JPH0560042B2 - - Google Patents

Info

Publication number
JPH0560042B2
JPH0560042B2 JP59245621A JP24562184A JPH0560042B2 JP H0560042 B2 JPH0560042 B2 JP H0560042B2 JP 59245621 A JP59245621 A JP 59245621A JP 24562184 A JP24562184 A JP 24562184A JP H0560042 B2 JPH0560042 B2 JP H0560042B2
Authority
JP
Japan
Prior art keywords
propellant
tank
amount
volume
spacecraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59245621A
Other languages
Japanese (ja)
Other versions
JPS61122512A (en
Inventor
Yukio Egami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59245621A priority Critical patent/JPS61122512A/en
Publication of JPS61122512A publication Critical patent/JPS61122512A/en
Publication of JPH0560042B2 publication Critical patent/JPH0560042B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星等宇宙飛行体に搭載する姿勢
制御用ガスジエツト装置における推進薬タンク内
の推進薬残量を測定する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the amount of propellant remaining in a propellant tank in an attitude control gas jet device mounted on a spacecraft such as an artificial satellite.

〔従来の技術〕[Conventional technology]

第4図は宇宙飛行体に搭載する姿勢制御用ガス
ジエツト装置の構成系統図を示すもので、該装置
は、推進薬タンク1に加圧ガス注排管2と推進薬
排出管3をそれぞれ接続し、加圧ガス注排管2に
は加圧ガス注排弁4を設け、又、推進薬排出管3
を触媒反応で推進薬をガス化するジエツトモータ
5に接続し、該ジエツトモータ5にガス化した推
進薬を噴出させるノズル6を設け、上記推進薬排
出管3の途中には、推進薬フイルタ7、推進薬弁
8を設けると共に、圧力検出器9を接続した構成
としてあり、宇宙飛行体の打ち上げ前に、推進薬
弁8を閉じて先ず推進薬タンク1内に推進薬10
が加圧ガス注排弁14を通して充填され、該推進
薬充填後に、推進薬タンク1内に加圧ガス11が
加圧ガス注排弁4を通して充填される。
Figure 4 shows a configuration diagram of the attitude control gas jet device installed on a spacecraft.The device connects a propellant tank 1 with a pressurized gas injection pipe 2 and a propellant discharge pipe 3, respectively. , the pressurized gas inlet and outlet pipe 2 is provided with a pressurized gas inlet and outlet valve 4, and the propellant outlet pipe 3 is provided with a pressurized gas inlet and outlet valve 4.
is connected to a jet motor 5 that gasifies the propellant through a catalytic reaction, and a nozzle 6 is provided to the jet motor 5 to jet out the gasified propellant. A propellant valve 8 is provided and a pressure detector 9 is connected. Before launching a spacecraft, the propellant valve 8 is closed and the propellant 10 is first injected into the propellant tank 1.
is filled through the pressurized gas injection/discharge valve 14, and after the propellant is filled, the pressurized gas 11 is filled into the propellant tank 1 through the pressurized gas injection/discharge valve 4.

上記姿勢制御用ガスジエツト装置では、宇宙飛
行体が打ち上げられると、推進薬弁8を開にして
推進薬タンク1内の推進薬10を流してジエツト
モータ5の触媒反応で推進薬10をガス化し、ノ
ズル6よりガスを噴出させて推力を発生させるよ
うにしている。
In the attitude control gas jet device described above, when a spacecraft is launched, the propellant valve 8 is opened to allow the propellant 10 in the propellant tank 1 to flow, and the propellant 10 is gasified by the catalytic reaction of the jet motor 5, and the propellant 10 is gasified through the nozzle. Gas is ejected from 6 to generate thrust.

従来、推進薬タンク1内の推進薬10の量を測
定する場合は、圧力を圧力検出器9で検出して加
圧ガス11の容積を知ることによつて推進薬10
の量を測定するようにしている。すなわち、加圧
ガス全質量は一定であり、推進薬10の使用に伴
ないガスの容積は増大する。容積が増大すると、
ボイルシヤルルの法則(PV=一定)によりガス
の圧力が降下する。この圧力を圧力検出器9で検
出して容積を算出することにより逆に推進薬10
の量を測定するようにしている。
Conventionally, when measuring the amount of propellant 10 in propellant tank 1, the pressure is detected by pressure detector 9 and the volume of pressurized gas 11 is determined.
I am trying to measure the amount of That is, the total mass of pressurized gas is constant, and the volume of gas increases as propellant 10 is used. As the volume increases,
The pressure of the gas decreases due to Boyleshall's law (PV = constant). By detecting this pressure with the pressure detector 9 and calculating the volume, the propellant 10
I am trying to measure the amount of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来の推進薬の量を測定する方法
では、加圧ガス容積が増大する宇宙飛行体の寿命
後期から末期にかけてPV=一定という式からわ
かるようにVの大きな変化でPが小さく変化する
ことにより誤差が非常に大きくなつて推進薬残量
を実際上測定不能となり、宇宙飛行体の寿命その
ものである推進薬の残量を正確に知ることができ
なかつた。
However, with the above conventional method of measuring the amount of propellant, P changes small with a large change in V, as can be seen from the equation that PV = constant from the latter half of the spacecraft's life to the end, when the pressurized gas volume increases. As a result, the error became so large that it became practically impossible to measure the amount of propellant remaining, and it was not possible to accurately determine the remaining amount of propellant, which was the life span of the spacecraft.

次にその理由を説明すると、今、第5図に示す
如く、初期において、推進薬タンク1内の加圧ガ
ス11の初期圧力を28Kg/cm2、体積を10とし
て、推進薬10の体積を35とし、又、第6図に
示す如く、末期において、推進薬タンク1内の加
圧ガス11の圧力を7Kg/cm2、体積を40とし
て、推進薬10の体積を5とする。
Next, to explain the reason, as shown in FIG. 35, and as shown in FIG. 6, at the final stage, the pressure of the pressurized gas 11 in the propellant tank 1 is 7 kg/cm 2 , the volume is 40, and the volume of the propellant 10 is 5.

初期でのガス圧力Pとガス体積Vの変化ΔV/ΔP についてみると、圧力が1Kg/cm2変化した場合の
加圧ガス体積の変化量は、PV=一定であるから、 28Kg/cm2×10=27Kg/cm2×Vat27Kg Vat27=28/27×10=10.37() ∴ΔV/ΔP=10−10.37/28−27=−0.37/Kg/cm2
…(1) 末期でのΔV/ΔPについてみると、 7Kg/cm2×40=6×V40 V40=7/6×40=46.7() ∴ΔV/ΔP=40−46.7/7−6=−6.7/Kg/cm2
(2) 圧力検出器9の検出単位が1Kg/cm2であるとす
ると、(1)式では、1検出単位に相当するものは、
0.37である。たとえば、5減少後に測定する
と、5/0.37検出単位、すなわち、13.5で、13又は 14目盛となる。
Looking at the initial change in gas pressure P and gas volume V, ΔV/ΔP, the amount of change in pressurized gas volume when the pressure changes by 1Kg/cm 2 is 28Kg/cm 2 × since PV=constant. 10=27Kg/cm 2 ×Vat27Kg Vat27=28/27×10=10.37() ∴ΔV/ΔP=10−10.37/28−27=−0.37/Kg/cm 2
…(1) Looking at ΔV/ΔP at the terminal stage, 7Kg/cm 2 ×40=6×V 40 V 40 =7/6×40=46.7() ∴ΔV/ΔP=40−46.7/7−6= -6.7/Kg/ cm2 ...
(2) Assuming that the detection unit of the pressure detector 9 is 1Kg/cm 2 , in equation (1), what corresponds to one detection unit is:
It is 0.37. For example, when measured after decreasing by 5, it is 5/0.37 detection units, or 13.5, resulting in 13 or 14 divisions.

(2)式では、1検出単位に相当するのは、6.7
である。したがつて、5減少後に測定すると、
5/6.7検出単位、すなわち、0.75で、0又は1目盛 となる。
In equation (2), one detection unit corresponds to 6.7
It is. Therefore, when measured after 5 decreases,
5/6.7 detection unit, that is, 0.75, is 0 or 1 scale.

結局、初期では、推進薬残量をかなり精度よく
測定できるが、末期ではほとんど測定不能という
ことになる。
After all, in the early stages, the amount of propellant remaining can be measured with great accuracy, but in the final stage, it is almost impossible to measure.

本発明は、宇宙飛行体の寿命後期から末期にお
ける推進薬残量を精度よく測定できるようにしよ
うとするものである。
The present invention is directed to making it possible to accurately measure the amount of propellant remaining in a spacecraft from the latter half of its life to its final stage.

〔問題点を解決するための手段〕[Means for solving problems]

そのために、本発明は、球形の推進薬タンクの
表面に少なくとも6個の超音波探触子を前記球形
の推進薬タンクの中心に向けて等間隔に配置し、
各超音波探触子により推進薬タンク内の推進薬の
表面位置を測定し、この測定値をもとに推進薬体
積を求め、推進薬残量を測定するようにする。
To this end, the present invention provides at least six ultrasonic probes arranged on the surface of a spherical propellant tank at equal intervals toward the center of the spherical propellant tank;
The surface position of the propellant in the propellant tank is measured by each ultrasonic probe, the propellant volume is determined based on this measurement value, and the remaining amount of propellant is measured.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すものであり、
図中、第3図と同一の構成部分については同一の
符号を付すことによつて説明を省略するものと
し、以下、本発明に特有の構成についてのみ説明
して行く。
FIG. 1 shows an embodiment of the present invention,
In the figure, the same components as in FIG. 3 are denoted by the same reference numerals, and the explanation thereof will be omitted.Hereinafter, only the structures specific to the present invention will be explained.

推進薬タンク1のX軸、Y軸、Z軸上には夫々
超音波探触子12が対向配置され、6個の超音波
探触子12が球形の推進薬タンク1の中心に向け
て等間隔に位置しており、各超音波探触子12は
図示しない超音波発振器及び超音波受信器に接続
して推進薬タンク1内の推進薬10の表面位置を
測定するようになつている。
Ultrasonic probes 12 are arranged facing each other on the X-axis, Y-axis, and Z-axis of the propellant tank 1, and six ultrasonic probes 12 are directed toward the center of the spherical propellant tank 1. Each ultrasonic probe 12 is connected to an ultrasonic oscillator and an ultrasonic receiver (not shown) to measure the surface position of the propellant 10 in the propellant tank 1.

本発明の測定法は、超音波による厚さ(タンク
内面から推進薬液面までの距離)測定原理に基づ
くと共に、微小重力下においては推進薬10が微
小重力方向に偏るという推進薬不均一分布が生じ
ることに基づいて、推進薬不均一分布による液面
形状及び容積を正確に把握するために、上記した
如く推進薬タンク1のX軸、Y軸、Z軸上に夫々
超音波探触子12を対向配置して、6個の超音波
探触子12によつて、推進薬タンク内の推進薬の
液面の表面位置を測定し、各超音波探触子12か
らの測定値を数学的に処理して推進薬10の液面
形状を推定する一方、推進薬10の容積を算出す
る。
The measurement method of the present invention is based on the principle of measuring thickness (distance from the inner surface of the tank to the propellant liquid level) using ultrasonic waves, and also eliminates uneven distribution of the propellant in which the propellant 10 is biased toward the microgravity direction under microgravity. As described above, ultrasonic probes 12 are installed on the X-axis, Y-axis, and Z-axis of the propellant tank 1, respectively, in order to accurately grasp the liquid surface shape and volume due to non-uniform propellant distribution. are arranged facing each other, the surface position of the propellant liquid level in the propellant tank is measured by six ultrasonic probes 12, and the measured values from each ultrasonic probe 12 are calculated mathematically. The liquid surface shape of the propellant 10 is estimated by processing, and the volume of the propellant 10 is calculated.

又、推進薬10の容積が求められると、推進薬
の量が求められる。従つて、上記によると推進薬
の量が少ない場合であつても正確に推進薬量をも
とめることができる。
Furthermore, when the volume of the propellant 10 is determined, the amount of the propellant is determined. Therefore, according to the above, even when the amount of propellant is small, it is possible to accurately determine the amount of propellant.

第2図は本発明の他の実施例であり、推進薬1
0の液面形状推定及び容積算出をより精度よく行
うために、第1図に示したものに更に6個の超音
波探触子12を用い、12個すべての超音波探触子
12が球形の推進薬タンク1の中心に向けて等間
隔に位置するよう配置し、各超音波探触子12に
より推進薬タンク1内の推進薬10の表面位置を
測定するようにしたものである。
FIG. 2 shows another embodiment of the present invention, in which propellant 1
In order to more accurately estimate the liquid surface shape and calculate the volume of the liquid at The ultrasonic probes 12 are arranged at equal intervals toward the center of the propellant tank 1, and each ultrasonic probe 12 measures the surface position of the propellant 10 in the propellant tank 1.

従つて、第1図及び第2図に示した如く超音波
探触子12を推進薬タンク1の表面に配設するこ
とによつて、推進薬10の位置変動にかかわらず
正確な測定を行うことができる。
Therefore, by disposing the ultrasonic probe 12 on the surface of the propellant tank 1 as shown in FIGS. 1 and 2, accurate measurements can be made regardless of the positional fluctuations of the propellant 10. be able to.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の測定法によれば、推
進薬タンク内の推進薬厚さを球形の推進薬タンク
の表面に少なくとも6個の超音波探触子を前記球
形の推進薬タンクの中心に向けて等間隔に配置
し、各超音波探触子により推進薬タンク内の推進
薬の表面位置を測定し、この測定値から推進薬量
を測定するので、次の如き優れた効果を奏し得
る。
As described above, according to the measuring method of the present invention, at least six ultrasonic probes are placed on the surface of the spherical propellant tank at the center of the spherical propellant tank to measure the thickness of the propellant in the propellant tank. Each ultrasonic probe measures the surface position of the propellant in the propellant tank, and the amount of propellant is measured from this measured value, resulting in the following excellent effects: obtain.

(i) 宇宙飛行体の寿命後期から末期における推進
薬残量は勿論のこと、寿命初期から末期までの
測定もできる。
(i) It is possible to measure not only the amount of propellant remaining in a spacecraft from the latter half of its life to the end, but also from the beginning to the end of its life.

(ii) 超音波探触子を推進薬タンク表面に取り付け
るだけであるため、簡便に測定できる。
(ii) Measurement is easy because the ultrasonic probe is simply attached to the surface of the propellant tank.

(iii) 推進薬タンクの表面には超音波探触子の取付
上の制約がないため、超音波探触子を多数取り
付けることができ、数が多いほど測定精度が上
がるというニーズに容易に対応できる。
(iii) Since there are no restrictions on the attachment of ultrasonic probes to the surface of the propellant tank, a large number of ultrasonic probes can be attached, easily meeting the need for higher measurement accuracy as the number increases. can.

(iv) 宇宙飛行体の寿命初期から中期は圧力検出器
による従来の方法により、中期から後期は本発
明の測定法と従来の方法との併用により、後期
から末期は本発明の測定法による、という運用
で推進薬を精度よく測定できる。
(iv) From the early to middle stages of the spacecraft's life, the conventional method using a pressure detector is used; from the middle to late stages, the measurement method of the present invention is used in combination with the conventional method; from the latter stages to the end, the measurement method of the present invention is used; With this operation, propellant can be measured with high accuracy.

(v) 推進薬タンク内部の細工は不要で、タンク外
部の細工のみで計測できるので、設計上、製造
上簡易である。
(v) There is no need to modify the inside of the propellant tank, and measurements can be made only by modifying the exterior of the tank, so it is simple in terms of design and manufacturing.

(vi) 微小重力下において推進薬が微小重力方向に
偏つて推進薬不均一分布が生じたり、微小重力
の影響による推進薬の位置変動にかかわらず正
確な測定を行うことができる。
(vi) Under microgravity, accurate measurements can be made regardless of the uneven distribution of the propellant caused by the propellant being biased toward the microgravity direction, or the positional fluctuation of the propellant due to the influence of microgravity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定法の一実施例を示す概略
模式図、第2図は本発明の測定法の他の実施例を
示す概略模式図、第3図は宇宙飛行体の姿勢制御
用ガスジエツト装置の構成系統図、第4図は宇宙
飛行体の寿命初期の、又第5図は宇宙飛行体の寿
命後期の各推進薬タンク内の加圧ガスと推進薬の
体積変化の状態を示す説明図である。 1は推進薬タンク、5はジエツトモータ、8は
推進薬弁、10は推進薬、11は加圧ガス、12
は超音波探触子を示す。
Fig. 1 is a schematic diagram showing one embodiment of the measuring method of the present invention, Fig. 2 is a schematic diagram showing another embodiment of the measuring method of the present invention, and Fig. 3 is a schematic diagram showing an example of the measuring method of the present invention. Figure 4 shows the configuration diagram of the gas jet device, and Figure 4 shows the changes in volume of the pressurized gas and propellant in each propellant tank at the beginning of the spacecraft's life, and Figure 5 shows the state of volume change of the pressurized gas and propellant in each propellant tank at the end of the spacecraft's life. It is an explanatory diagram. 1 is a propellant tank, 5 is a jet motor, 8 is a propellant valve, 10 is a propellant, 11 is a pressurized gas, 12
indicates an ultrasound probe.

Claims (1)

【特許請求の範囲】[Claims] 1 宇宙飛行体に搭載された球形の推進薬タンク
の表面に少なくとも6個の超音波探触子を前記球
形の推進薬タンクの中心に向けて等間隔に配置
し、各超音波探触子により推進薬タンク内の推進
薬の表面位置を測定し、この測定値により推進薬
の体積を求め、推進薬量を測定することを特徴と
する宇宙飛行体の推進薬残量測定法。
1 At least six ultrasonic probes are placed on the surface of a spherical propellant tank mounted on a spacecraft at equal intervals toward the center of the spherical propellant tank, and each ultrasonic probe A method for measuring the amount of propellant remaining in a spacecraft, which is characterized by measuring the surface position of the propellant in a propellant tank, determining the volume of the propellant from this measured value, and measuring the amount of propellant.
JP59245621A 1984-11-20 1984-11-20 Measuring method of remaining amount of propellant of astrogating body Granted JPS61122512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245621A JPS61122512A (en) 1984-11-20 1984-11-20 Measuring method of remaining amount of propellant of astrogating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245621A JPS61122512A (en) 1984-11-20 1984-11-20 Measuring method of remaining amount of propellant of astrogating body

Publications (2)

Publication Number Publication Date
JPS61122512A JPS61122512A (en) 1986-06-10
JPH0560042B2 true JPH0560042B2 (en) 1993-09-01

Family

ID=17136403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245621A Granted JPS61122512A (en) 1984-11-20 1984-11-20 Measuring method of remaining amount of propellant of astrogating body

Country Status (1)

Country Link
JP (1) JPS61122512A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2769918A1 (en) * 2013-02-26 2014-08-27 Astrium Limited Detecting propellant levels in spacecraft
JP6901213B2 (en) * 2017-05-30 2021-07-14 株式会社Ihiエアロスペース Liquid level shape measuring device and method for propellant tank
JP6990617B2 (en) 2018-03-30 2022-01-12 三菱重工業株式会社 2-pulse gas generator and propellant combustion surface position measurement method

Also Published As

Publication number Publication date
JPS61122512A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
US5471867A (en) Inventory reconciliation for above ground storage tanks
Fernando et al. A supersonic turbulent boundary layer in an adverse pressure gradient
CN111891394A (en) On-orbit calibration method for flow sensor of satellite cold air propulsion system
JPH0560042B2 (en)
US3114381A (en) Liquid level control apparatus for controlling independently of gravity and density
CN207688999U (en) A kind of measuring apparatus that flow is weighed
CN207570645U (en) The equipment that a kind of flow is weighed
US6305219B1 (en) Method for determining liquid quantity in microgravity using fluid dynamic positioning
US4393451A (en) Method and apparatus for measuring total liquid volume flow
US3095740A (en) Mass flow measurement
Robinson et al. HOT-WIRE AND LASER DOPPLER ANEMOMETER MEAWREMENTS IN A SUPERSONIC BOUNDARY LAYER
Masuya et al. Secondary gas injection into a supersonic conical nozzle
CN107843330B (en) Flow weighing measurement device
JPH0527808B2 (en)
US4879895A (en) Normal shock locator
Martellucci An extension of the linearized characteristics method for calculating the supersonic flow around elliptic cones
CN110397534A (en) The ultrasonic measuring device and measurement method of differential pressure type single injection of fuel quality
JP2842960B2 (en) Liquid volume measuring device
Weir Jr et al. Two-and three-dimensional flow of air through square-edged sonic orifices
Fisher et al. Ultrasonics as a standard for volumetric flow measurement
CN112595373B (en) Ultrasonic water meter design method and system
JP2548727B2 (en) Measuring method of powder flow rate in lock hopper system
US3509758A (en) Gas leak rate monitor
Damljanović et al. Supersonic wind tunnel tests of a standard model at high angles of attack
Minkin et al. Liquid-hydrogen flowmeter calibration facility