーと
は、ウレタン結合及びラジカル結合を含むポリマ
ーをいう。
In this reaction, when a peroxide catalyst is included, the two types of double bonds are further reacted, resulting in a highly crosslinked density polymer with high strength and rigidity, such as unsaturated polyester. Here, the term "highly crosslinked density polymer" refers to a polymer containing urethane bonds and radical bonds.

しかも、不飽和モノアルコールとポリイソシア
ネート及び触媒とからなるポリマー原料は、その
自体の粘度及び反応初期の増粘性が低い特徴を有
する。第5図は、そのポリマー原料の反応初期に
おける低粘性を示すための粘度曲線であり、従来
のRIM用ウレタン原料と比較するものである。
用いたウレタン原料の配合は、分子量6000、OH
価28、官能基数3のポリエーテルポリオール100
重量部、エチレングリコール19重量部、架橋剤
0.1重量部、フタル酸ジオクチル(DOP)80重量
部および変性MDI(29NCO%)110重量部からな
る。一方比較するポリマー原料の配合は、フマレ
ートエステルモノアルコール100重量部、ジブチ
ルチンジラウレート0.1重量部、キレートコバル
ト化合物0.4重量部、DOP50重量部、変形MDI
(29NCO%)50重量部、及び第三ブチルパーベン
ゾエイト5.1重量部からなる。なお、DOPは粘度
測定を容易とするために加えたもので、いずれの
配合においてもその含量を26%に調整してある。
Moreover, the polymer raw material composed of an unsaturated monoalcohol, a polyisocyanate, and a catalyst is characterized by its own low viscosity and low viscosity increasing property at the initial stage of the reaction. FIG. 5 is a viscosity curve showing the low viscosity of the polymer raw material at the initial stage of the reaction, and is compared with a conventional urethane raw material for RIM.
The composition of the urethane raw material used is molecular weight 6000, OH
Polyether polyol 100 with a valence of 28 and a functional group number of 3
Parts by weight, 19 parts by weight of ethylene glycol, Crosslinking agent
0.1 part by weight, 80 parts by weight of dioctyl phthalate (DOP) and 110 parts by weight of modified MDI (29NCO%). On the other hand, the blend of polymer raw materials to be compared is 100 parts by weight of fumarate ester monoalcohol, 0.1 parts by weight of dibutyltin dilaurate, 0.4 parts by weight of chelate cobalt compound, 50 parts by weight of DOP, modified MDI
(29NCO%), and 5.1 parts by weight of tert-butyl perbenzoate. Note that DOP was added to facilitate viscosity measurement, and its content was adjusted to 26% in all formulations.

このようにポリマー原料が反応初期において低
粘性を示す結果、あらかじめ皮膜を形成して、マ
ツト状繊維補強材をセツトした成形型キヤビテイ
に注入したポリマー原料は、容易にマツト状繊維
補強材に含浸して反応硬化し、強度及び剛性の高
い高架橋密度ポリマーとなる。そして、含浸硬化
した高架橋密度ポリマーとマツト状繊維補強材と
が複合一体化して型面形状の基材を形成する。こ
の基材は、高架橋密度ポリマー及びマツト状繊維
補強材各々の強度及び剛性が相乗して作用するの
で、優れた強度及び剛性を有するものである。こ
の基材と皮膜とは、ポリマー原料硬化時の接着性
及び皮膜の化学結合、ウレタン結合等からなる接
着性によつて強固に接着結合して一体成形品とな
り、その後の脱型、必要に応じて行うトリミング
を経て、表面皮膜を有する剛性の高い強化プラス
チツクとなる。
As a result of the polymer raw material exhibiting low viscosity in the early stage of the reaction, the polymer raw material that has been injected into a mold cavity with a pine-like fiber reinforcement after forming a film in advance will easily impregnate the pine-like fiber reinforcement. The polymer is then reacted and cured to form a highly crosslinked density polymer with high strength and rigidity. Then, the impregnated and cured highly crosslinked density polymer and the mat-like fiber reinforcing material are compositely integrated to form a mold surface-shaped base material. This base material has excellent strength and rigidity because the strength and rigidity of the highly crosslinked density polymer and the mat-like fiber reinforcement work together. This base material and film are firmly adhesively bonded to each other by the adhesiveness of the polymer raw material when it cures, the chemical bond of the film, the urethane bond, etc. to form an integrally molded product. After being trimmed, it becomes a highly rigid reinforced plastic with a surface film.

(実施例) 以下実施例の成形工程に基づいてこの発明を説
明する。第1図乃至第3図はその成形工程を説明
する断面図である。
(Example) The present invention will be explained below based on the molding process of the example. 1 to 3 are cross-sectional views illustrating the molding process.

(イ) 皮膜を形成する工程(第1図) 成形型の下型10に設けてある製品形状のキ
ヤビテイ面10aに、ワツクス系、シリコン系
等からなる離型剤を塗布し、その離型剤上に平
均分子量500〜50000のウレタシ系塗料12aを
塗布して皮膜12を形成する。ウレタン系塗料
12aは、溶剤で希釈して用い、皮膜12の厚
みが20〜500ミクロンとなるように塗布する。
その皮膜は、一層又は厚みによつては分子量等
が異なる多種類の塗料の塗布からなる多層構造
とする。
(B) Step of forming a film (Fig. 1) A mold release agent made of wax-based, silicon-based, etc. is applied to the cavity surface 10a of the product shape provided in the lower mold 10 of the mold, and the mold release agent is applied. A urethane paint 12a having an average molecular weight of 500 to 50,000 is applied thereon to form a film 12. The urethane paint 12a is diluted with a solvent and applied so that the thickness of the film 12 is 20 to 500 microns.
The film may have a single layer structure or a multilayer structure consisting of coatings of many types of paints having different molecular weights depending on the thickness.

(ロ) マツト状繊維補強材を配置する工程(第2
図) マツト状繊維補強材14を、成形型の上型1
6のキヤビテイ面16aに粘着テープ、係止ピ
ン等によつて仮止めする。そして、前記皮膜1
2の乾燥後に下型10と上型16を閉じて成形
型の閉型を行う。この閉型に際して、成形型を
強く圧締する必要はなく、次工程で行うポリマ
ー原料注入時の注入圧(通常2Kg/cm2以下)と
略同等の型締め圧でよい。これは、ポリマー原
料が反応に際して殆ど発泡しなく、成形型内の
圧力増加が殆どないからである。この閉型によ
つてマツト状繊維補強材14がキヤビテイ内に
配置される。閉型によつて形成されるキヤビテ
イ空間は、マツト状繊維補強材14及び皮膜1
2が占める空間と同等若しくはその占有空間よ
りわずかに大なるものとする。マツト状繊維補
強材14としては、特にガラス長繊維からなる
ものが好ましく、その厚みによつては上型キヤ
ビテイ面16aへの仮止めに際し、あらかじめ
所定形状(キヤビテイ面形状)としておくのが
良い場合もある。この実施例においては、コン
テイニユアスストランドマツト600g/cm2、商
品M−8609(旭フアイバーグラス(株))を用いた。
(b) Process of placing pine-like fiber reinforcement (second
Figure) The pine-like fiber reinforcing material 14 is placed in the upper mold 1 of the mold.
It is temporarily fixed to the cavity surface 16a of No. 6 using adhesive tape, locking pins, etc. Then, the film 1
After the step 2 is dried, the lower mold 10 and the upper mold 16 are closed to close the mold. When closing the mold, it is not necessary to strongly clamp the mold, and the mold clamping pressure may be approximately the same as the injection pressure (usually 2 kg/cm 2 or less) when injecting the polymer raw material in the next step. This is because the polymer raw material hardly foams during the reaction, and there is almost no pressure increase in the mold. This closed mold allows the mat-like fiber reinforcement 14 to be placed within the cavity. The cavity space formed by the closed mold includes the pine-like fiber reinforcement material 14 and the coating 1.
It shall be equal to or slightly larger than the space occupied by 2. The pine-like fiber reinforcing material 14 is particularly preferably made of long glass fibers, and depending on its thickness, it may be better to form it into a predetermined shape (cavity surface shape) before temporarily fixing it to the upper mold cavity surface 16a. There is also. In this example, a continuous strand mat of 600 g/cm 2 and product M-8609 (manufactured by Asahi Fiberglass Co., Ltd.) were used.

(ハ) ポリマー原料を注入し、マツト状繊維補強材
に含浸させる工程(第3図) 上型16に設けられた注入口18にセツトさ
れた注入機ノズル20から、不飽和モノアルコ
ールとポリイソシアネート及び触媒しからなる
ポリマー原料を、キヤビテイ内に注入する。
尚、この注入は成形型の構造、製造設備等によ
つては、前記成形型の閉型前に行う方が適する
場合もある。その場合にあつては、成形型閉型
時の型締め圧は上型の自重で殆ど事足りるもの
である。
(c) Step of injecting the polymer raw material and impregnating it into the mat-like fiber reinforcing material (Fig. 3) Unsaturated monoalcohol and polyisocyanate are injected from the injection machine nozzle 20 set in the injection port 18 provided in the upper mold 16. A polymer raw material consisting of a catalyst and a catalyst is injected into the cavity.
Note that depending on the structure of the mold, manufacturing equipment, etc., it may be more appropriate to perform this injection before closing the mold. In that case, the dead weight of the upper mold is almost sufficient to provide the clamping pressure when the mold is closed.

不飽和モノアルコールとしては、フアレート
エステルモノアルコールを95%以上含むものが
特に好ましい。その一例として、メタクリル
酸、プロピレンオキサイド及び無水マレイン酸
からアミン触媒下合成される不飽和モノアルコ
ールを上げることができる。例示した不飽和モ
ノアルコールは、互いに異性体の関係にあるフ
マレートエステルモノアルコールとマレートエ
ステルモノアルコールを含み、かつ全体の95%
以上がフマレートエステルモノアルコール、残
余の0〜5%がマレートエステルモノアルコー
ルからなるものである。また、ポリイソシアネ
ートとしては、芳香族若しくは樹脂族ポリイソ
シアネートのいずれをも使用することができ
る。
As unsaturated monoalcohols, those containing 95% or more of phalate ester monoalcohols are particularly preferred. An example thereof is an unsaturated monoalcohol synthesized from methacrylic acid, propylene oxide and maleic anhydride under an amine catalyst. The illustrated unsaturated monoalcohol includes fumarate ester monoalcohol and maleate ester monoalcohol, which are isomers with each other, and accounts for 95% of the total.
The above is a fumarate ester monoalcohol, and the remaining 0 to 5% is a maleate ester monoalcohol. Further, as the polyisocyanate, either aromatic or resinous polyisocyanate can be used.

ポリマー原料は、不飽和モノアルコールを含
むA成分と、ポリイソシアネートを含むB成分
とからなり、キヤビテイへの注入時に両成分が
混合されるものである。キヤビテイへの注入
は、反応射出成形機(RIM成形機)を用いて
行うのが簡便である。ポリマー原料の配合例を
次に示す。
The polymer raw material consists of component A containing an unsaturated monoalcohol and component B containing polyisocyanate, and both components are mixed when injected into the cavity. Injection into the cavity is easily performed using a reaction injection molding machine (RIM molding machine). A blending example of polymer raw materials is shown below.

Γポリマー原料の配合例 A成分 不飽和モノアルコール(フマレートエステルモ
ノアルコール99%、マレートエステルモノアル
コール1%、OH価188) ……100重量部 ジブチルチンジラウレート ……0.15重量部 キレートコバルト化合物 ……0.20重量部 B成分 変性MDI(29NCO%)(I−134L エムデー化
成(株)製) ……51重量部 第三ブチルパーベンゾエイト ……2.5重量部 なお前記触媒、ジブチルチンジラウレート、
キレートコバルト化合物、第三ブチルパーベン
ゾエイトの添加量は、用いる不飽和モノアルコ
ール、ポリイソシアネートの種類、及び製造条
件等によつて、所望の反応速度となるように決
定する。又、スタナスオクトエイト、ジメチル
チンジラウレート等も触媒として使用し得るも
のである。
Blend example of Γ polymer raw materials Component A Unsaturated monoalcohol (99% fumarate ester monoalcohol, 1% maleate ester monoalcohol, OH value 188) ...100 parts by weight Dibutyltin dilaurate ...0.15 parts by weight Chelated cobalt compound ... ...0.20 parts by weight Modified MDI (29NCO%) (I-134L, manufactured by Md Kasei Co., Ltd.) component B ...51 parts by weight tert-butyl perbenzoate ...2.5 parts by weight The above catalyst, dibutyltin dilaurate,
The amount of the chelate cobalt compound and tert-butyl perbenzoate to be added is determined depending on the unsaturated monoalcohol used, the type of polyisocyanate, production conditions, etc. so as to achieve the desired reaction rate. Furthermore, stannous octoate, dimethyltin dilaurate, etc. can also be used as catalysts.

このポリマー原料は、反応前の粘性及び反応
開始初期の増粘性が低い特徴を有し、そのため
容易にマツト状繊維補強材14に含浸し、成形
型内に満遍なく行き亘る。その低粘性について
示せば、前記配合例のポリマー原料にあつて
は、反応前の粘度が約600cps(25℃)であり、
通常のポリウレタン原料の粘度約1500cps(25
℃)に比べて半分以下である。
This polymer raw material has a characteristic of low viscosity before the reaction and low viscosity increase at the beginning of the reaction, and therefore easily impregnates the mat-like fiber reinforcing material 14 and spreads evenly inside the mold. Regarding its low viscosity, the polymer raw material in the above formulation example has a viscosity of about 600 cps (25°C) before reaction,
The viscosity of normal polyurethane raw materials is about 1500 cps (25
It is less than half compared to ℃).

(ニ) ポリマー原料の反応硬化後成形品を脱型する
工程 マツト状繊維補強材に含浸したポリマー原料
は、反応の進行により硬化して剛性及び強度の
高い高架橋密度ポリマーとなり、マツト状繊維
補強材と複合一体化して基材を形成する。そし
て、ポリマー原料の硬化による接着作用及び皮
膜12の化学結合、ウレタン結合等からなる接
着作用により、基材の形成と同時にその基材と
皮膜12とは一体化する。基材は、高架橋密度
ポリマーの強度及び剛性と、マツト状繊維補強
材の強度及び剛性との相乗作用により、優れた
強度及び剛性を有するものとなる。
(d) Step of demolding the molded product after reaction hardening of the polymer raw material The polymer raw material impregnated into the pine-like fiber reinforcement hardens as the reaction progresses and becomes a highly crosslinked density polymer with high rigidity and strength. The base material is formed by combining with the base material. Then, the base material and the film 12 are integrated with each other at the same time as the base material is formed, due to the adhesive action caused by the curing of the polymer raw material and the adhesive action formed by chemical bonds, urethane bonds, etc. of the film 12. The base material has excellent strength and stiffness due to the synergistic effect of the strength and stiffness of the highly crosslinked density polymer and the strength and stiffness of the mat-like fiber reinforcement.

ポリマー原料の反応硬化後皮膜と基材との一
体成形品を脱型し、必要に応じてトリミングを
施して表面皮膜を有する強化プラスチツク成形
品を得る。第4図はその強化プラスチツク成形
品の断面を示すもので、22はマツト状繊維補
強材にポリマー原料が含浸硬化してなる基材で
ある。
After reaction and curing of the polymer raw material, the integrally molded product of the film and base material is demolded and trimmed as necessary to obtain a reinforced plastic molded product having a surface film. FIG. 4 shows a cross section of the reinforced plastic molded product, and 22 is a base material made by impregnating and hardening a polymer raw material into a pine-like fiber reinforcing material.

(発明の効果) この発明は、不飽和モノアルコールとポリイソ
シアネート及び触媒とからなり、反応初期の粘性
が低いポリマー原料を成形型のキヤビテイに注入
し、キヤビテイ内に配置しておいたマツト状繊維
補強材に含浸させ、硬化させて強度及び剛性に優
れる基材を形成し、同時に、あらかじめキヤビテ
イ面に形成しておいた皮膜とその基材との接着一
体化を行うものであり、その結果表面皮膜を有す
る剛性の高い強化プラスチツクを得ることができ
たのである。従つて、成形時、主としてマツト状
繊維補強材の存在によつて、基材表面にピンホー
ル等の表面不良を生じても、その基材表面が皮膜
によつて覆われ、露出しなくなるので、表面外観
の良好な成形品を得ることができたのである。
(Effects of the Invention) This invention consists of an unsaturated monoalcohol, a polyisocyanate, and a catalyst, and a polymer raw material with low viscosity at the initial stage of the reaction is injected into the cavity of a mold, and a pine-like fiber is placed in the cavity. The reinforcing material is impregnated and cured to form a base material with excellent strength and rigidity, and at the same time, the film previously formed on the cavity surface is bonded and integrated with the base material. It was possible to obtain a highly rigid reinforced plastic with a coating. Therefore, even if surface defects such as pinholes occur on the base material surface during molding, mainly due to the presence of the pine-like fiber reinforcing material, the base material surface will be covered with a film and will not be exposed. It was possible to obtain a molded product with a good surface appearance.

又、ポリマー原料の反応時に発泡を殆ど生じな
いことから、成形型に大きな内部圧力が加わらな
いので、型締め圧が低くて済む。そのため、成形
型及び型締装置が構造上の点から安価となる効果
も生じる。その上、皮膜形成に際して真空成形装
置等余分な設備が不要である利点もある。
Furthermore, since almost no foaming occurs during the reaction of the polymer raw material, no large internal pressure is applied to the mold, so the mold clamping pressure can be low. Therefore, there is also an effect that the mold and the mold clamping device are inexpensive from a structural point of view. Furthermore, there is an advantage that extra equipment such as a vacuum forming apparatus is not required when forming the film.

更に、この発明に用いるポリマー原料は反応初
期において低粘性であるため、容易にマツト上繊
維補強材に含浸して、キヤビテイ内に万遍なく行
き亘ることが可能であるので、含浸が均一とな
り、強度及び剛性において均一な成形品を得るこ
ともできるのである。
Furthermore, since the polymer raw material used in this invention has a low viscosity at the initial stage of the reaction, it can be easily impregnated into the fiber reinforcing material on the pine and evenly distributed within the cavity, so that the impregnation is uniform. It is also possible to obtain molded products with uniform strength and rigidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は、この発明実施例における
成形工程を説明する成形型の断面図であり、第4
図はこの発明の実施により得られた成形品の断面
図、第5図はポリマー原料の粘度曲線である。 12……皮膜、22……基材。
1 to 3 are cross-sectional views of a mold for explaining the molding process in the embodiment of this invention, and the fourth
The figure is a cross-sectional view of a molded article obtained by implementing the present invention, and FIG. 5 is a viscosity curve of the polymer raw material. 12... Film, 22... Base material.

Claims (1)

【特許請求の範囲】[Claims] 1 成形型のキヤビテイ面に平均分子量500ない
し50000のウレタン系塗料を塗布して皮膜を形成
し、そのキヤビテイ内にマツト状繊維補強材を配
置し、そのキヤビテイ内に不飽和モノアルコール
とポリイソシアネート及び触媒とからなるポリマ
ー原料を注入してマツト状繊維補強材に含浸さ
せ、反応硬化させて、マツト状繊維補強材にポリ
マーガ含浸硬化してなる基材を形成し、同時に該
基材と皮膜との接着一体化を行うことを特徴とす
る、表面皮膜を有する剛性の高い強化プラスチツ
クの成形方法。
1. A urethane paint with an average molecular weight of 500 to 50,000 is applied to the cavity surface of the mold to form a film, a pine-like fiber reinforcement material is placed inside the cavity, and unsaturated monoalcohol, polyisocyanate, and A polymer raw material consisting of a catalyst is injected and impregnated into the pine-like fiber reinforcing material, and the material is reacted and cured to form a base material formed by impregnating and hardening the pine-like fiber reinforcing material with the polymer. A method for molding highly rigid reinforced plastics having a surface film, characterized by performing adhesive integration.
JP9593086A 1986-04-25 1986-04-25 Molding method for reinforced plastic of high stiffness having surface film Granted JPS62251106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9593086A JPS62251106A (en) 1986-04-25 1986-04-25 Molding method for reinforced plastic of high stiffness having surface film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9593086A JPS62251106A (en) 1986-04-25 1986-04-25 Molding method for reinforced plastic of high stiffness having surface film

Publications (2)

Publication Number Publication Date
JPS62251106A JPS62251106A (en) 1987-10-31
JPH0560409B2 true JPH0560409B2 (en) 1993-09-02

Family

ID=14150989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9593086A Granted JPS62251106A (en) 1986-04-25 1986-04-25 Molding method for reinforced plastic of high stiffness having surface film

Country Status (1)

Country Link
JP (1) JPS62251106A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289318A (en) * 1989-04-28 1990-11-29 Toyoda Gosei Co Ltd Molding method of plastic structural parts
JPH02299811A (en) * 1989-05-16 1990-12-12 Sakae Riken Kogyo Kk Plastic molded body and its molding method

Also Published As

Publication number Publication date
JPS62251106A (en) 1987-10-31

Similar Documents

Publication Publication Date Title
CA1164176A (en) Plastic molded part
Pascault et al. Thermosetting polymers
CA1201244A (en) Polyurea-polyurethane acrylate polymer dispersions
JP2014508850A (en) Polyurethane composites produced by vacuum injection
JP2011521060A (en) Two-component composition for the production of a plastic polyurethane gel coat
US8945683B2 (en) Prepreg for fiber reinforced plastic and production process thereof
US4239571A (en) Method for making a composite structure
JP3924258B2 (en) Manufacturing method of fiber reinforced plastic
EP0338264A2 (en) Process for joining wood materials to plastics
EP1985665B1 (en) Preparing composition for composite laminates
JPH0560409B2 (en)
US4452964A (en) Peroxide cured urethanes for application to rim and adhesives
JPH0562566B2 (en)
KR102030394B1 (en) Fast curing and 2-component Polyurethane resin composition for pultrusion
JP3289294B2 (en) Sheet molding compound and method of manufacturing the same
JPH06107750A (en) In-mold coating composition
US5970590A (en) Burial containers
JPH0579012B2 (en)
US3882215A (en) Methods of making building and like components
JPH02208040A (en) Production of base material for interior material
EP1361040A1 (en) A process for producing a reinforced plastic
CN114174368A (en) Polyurethane-based composition
JPH1110656A (en) Manufacture of fiber-reinforced resin composite body
JPH0539878Y2 (en)
JPH02208041A (en) Production of base material for interior material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees