JPH0559649B2 - - Google Patents

Info

Publication number
JPH0559649B2
JPH0559649B2 JP61049049A JP4904986A JPH0559649B2 JP H0559649 B2 JPH0559649 B2 JP H0559649B2 JP 61049049 A JP61049049 A JP 61049049A JP 4904986 A JP4904986 A JP 4904986A JP H0559649 B2 JPH0559649 B2 JP H0559649B2
Authority
JP
Japan
Prior art keywords
ground fault
bank
zero
feeder
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61049049A
Other languages
Japanese (ja)
Other versions
JPS62207123A (en
Inventor
Eiji Watanabe
Shinpei Akita
Nobuhiko Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Takaoka Toko Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd, Takaoka Electric Mfg Co Ltd filed Critical Meidensha Corp
Priority to JP61049049A priority Critical patent/JPS62207123A/en
Publication of JPS62207123A publication Critical patent/JPS62207123A/en
Publication of JPH0559649B2 publication Critical patent/JPH0559649B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、電力系統における並列バンクの地絡
保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a ground fault protection device for parallel banks in a power system.

B 発明の概要 本発明は、バンク並列運転を行う電力系統にお
いて、 各フイーダ乃び母線の地絡を検出して各フイー
ダのしや断器を各フイーダ毎乃び順次にトリツプ
させる地絡保護手段に加えて、母線の零相電圧か
ら地絡を検出して各バンクの母線間に介装するブ
スタイしや断器をトリツプさせることにより、 既設の保護継電器を改造することなくバンク並
列運転時の地絡フイーダを確実に選択除去できる
ようにしたものである。
B. Summary of the Invention The present invention provides a ground fault protection means for detecting a ground fault in each feeder or bus bar and tripping the breakers and breakers of each feeder in sequence for each feeder in a power system that performs bank parallel operation. In addition, by detecting ground faults from the zero-sequence voltage of the busbars and tripping the bus ties and disconnectors interposed between the busbars of each bank, it is possible to detect ground faults during bank parallel operation without modifying the existing protective relays. This ensures that ground fault feeders can be selectively removed.

C 従来の技術 第2図は2回線受電変電所の電力系統図を示
し、変圧器二次側の母線を並列して給電可能にす
る並列バンク構成を示す。図中、CBr1,CBr2
受電用しや断器であり、何れか一方のしや断器の
みがオン状態で運転される。CBt1〜CBt3はブス
タイしや断器であり、各バンクB1〜B3の母線を
連係するためのしや断器である。DS1,DS2は断
路器であり、通常時には共にオン状態で運転さ
れ、受電回線から全バンクの主変圧器Tr1,Tr2
Tr3に電力供給する。F1〜F3は各バンクのフイー
ダであり、各バンクとも夫々複数のフイーダを備
えて各需要家に電力を供給し、各フイーダにはフ
イーダしや断器CB11,CB1o〜CB31,CB3oで母線
と結合される。
C. Prior Art FIG. 2 shows a power system diagram of a two-line power receiving substation, and shows a parallel bank configuration that allows power to be supplied by connecting the transformer secondary side bus bars in parallel. In the figure, CBr 1 and CBr 2 are power receiving circuit breakers, and only one of the circuit breakers is operated in the on state. CBt 1 to CBt 3 are bus ties and disconnectors for interconnecting the bus bars of each bank B 1 to B 3 . DS 1 and DS 2 are disconnectors, which are normally operated in the on state, and connect the power receiving line to the main transformers Tr 1 , Tr 2 ,
Powers Tr 3 . F 1 to F 3 are feeders of each bank, and each bank has a plurality of feeders to supply power to each consumer, and each feeder has a feeder shield and a disconnector CB 11 , CB 1o to CB 31 , Connected to busbar at CB 3o .

ここで、しや断器CBt1〜CBt3は通常オフ状態
で運転される。すなわち、通常時には各バンク
B1〜B3の独立運転が行われる。この理由は、 (1) しや断器CBt1〜CBt3をオン状態で運転する
バンク並列運転の場合、例えば第1バンクB1
のしや断器CB11の負荷側で完全短絡を起すと
当該バンクの主変圧器Tr1からだけでなく他バ
ンクのTr2,Tr3からも短絡電流が流れる。こ
のためフイーダしや断器CB11のしや断容量を
極端に大きくする必要があるという経済的な問
題がでてくる。
Here, the shingle breakers CBt 1 to CBt 3 are normally operated in an OFF state. In other words, normally each bank
B1 to B3 are operated independently. The reason for this is: (1) In the case of bank parallel operation in which the breakers CBt 1 to CBt 3 are operated in the on state, for example, the first bank B 1
When a complete short circuit occurs on the load side of the Noshiya circuit breaker CB 11 , a short circuit current flows not only from the main transformer Tr 1 of the bank concerned but also from Tr 2 and Tr 3 of the other banks. For this reason, an economical problem arises in that it is necessary to extremely increase the shear cutting capacity of the feeder and the cutter CB 11 .

(2) バンク並列運転によつて系統保護が複雑にな
り、保護継電システムが高価になる。特に、バ
ンク単独運転を前提とした既設の系統でバンク
並列運転を可能にしようとすると、保護制御シ
ステムを全面的に改造する必要がでてくる。
(2) Bank parallel operation complicates system protection and increases the cost of the protective relay system. In particular, if an attempt is made to enable bank parallel operation in an existing system that is premised on bank independent operation, it will be necessary to completely remodel the protection control system.

このような理由から、従来の系統運転方式は
バンク単独運転が行われ、その保護制御システ
ムもバンク単独運転を前提として構築されるも
のであつた。
For these reasons, the conventional system operation system uses bank isolated operation, and its protection control system is also constructed on the premise of bank isolated operation.

D 発明が解決しようとする問題点 並列にバンクを備える電力系統において、バン
ク並列運転を可能にすることには種々の利点もあ
る。例えば、バンク間の負荷配分に不均衡がある
場合にも各主変圧器の負担が平均化され、これに
よつて総合的な電力供給設備効率を上げることが
できる。また、一部の主変圧器の停止にも他変圧
器から電力供給でき(負荷制限はある)、これに
よつて電力供給の信頼度が上る。
D Problems to be Solved by the Invention In a power system having banks in parallel, there are various advantages in enabling bank parallel operation. For example, even if there is an imbalance in load distribution between banks, the load on each main transformer is averaged, thereby increasing the overall power supply equipment efficiency. Furthermore, even when some main transformers are out of service, power can be supplied from other transformers (with load restrictions), thereby increasing the reliability of power supply.

こうした利点があるにも拘らず、前記の(1),(2)
項の問題がバンク並列運転の妨げとなるものであ
つた。ここで、前記(1)項についてはブスタイしや
断器CBt1〜CBt3に直列に各々限流素子を設ける
ことによつて短絡電流を制御し、フイーダしや断
器をバンク単独運転と同様のしや断容量で済ます
ことが可能となる。しかし、前記(2)項の問題解決
方法は未だ知られていないもので、本発明の目的
はバンク並列運転にも保護制御システムが複雑に
なることなく、また既設のシステムの大幅な改造
を不要にした地絡保護装置を提供することにあ
る。
Despite these advantages, the above (1) and (2)
The problem in section 1 was an impediment to bank parallel operation. Here, regarding the above item (1), the short circuit current is controlled by providing current limiting elements in series with each of the feeder tie and disconnectors CBt 1 to CBt 3 , and the feeder tie and disconnectors are operated in the same way as bank independent operation. It becomes possible to get by with just a load or a shear capacity. However, the method for solving the problem in item (2) above is not yet known, and the purpose of the present invention is to enable bank parallel operation without complicating the protection control system and without requiring major modification of the existing system. The purpose of the present invention is to provide a ground fault protection device that provides improved protection against ground faults.

E 問題点を解決するための手段と作用 本発明は、母線から複数のフイーダに至る電流
と該母線の零相電圧から各フイーダの地絡を検出
して当該フイーダのフイーダしや断器をトリツプ
させる複数の地絡方向リレーと、前記零相電圧か
らバンク内各フイーダの地絡を検出し前記フイー
ダしや断器を順次トリツプさせる微地絡選択リレ
ーと、前記地絡方向リレー及び微地絡選択リレー
のうち最小の零相電圧検出値以下の零相電圧検出
値を有して前記各母線の零相電圧から地絡を検出
する各バンク毎に設けられた地絡過電圧検出リレ
ーと、このリレーの検出が設定時限以上継続した
ときに当該バンクの前記ブスタイしや断器をトリ
ツプさせるタイマとを備え、バンク並列運転中に
地絡故障に地絡方向リレー又は微地絡選択リレー
での地絡保障がなされないときに地略過電圧リレ
ーによるバンク並列を解除し、その後に地絡方向
リレー又は微地絡選択リレーによる地絡故障フイ
ーダのしや断器にしや断動作を得る。
E Means and Effects for Solving Problems The present invention detects a ground fault in each feeder from the current flowing from the bus bar to a plurality of feeders and the zero-sequence voltage of the bus bar, and trips the feeder break or disconnection of the feeder. a plurality of ground fault direction relays that detect ground faults in each feeder in the bank from the zero-phase voltage and sequentially trip the feeder shields and disconnectors; a ground fault overvoltage detection relay provided for each bank that has a zero-sequence voltage detection value that is less than or equal to the smallest zero-sequence voltage detection value among the selected relays and detects a ground fault from the zero-sequence voltage of each bus; It is equipped with a timer that trips the bus tie or disconnector of the bank when the relay detection continues for a set time period or longer, and is equipped with a timer that trips the bus tie or disconnector of the bank in question. When fault protection is not achieved, the bank parallel connection by the ground overvoltage relay is canceled, and then the ground fault direction relay or the slight ground fault selection relay causes the ground fault feeder to be disconnected.

F 実施例 第1図は本発明の一実施例を示す装置構成図で
あり、第2図と同じものは同一符号を付してその
説明は省略する。第1図において、各バンクB1
〜B3の各フイーダしや断器(第1のバンクのみ
について示し、以後当該バンクで代表させて説明
する)CB11,CB1oは、夫々専用の地絡方向リレ
ー67G11,67G1oによるしや断制御と、バン
ク毎に共用の微地絡選択リレー10G1によるし
や断制御がなされるよう構成される。地絡方向リ
レー67G11,67G1oは、夫々保護対象フイー
ダの零相電流を検出する変流器ZCT11,ZCT1o
らの検出電流と、母線零相電圧を検出する変成器
GPT1の検出零相電圧Voとから保護対象フイー
ダの地絡故障を判定して当該フイーダのトリツプ
出力を得るように構成され、微地絡選択リレー1
0G1は変成器GPT1からの零相電圧Voからバン
ク内フイーダ系統での地絡故障の所定時間以上継
続を判定して各フイーダしや断器CB11〜CB1o
順次トリツプ出力によつて微地絡を検出除去する
ように構成される。
F. Embodiment FIG. 1 is a diagram showing the configuration of an apparatus showing an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted. In Figure 1, each bank B 1
~ B3 feeder wires and disconnectors (only the first bank is shown, and will be described hereinafter using that bank as a representative) CB11 and CB1o are connected by dedicated ground fault direction relays 67G11 and 67G1o , respectively. It is configured so that the shear disconnection control and the shear disconnection control are performed by a common micro-ground fault selection relay 10G1 for each bank. The ground fault direction relays 67G 11 and 67G 1o are transformers that detect the detected current from the current transformers ZCT 11 and ZCT 1o , which respectively detect the zero-sequence current of the feeder to be protected, and the bus zero-sequence voltage.
It is configured to determine the ground fault of the feeder to be protected from the detected zero-phase voltage Vo of GPT 1 and obtain a trip output of the feeder, and the micro ground fault selection relay 1
0G 1 determines from the zero-sequence voltage Vo from the transformer GPT 1 whether the ground fault in the feeder system within the bank has continued for a predetermined period of time or more, and sequentially outputs trip signals from each feeder and disconnector CB 11 to CB 1o . Configured to detect and eliminate micro-ground faults.

これら地絡方向リレー67G11〜67G1o及び
微地絡選択リレー10G1は従来のバンク単独運
転を前提とする電力系統の保護継電システムの地
絡保護要素として知られ、また既設電力系統にも
採用されている。
These ground fault direction relays 67G 11 to 67G 1o and slight ground fault selection relay 10G 1 are known as ground fault protection elements of the conventional power system protective relay system that assumes bank isolated operation, and are also used in existing power systems. It has been adopted.

ここで、本実施例では、バンク並列運転にも地
絡保護機能を持たせる手段として、各バンク毎の
地絡過電圧検出リレーOVG1〜OVG3と時限要素
としてのタイマT1〜T3を備える。リレーOVG1
〜OVG3は夫々バンク内母線の零相電圧Voを変
成器GPT1〜GPT3から取込み、その電圧レベル
上昇を判定し、タイマT1〜T3は夫々リレー
OVG1〜OVG3の判定出力が設定時間以上継続す
るときにブスタイしや断器CBt1〜CBt3をトリツ
プさせる出力を得るようにされる。また、地絡過
電圧検出リレーOVG1〜OVG3の零相電圧Voの検
出感度は、リレー67G11〜67G1o及び10G1
の零相電圧Voに対する両整定値のうち低い方
(通常リレー10G1の整定値)の整定値以下で、
並列されたバンクに地絡が発生した時に確実に検
出できる値に設定される。
Here, in this embodiment, earth fault overvoltage detection relays OVG 1 to OVG 3 and timers T 1 to T 3 as time-limiting elements are provided for each bank as a means for providing a ground fault protection function to bank parallel operation. . Relay OVG 1
~ OVG 3 takes in the zero-sequence voltage Vo of the bus in the bank from the transformer GPT 1 ~ GPT 3 , and determines the rise in the voltage level, and timers T 1 ~ T 3 each take in the zero-sequence voltage Vo of the bus in the bank from the transformer GPT 1 ~ GPT 3 ,
When the judgment outputs of OVG 1 to OVG 3 continue for a set time or longer, an output that trips the tie and disconnectors CBt 1 to CBt 3 is obtained. In addition, the detection sensitivity of the zero-sequence voltage Vo of the ground fault overvoltage detection relays OVG 1 to OVG 3 is as follows: relays 67G 11 to 67G 1o and 10G 1
Below the lower of the two setting values (usually the setting value of relay 10G 1 ) for the zero-sequence voltage Vo of
It is set to a value that allows reliable detection when a ground fault occurs in parallel banks.

こうしたリレーOVG1〜OVG3とタイマT1〜T3
とを備えること、あるいは既設の並列バンク構成
の電力系統の保護システムに増設することによつ
て、バンク並列運転時のフイーダ地絡故障にも確
実な保護動作を得る。以下、保護動作を詳細に説
明する。
These relays OVG 1 to OVG 3 and timers T 1 to T 3
By providing a protection system for a power system with a parallel bank configuration or by adding it to an existing power system protection system with a parallel bank configuration, a reliable protection operation can be obtained even in the case of a feeder ground fault during bank parallel operation. The protection operation will be explained in detail below.

前述の地絡方向リレー67G11〜67G1oと微
地絡選択リレー10G1のみによる地絡保護は、
バンクの単独運転を前提とするもので、バンク並
列運転では地絡故障を検出できないことがある。
すなわち、バンク並列運転では主変圧器Tr1
Tr3の二次側が直接連係されることになり、連係
系統の対地静電容量がバンク単独運転時の約3倍
(3つのバンク並列運転の場合)になる。故に、
この連係系統のフイーダの1箇所に地絡故障が発
生したときには地絡点抵抗が同じとすれば零相電
圧Voがバンク単独運転時の約1/3になつてし
まう。ところが、地絡方向リレー67G11〜67
G1o及び微地絡選択リレー10G1はバンク単独運
転を前提として整定値等が設定されているため、
これらリレーの感度ではバンク並列運転時の地絡
故障にも零相電圧Voが低いため判定不能になる
ことがある。
Ground fault protection using only the aforementioned ground fault direction relays 67G 11 to 67G 1o and the slight ground fault selection relay 10G 1 is as follows:
This method is based on the assumption that banks are operated individually, and ground faults may not be detected when banks are operated in parallel.
In other words, in bank parallel operation, the main transformer Tr 1 ~
The secondary side of Tr 3 will be directly linked, and the ground capacitance of the linked system will be approximately three times that of bank independent operation (in the case of three banks parallel operation). Therefore,
When a ground fault occurs in one of the feeders in this interconnected system, the zero-sequence voltage Vo will be approximately 1/3 that of bank independent operation, assuming the ground fault point resistance is the same. However, the ground fault direction relay 67G 11 ~ 67
G 1o and slight ground fault selection relay 10G 1 have set values etc. on the premise of bank independent operation, so
The sensitivity of these relays may make it impossible to determine if a ground fault occurs during bank parallel operation because the zero-sequence voltage Vo is low.

例えば、フイーダF11に地絡故障が発生したと
き、地絡点抵坑が大きいと零相電圧Voが小さく、
これに加えてバンク並列運転状態では一層低い零
相電圧Voでしか表われなくなり、地絡方向リレ
ー67G11がバン単独運転時に上記零相電圧Voを
検出できる整定とする場合にはバンク並列運転で
は検出できなくなる。この低い零相電圧Voにも
地絡方向リレー67G11が応動するようその感度
を上げるには既設のフイーダ用地絡方向リレーを
全数改造することになり数も多くコストと時間が
かかる。こうした問題は、低い零相電圧Voと微
地絡選択リレー10G1の零相電圧検出感度との
関係についても起り得る。
For example, when a ground fault occurs in feeder F 11 , if the ground fault resistance is large, the zero-sequence voltage Vo will be small;
In addition to this, in the bank parallel operation state, it only appears as a lower zero-sequence voltage Vo, and if the ground fault direction relay 67G 11 is set to be able to detect the above-mentioned zero-sequence voltage Vo when the van is operating alone, it will not appear in the bank parallel operation. becomes undetectable. In order to increase the sensitivity of the ground fault direction relay 67G11 so that it can respond even to this low zero-sequence voltage Vo, it is necessary to modify all the existing ground fault direction relays for the feeder, which requires a large number of relays and is costly and time consuming. Such a problem may also occur regarding the relationship between the low zero-sequence voltage Vo and the zero-sequence voltage detection sensitivity of the micro-ground fault selection relay 10G1 .

さらに、微地絡選択リレー10G1については、
それがバンク単独運転を前提としてその後備保護
機能が成り立つもので、各フイーダの地絡故障に
ついて夫々の地絡方向リレー67G11〜67G1o
では地絡点を除去できないときに、この地絡が所
定時間以上かつ所定の零相電圧以上発生しつづけ
るときに各しや断器CB11〜CB1oを順次しや断し
て行くことで微地絡を検出除去しようとする。と
ころが、バンク並列運転にした場合にはどのバン
クの微地絡発生に対しても上記条件が成立する
と、全バンクで一斉にフイーダの順次開放を行う
ことになり、結果的にフイーダの誤しや断や不要
しや断を行うことになる。また、低い零相電圧で
微地絡選択リレー10G1の零相電圧検出感度に
至らない場合には、微地絡選択リレーの後備保護
機能も果せなくなり、地絡故障が永久に除去でき
ないという大きな問題になる。
Furthermore, regarding the slight ground fault selection relay 10G 1 ,
The backup protection function is based on the premise of bank independent operation, and in case of ground fault failure of each feeder, each ground fault direction relay 67G 11 ~ 67G 1o
If the ground fault cannot be removed, and the ground fault continues to occur for more than a predetermined time and a predetermined zero-sequence voltage , it is possible to remove the Attempts to detect and eliminate ground faults. However, in the case of bank parallel operation, if the above conditions are met for the occurrence of a slight ground fault in any bank, the feeders of all banks will be sequentially opened at the same time, and as a result, feeder errors and If it is unnecessary or unnecessary, it will be cut off. In addition, if the zero-sequence voltage detection sensitivity of the micro-ground fault selection relay 10G 1 is not achieved due to low zero-sequence voltage, the backup protection function of the micro-ground fault selection relay cannot be performed, and the ground fault cannot be permanently eliminated. It becomes a big problem.

こうした問題を解消するために、本実施例では
地絡方向リレー67G11,67G1o及び微地絡選
択リレー10G1は従来そのままに各バンク共に
バンク単独運転を前提とした整定値等の設定とし
ておき、ブスタイしや断器CBt1〜CBt3を夫々ト
リツプできる地絡過電圧検出リレーOVG1
OVG3とタイマT1〜T3からなる地絡保護手段を
備える。こうした構成において、何れかのバンク
に地絡故障が発生すれば、既設の継電器67
G11,10G1等)で保護できる地絡故障には、地
絡過電圧検出リレーOVG1〜OVG3の零相電圧Vo
の感度が既設の継電器の零相電圧Vo感度よりも
同等以下になることから該リレーOVG1〜OVG3
にも検出され、この検出にはタイマT1〜T3の時
限後にブスタイしや断器CBt1〜CBt3をトリツプ
できる。このとき、タイマT1〜T3の時限のばら
つきによつて各ブスタイしや断器CBt1〜CBt3
しや断までの時間に差がでる。この時限のばらつ
きについて、例えば、フイーダF11の地絡発生に、
ブスタイCBt2,CBt3が先にしや断された場合に
も零相電圧Voは残つているため、地絡過電圧検
出リレーOVG1で検出されてブスタイしや断器
CBt1のしや断を得ることができる。逆に、しや
断器CBt1がCBt2,CBt3よりも先にしや断された
ときにはバンクB1のみが単独運転となり、バン
クB2,B3側では地絡による零相電圧Voの消滅に
よつてバンクB2とB3の並列運転が続行される。
これは最も理想的な場合であり、ブスタイしや断
器CBt1のしや断後にはバンクB1のみが単独運転
になつて既設の継電器67G11,67G1o又は1
0G1によつて地絡フイーダを系統から除去する
ことができ、バンクB2,B3側は並列運転のまま
になる。
In order to solve this problem, in this embodiment, the ground fault direction relays 67G 11 , 67G 1o and the slight ground fault selection relay 10G 1 are set as they were before, and the setting values for each bank are set on the assumption that the bank will operate independently. , ground fault overvoltage detection relay OVG 1 ~ which can trip the bus tie breakers CBt 1 ~ CBt 3 respectively.
Equipped with earth fault protection means consisting of OVG 3 and timers T 1 to T 3 . In this configuration, if a ground fault occurs in any bank, the existing relay 67
G 11 , 10G 1, etc.), the zero-sequence voltage Vo of the ground fault overvoltage detection relays OVG 1 to OVG 3
Since the sensitivity of the relay is equal to or lower than the zero-sequence voltage Vo sensitivity of the existing relay, the relay OVG 1 to OVG 3
This detection can trip the bus ties and disconnectors CBt 1 to CBt 3 after the timers T 1 to T 3 have expired. At this time, due to variations in the time limits of the timers T 1 to T 3 , there is a difference in the time it takes for each of the bus ties and disconnectors CBt 1 to CBt 3 to disconnect. Regarding the variation in this time limit, for example, when a ground fault occurs in feeder F 11 ,
Even if the bus ties CBt 2 and CBt 3 are disconnected first, the zero-sequence voltage Vo remains, so it is detected by the ground fault overvoltage detection relay OVG 1 and the bus tie is disconnected.
You can get a cut of CBt 1 . On the other hand, when the shingle breaker CBt 1 is cut off before CBt 2 and CBt 3 , only bank B 1 becomes isolated, and the zero-sequence voltage Vo disappears due to the ground fault on the banks B 2 and B 3 side. The parallel operation of banks B 2 and B 3 continues.
This is the most ideal case, and after the bank tie breaker CBt 1 is disconnected, only bank B 1 will operate independently and the existing relays 67G 11 , 67G 1o or 1
By 0G 1 , the ground fault feeder can be removed from the system, and banks B 2 and B 3 remain in parallel operation.

従つて、地絡過電圧検出リレーOVG1〜OVG3
とタイマT1〜T3によつてブスタイしや断器CBt1
〜CBt3のしや断可能にする構成にすることで、
バンク並列運転にも地絡フイーダを除去すること
ができる。
Therefore, earth fault overvoltage detection relay OVG 1 ~ OVG 3
and timers T 1 to T 3 to disconnect the bus tie and disconnect CBt 1.
~ By creating a configuration that allows CBt 3 to be disconnected,
Ground fault feeders can also be eliminated in bank parallel operation.

ここで、タイマT1〜T3の時限について、時限
なし即ちタイマT1〜T3を設けないとき、地絡過
電圧検出リレーOVG1〜OVG3の応動によつて即
時にバンク並列運転が解除され、地絡故障の発生
したバンク既設リレー67G1,10G1によつて
従来の故障除去時間と大差なく地絡故障を除去で
きる。この方法では全ての地絡に対してバンク並
列が解かれる短所がある。
Here, regarding the time limits of timers T1 to T3 , if there is no time limit, that is, if timers T1 to T3 are not provided, bank parallel operation is immediately canceled by the response of ground fault overvoltage detection relays OVG1 to OVG3 . By using the existing relays 67G 1 and 10G 1 of the bank where the ground fault has occurred, the ground fault can be removed without much difference from the conventional fault removal time. This method has the disadvantage that bank parallelism is solved for all ground faults.

一方、タイマT1〜T3を設け、このタイマの時
限を地絡方向リレー67G11,67G1oの時限よ
りも長くかつ微地絡選択リレー10G1の時限よ
りも短く設定するとき、この場合には地絡方向リ
レー67G11〜67G1oの感度で検出できるフイ
ーダ地絡故障には該地絡方向リレーで故障除去で
きるため、バンク並列解除の頻度を下げることが
できる。さらに微地絡選択リレー10G1の動作
までにはバンク並列解除になるため、該リレー1
0G1によるフイーダ誤しや断が無くなる。この
方法ではバンク単独運転時の既設リレーによる故
障除去に較べて設定時限だけ故障フイーダ除去が
遅れるという短所がある。
On the other hand, when timers T 1 to T 3 are provided and the time limit of these timers is set longer than the time limit of the ground fault direction relays 67G 11 and 67G 1o and shorter than the time limit of the slight ground fault selection relay 10G 1 , in this case, Since feeder ground faults that can be detected with the sensitivity of the ground fault direction relays 67G 11 to 67G 1o can be removed by the ground fault direction relays, the frequency of bank parallel release can be reduced. Furthermore, since the bank parallelism is canceled by the time the slight ground fault selection relay 10G 1 operates, the relay 1
Eliminates feeder errors and disconnections due to 0G 1 . This method has the disadvantage that removal of faulty feeders is delayed by a set time period compared to fault removal using existing relays during bank independent operation.

こうしたタイマーT1〜T3の時限設定による長
所、短所は適用される電力系統構成に応じて適宜
考慮され、時限設定はバンクの系統構成に応じて
決定される。
The advantages and disadvantages of setting the time limits of the timers T 1 to T 3 are appropriately considered according to the power system configuration to which the timers are applied, and the time limit settings are determined according to the bank system configuration.

なお、実施例において、地絡故障手段としてリ
レーOVG1〜OVG3とタイマT1〜T3のほかに、ブ
スタイしや断器CBt1〜CBt3のしや断をタイマT1
〜T3のトリツプ出力等から記憶し、微地絡選択
リレー10G1の処置時間後に当該ブスタイしや
断器CBt1〜CBt3を再閉路する手段を備えること
により、バンク並列運転を再開することができ
る。
In addition, in the embodiment, in addition to the relays OVG 1 to OVG 3 and timers T 1 to T 3 as ground fault fault means, the timer T 1 is used to detect the breakage of the bush ties and disconnectors CBt 1 to CBt 3 .
Bank parallel operation can be resumed by storing the information from the trip output of ~ T3, etc., and re-closing the relevant bus ties and disconnectors CBt1 ~ CBt3 after the processing time of the slight earth fault selection relay 10G1. I can do it.

G 発明の効果 以上のとおり、本発明によれば、母線零相電圧
からブスタイしや断器をトリツプさせる地絡過電
圧リレーとタイマを備えることによつて、従来か
らの又は既設の地絡保護装置に変更を加えること
なく比較的簡単な地絡過電圧リレーの追加のみで
バンク並列運転時の地絡を確実に検出し、地絡フ
イーダを確実に除去できる効果がある。
G. Effects of the Invention As described above, according to the present invention, by providing a ground fault overvoltage relay and a timer that trip the bus ties and disconnectors from the bus zero-sequence voltage, it is possible to replace the conventional or existing ground fault protection device. By simply adding a relatively simple ground fault overvoltage relay without making any changes to the system, ground faults during bank parallel operation can be reliably detected and ground fault feeders can be reliably removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置構成図、
第2図は2回線受電変電所の系統図である。 Tr1,Tr3……主変圧器、CBt1,CBt3……ブス
タイしや断器、CB11,CB1o……フイーダしや断
器、67G11,67G1o……地絡方向リレー、1
0G1……微地絡選択リレー、OVG1,OVG3……
地絡過電圧リレー、、T1,T3……タイマ。
FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention;
Figure 2 is a system diagram of a two-line power receiving substation. Tr 1 , Tr 3 ... Main transformer, CBt 1 , CBt 3 ... Bus tie breakout, CB 11 , CB 1o ... Feeder breakout, 67G 11 , 67G 1o ... Ground fault direction relay, 1
0G 1 ...Slight ground fault selection relay, OVG 1 , OVG 3 ...
Ground fault overvoltage relay, T 1 , T 3 ... timer.

Claims (1)

【特許請求の範囲】[Claims] 1 複数バンクの各主変圧器二次側母線間がブス
タイしや断器を介して並列接続されてバンク並列
運転が行われる電力系統において、前記母線から
複数のフイーダに至る零相電流と該母線の零相電
圧から各フイーダの地絡を検出して当該フイーダ
のフイーダしや断器をトリツプさせる複数の地絡
方向リレーと、前記零相電圧からバンク内各フイ
ーダの地絡を検出し前記フイーダしや断器を順次
トリツプさせる微地絡選択リレーと、前記地絡方
向リレー乃び微地絡選択リレーのうち最小の零相
電圧検出値以下の零相電圧検出値を有して前記各
母線の零相電圧から地絡を検出する各バンク毎に
設けられた地絡過電圧検出リレーと、このリレー
の検出が設定時限以上継続したときに当該バンク
の前記ブスタイしや断器をトリツプさせるタイマ
とを備えたことを特徴とする並列バンクの地絡保
護装置。
1. In a power system where the secondary side buses of each main transformer of multiple banks are connected in parallel via bus ties and disconnectors to perform bank parallel operation, the zero-sequence current from the bus to multiple feeders and the bus a plurality of ground fault direction relays that detect a ground fault in each feeder from the zero-sequence voltage of the bank and trip the feeder switch or disconnector of the feeder; a micro-ground fault selection relay that sequentially trips the ground fault circuit breakers; a ground fault overvoltage detection relay provided for each bank that detects a ground fault from the zero-phase voltage of A parallel bank earth fault protection device characterized by comprising:
JP61049049A 1986-03-06 1986-03-06 Grounding protective apparatus for parallel banks Granted JPS62207123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049049A JPS62207123A (en) 1986-03-06 1986-03-06 Grounding protective apparatus for parallel banks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049049A JPS62207123A (en) 1986-03-06 1986-03-06 Grounding protective apparatus for parallel banks

Publications (2)

Publication Number Publication Date
JPS62207123A JPS62207123A (en) 1987-09-11
JPH0559649B2 true JPH0559649B2 (en) 1993-08-31

Family

ID=12820224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049049A Granted JPS62207123A (en) 1986-03-06 1986-03-06 Grounding protective apparatus for parallel banks

Country Status (1)

Country Link
JP (1) JPS62207123A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878912B2 (en) * 2006-05-24 2012-02-15 中国電力株式会社 Equipment protection system in case of bus ground fault

Also Published As

Publication number Publication date
JPS62207123A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
JPH08126210A (en) Parallel off control device for commercial power supply linkage private generator
JPH0572171B2 (en)
KR20130047316A (en) Automatic load transfer relay for distribution transformer
JP3480671B2 (en) Bus protection system for spot network power receiving equipment
JPH0559649B2 (en)
JPH06276672A (en) Method for sensing and isolating groud fault
JP2009189084A (en) Power distribution system
JPH0323802Y2 (en)
JPH0510512Y2 (en)
JP3433992B2 (en) Protection system for different bus supply loop transmission line system
JPS6134833Y2 (en)
JP2545542B2 (en) Uninterruptible switching protection device for receiving two lines
JP2503961B2 (en) Loop line protection device
JPH1014100A (en) Ground self-breaking type automatic section switch
JP2860477B2 (en) Distribution line switch control method
JPH0210770Y2 (en)
JPS635972B2 (en)
JPS6251053B2 (en)
JPH0520976B2 (en)
JPH035132B2 (en)
JPH04281327A (en) Faint ground fault selective interruption system for distribution system
JPH0373215B2 (en)
JPS61293116A (en) Ground fault protector
JPH09233681A (en) Ground overcurrent relay
JPH0429290B2 (en)