JPH0559409A - Production of soft magnetic powder - Google Patents

Production of soft magnetic powder

Info

Publication number
JPH0559409A
JPH0559409A JP3248367A JP24836791A JPH0559409A JP H0559409 A JPH0559409 A JP H0559409A JP 3248367 A JP3248367 A JP 3248367A JP 24836791 A JP24836791 A JP 24836791A JP H0559409 A JPH0559409 A JP H0559409A
Authority
JP
Japan
Prior art keywords
powder
phase
soft magnetic
mixed
metastable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3248367A
Other languages
Japanese (ja)
Inventor
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3248367A priority Critical patent/JPH0559409A/en
Publication of JPH0559409A publication Critical patent/JPH0559409A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To mass-produce a soft magnetic powder contg. a metastable (Fe, M)16N2 phase (where M is one or >=2 kinds among Ti, Zr, Hf, V, Nb and Ta) and having high Bs and low Hc. CONSTITUTION:A nitrided Fe powder with an alpha-Fe phase and an epsilon-FeXN phase (X=2 or 3) as the essential structure is mixed with an M powder and/or an Fe-M powder so that the composition of the mixture is controlled to (Fe1-YMY)1-ZNZ (where Y=0.02 to 0.15 and Z=0.05 to 0.15). The mixed powder is mixed and crushed while being imparted with high energy. A soft magnetic powder having a metastable (Fe, M)16N2 phase is produced in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、飽和磁束密度(以
下、Bsと記す)が高く、保磁力(以下、Hcと記す)
の小さな軟磁性粉末に関するものである。
This invention has a high saturation magnetic flux density (hereinafter referred to as Bs) and a coercive force (hereinafter referred to as Hc).
Of small soft magnetic powder.

【0002】[0002]

【従来の技術】従来、モーターやトランスなどの磁心、
さらに磁気シールドなどの樹脂結合軟磁性複合部材が、
純Fe粉末などの軟磁性粉末に、所定割合のエポキシ樹
脂などの樹脂結合剤を配合し、混合した後、所定形状の
圧粉体に加圧成形し、この圧粉体に樹脂硬化処理を施す
ことにより製造されることは良く知られるところであ
る。
2. Description of the Related Art Conventionally, magnetic cores of motors and transformers,
Furthermore, resin-bonded soft magnetic composite members such as magnetic shields,
A soft magnetic powder such as pure Fe powder is mixed with a resin binder such as an epoxy resin in a predetermined ratio, mixed, and then pressure-molded into a green compact having a predetermined shape, and the green compact is subjected to a resin curing treatment. It is well known that it is manufactured by

【0003】上記純Fe粉末は、Bsが十分に大きくな
いために、近年、上記純Fe粉末よりも高いBsを有す
る準安定Fe162 相を主体組織とした軟磁性粉末が注
目されてきた。
Since the pure Fe powder does not have a sufficiently large Bs, a soft magnetic powder mainly composed of a metastable Fe 16 N 2 phase having a Bs higher than that of the pure Fe powder has recently been attracting attention. ..

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記準
安定Fe162 相を主体組織とした軟磁性粉末は、N2
ガス中の蒸着やスパッタリングで形成される薄膜を剥離
し、粉砕して製造されるために量産することができず、
またこのようにして製造された準安定Fe162相を主
体組織とす軟磁性粉末は、高いBsを有するけれどもH
cが高く、そのためこの軟磁性粉末を用いて作製された
圧粉磁芯もHcが大きくなり、これが組込まれた各種電
気電子機器の高効率化および省エネルギー化を満足させ
ることはできなかった。
However, the soft magnetic powder containing the metastable Fe 16 N 2 phase as the main structure is N 2
The thin film formed by vapor deposition or sputtering in gas is peeled off and cannot be mass-produced because it is manufactured by crushing,
In addition, the soft magnetic powder produced in this way and mainly composed of the metastable Fe 16 N 2 phase has a high Bs, though it has a high Bs.
Since c is high, the powder magnetic core produced using this soft magnetic powder also has a large Hc, and it has not been possible to satisfy the high efficiency and energy saving of various electric and electronic devices incorporating the same.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
かかる課題を解決すべく研究を行った結果、MをTi,
Zr,Hf,V,NbおよびTaのうちの1種または2
種以上とすると、M粉末および/またはFe−M粉末
に、α−Fe相とε−FeX N相(X=2〜3)を主体
組織とする窒化処理Fe粉末を配合し、得られた配合粉
末をアトライターミルや遊星ボールミルを用いて高エネ
ルギーを与えながら混合粉砕すると(以下、高エネルギ
ーを与えながら混合粉砕することを高エネルギー処理と
いう)、Mを固溶した準安定Fe162 相(以下、準安
定(Fe,M)162 相という)含む軟磁性粉末が得ら
れ、この軟磁性粉末はBsをほとんど低下させることな
くHcを大幅に低下させることができるという知見を得
たのである。
Therefore, the present inventors have
As a result of conducting research to solve such problems, M is replaced by Ti,
One or two of Zr, Hf, V, Nb and Ta
If the number of seeds is not less than, a nitriding Fe powder mainly composed of α-Fe phase and ε-Fe X N phase (X = 2 to 3) was mixed with M powder and / or Fe-M powder, and obtained. When the compounded powder is mixed and pulverized by using an attritor mill or a planetary ball mill while giving high energy (hereinafter, mixing and pulverizing while giving high energy is referred to as high energy treatment), metastable Fe 16 N 2 in which M is dissolved is formed. A soft magnetic powder containing a phase (hereinafter referred to as a metastable (Fe, M) 16 N 2 phase) was obtained, and it was found that this soft magnetic powder can significantly reduce Hc without substantially reducing Bs. It was.

【0006】この発明は、かかる知見にもとづいてなさ
れたものであって、M粉末および/またはFe−M粉末
に、α−Fe相とε−FeX N相(X=2〜3)を主体
組織とする窒化処理Fe粉末を、全体組成が(F
1-Y,MY 1-Z Z (但し、YおよびZはそれぞれ
モル比でY=0.02〜0.15,Z=0.05〜0.
15)となるように配合し、得られた配合粉末を高エネ
ルギー処理する、準安定(Fe,M)162 相を有する
軟磁性粉末の製造法に特徴を有するものである。
The present invention has been made on the basis of such findings, and is mainly composed of an M-powder and / or an Fe-M powder containing an α-Fe phase and an ε-Fe X N phase (X = 2 to 3). The entire composition of the nitriding Fe powder having the structure is (F
e 1-Y , M Y ) 1-Z N Z (wherein Y and Z are in a molar ratio of Y = 0.02 to 0.15, Z = 0.05 to 0.
It is characterized by a method for producing a soft magnetic powder having a metastable (Fe, M) 16 N 2 phase, in which the compounded powder is blended in the above 15) and the resulting blended powder is treated with high energy.

【0007】上記M粉末および/またはFe−M粉末
に、さらに、α−Fe相とε−FeX N相(X=2〜
3)を主体組織とする窒化処理Fe粉末を配合し、これ
に高エネルギー処理を施すと、上記配合粉末は混合粉末
となり、さらに粉砕・薄片化および薄片の冷間圧接ある
いは薄片のたたみ込みが同時に進行し、粉砕による組織
の微細化とともにM成分の合金化による組織の微細化が
促進され、準安定(Fe,M)162 相が生成して高B
sで低Hcを有する軟磁性粉末が得られるものと考えら
れる。
In addition to the above M powder and / or Fe-M powder, α-Fe phase and ε-Fe X N phase (X = 2 to
When a nitriding Fe powder mainly composed of 3) is mixed and subjected to high energy treatment, the above-mentioned mixed powder becomes a mixed powder, and further crushing and thinning and cold welding of the thin piece or convolution of the thin piece at the same time. As it progresses, the refinement of the structure by pulverization is promoted and the refinement of the structure by the alloying of the M component is promoted, and a metastable (Fe, M) 16 N 2 phase is generated, which results in a high B content.
It is believed that a soft magnetic powder having a low Hc at s can be obtained.

【0008】この発明の製造法で原料粉末として用いる
α−Fe相とε−FeX N相(X=2〜3)を主体組織
とする窒化処理Fe粉末は、純Fe粉末をアンモニア雰
囲気において短時間窒化処理すると、純Fe粉末の内部
は窒化処理されずにα−Fe相のまま残り、表層部が窒
化されてε−FeX N相(X=2〜3)が生成されるこ
とにより製造される。
The nitriding Fe powder mainly composed of the α-Fe phase and the ε-Fe X N phase (X = 2 to 3) used as the raw material powder in the production method of the present invention is a pure Fe powder which is short in a ammonia atmosphere. When the time nitriding treatment is performed, the inside of the pure Fe powder is not subjected to the nitriding treatment and remains in the α-Fe phase, and the surface layer portion is nitrided to produce the ε-Fe X N phase (X = 2 to 3). To be done.

【0009】上記配合粉末の全体組成がモル比で(Fe
1-Y ,MY 1-Z Z (但し、Y=0.02〜0.1
5,Z=0.05〜0.15)となるように限定した理
由は、Yが0.02未満ではMによるFe162 相の結
晶粒を微細化させることができないためにHcを低下さ
せることができず、一方、Yが0.15を越えるとFe
162 相のBsが減少して好ましくないことによるもの
であり、さらにZが0.05未満でもまた0.15を越
えても準安定(Fe,M)162 相の形成が困難となる
ために好ましくないことによるものである。
The overall composition of the above-mentioned compounded powder is (Fe
1-Y , M Y ) 1-Z N Z (However, Y = 0.02 to 0.1
5, Z = 0.05 to 0.15), the reason for limiting it is that if Y is less than 0.02, the crystal grains of the Fe 16 N 2 phase due to M cannot be refined, so that Hc is lowered. On the other hand, if Y exceeds 0.15, Fe
This is because the Bs of the 16 N 2 phase is decreased, which is not preferable, and it is difficult to form a metastable (Fe, M) 16 N 2 phase even when Z is less than 0.05 or more than 0.15. This is because it is not preferable because

【0010】さらに、この発明で採用する高エネルギー
処理は、アトライターミルや遊星ボールミルなどの混合
粉砕機を用い、通常の混合粉砕よりもボール数や回転数
を多くすることにより高エネルギーを付与し、混合粉砕
するものである。
Further, the high energy treatment adopted in the present invention uses a mixing and crushing machine such as an attritor mill or a planetary ball mill, and imparts high energy by increasing the number of balls and the number of revolutions as compared with ordinary mixing and crushing. , Is mixed and crushed.

【0011】[0011]

【実施例】原料粉末として、いずれも粒度:−100メ
ッシュのTi粉末、Zr末粉、Hf粉末、V粉末、Nb
粉末、Ta粉末、表4〜表6に示される成分組成のFe
−Ti粉末、Fe−Zr粉末、Fe−Hf粉末、Fe−
V粉末、Fe−Nb粉末、およびFe−Ta粉末を用意
した。
[Examples] As raw material powders, Ti powder, Zr powder, Hf powder, V powder, Nb, each having a particle size of -100 mesh,
Powder, Ta powder, Fe having the component composition shown in Tables 4 to 6
-Ti powder, Fe-Zr powder, Fe-Hf powder, Fe-
V powder, Fe-Nb powder, and Fe-Ta powder were prepared.

【0012】さらに粒度:−100メッシュのアトマイ
ズ純Fe粉末をアンモニア気流中、温度:570℃で種
々の時間保持することにより窒化処理し、主要構成相が
いずれもα−Fe相とε−FeX N相(X=2〜3)か
らなり種々の窒素含有量を有する窒化処理Fe粉末を製
造し、原料粉末として用意した。
Further, atomized pure Fe powder having a particle size of -100 mesh is subjected to a nitriding treatment by being kept in an ammonia stream at a temperature of 570 ° C. for various times, and the main constituent phases are α-Fe phase and ε-Fe X. Nitride-treated Fe powder consisting of N phase (X = 2 to 3) and having various nitrogen contents was manufactured and prepared as a raw material powder.

【0013】これら原料粉末を全体組成が(Fe1-Y
Y 1-Z NzにおけるYおよびZのモル比が表1〜表
8に示される値となるように配合し、得られた配合粉末
を直径:11mmのステンレス製ボール11個とともに容
積:80cm3 のステンレス製容器を備えた遊星ボールミ
ルの上記容器に装入し、容器内をN2 雰囲気として、容
器公転速度:300r.p.m.で20時間回転の高エネルギ
ー処理を施すことにより本発明法1〜48、比較法1〜
14を実施した。
The total composition of these raw material powders is (Fe 1 -Y ,
M Y) 1-Z molar ratio of Y and Z in the Nz is blended so that the value shown in Table 1 to Table 8, formulated powder obtained diameter: 11 mm stainless steel ball 11 with volume: 80 cm The method of the present invention 1 to 3 by charging the above-mentioned container of a planetary ball mill equipped with a stainless steel container of 3 and applying a high energy treatment of 20 hours rotation at a container revolution speed of 300 rpm with an N 2 atmosphere in the container. 48, Comparative method 1
14 was carried out.

【0014】なお、上記比較法1〜14は、YまたはZ
の値がこの発明の条件から外れており、この外れた値に
*印を付して示してある。
Incidentally, the above-mentioned comparative methods 1 to 14 are Y or Z.
Is out of the condition of the present invention, and this outlying value is marked with *.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】[0021]

【表7】 [Table 7]

【0022】[0022]

【表8】 [Table 8]

【0023】上記本発明法1〜48および比較法1〜1
4を実施することにより得られた軟磁性粉末について、
準安定(Fe,M)162 相の生成率(容量%)を20
0KV透過電子顕微鏡を用いて制限視野電子線回析を行
い、この結果の回折パターンの中の準安定(Fe,M)
162 相の反射を用いて暗視野像を結像して写真撮影
し、この写真から準安定(Fe,M)162 相の体積分
率を算出することにより求め、BsおよびHcについて
も振動試料型磁力計を用い、それぞれ10kOe,10
0Oeの磁場を印加して測定し、これらの測定結果を表
9〜表13に示した。
The above-mentioned methods 1 to 48 of the present invention and comparative methods 1 to 1
Regarding the soft magnetic powder obtained by carrying out 4,
The generation rate (volume%) of the metastable (Fe, M) 16 N 2 phase was 20%.
Selective field electron diffraction was performed using a 0KV transmission electron microscope, and the metastable (Fe, M) in the diffraction pattern of this result was obtained.
A dark field image was formed using reflection of the 16 N 2 phase, photographed, and the volume fraction of the metastable (Fe, M) 16 N 2 phase was calculated from this photograph to obtain Bs and Hc. Also using a vibrating sample magnetometer, 10 kOe, 10
The measurement was performed by applying a magnetic field of 0 Oe, and the measurement results are shown in Tables 9 to 13.

【0024】[0024]

【表9】 [Table 9]

【0025】[0025]

【表10】 [Table 10]

【0026】[0026]

【表11】 [Table 11]

【0027】[0027]

【表12】 [Table 12]

【0028】[0028]

【表13】 [Table 13]

【0029】[0029]

【発明の効果】表1〜表13に示される結果から、α−
Fe相とε−Fex N相(X=2〜3)を主体組織とす
る窒化処理Fe粉末に、M粉末および/またはFe−M
粉末を、全体組成が(Fe1-Y ,MY 1-Z Z (但
し、Y=0.02〜0.15,Z=0.05〜0.1
5)となるように配合し、得られた配合粉末に高エネル
ギー処理を施すことにより、Bsをほとんど低下するこ
となくHcを大幅に下げることができることがわかる。
From the results shown in Tables 1 to 13, α-
A nitriding Fe powder mainly composed of Fe phase and ε-Fex N phase (X = 2 to 3) is added to M powder and / or Fe-M
The powder has a total composition of (Fe 1-Y , M Y ) 1-Z N Z (where Y = 0.02 to 0.15 and Z = 0.05 to 0.1).
It can be seen that Hc can be significantly reduced with almost no decrease in Bs by performing high energy treatment on the obtained mixed powder by blending so as to be 5).

【0030】したがって、この発明により準安定(F
e,M)162 相を含むHcの低い軟磁性粉末を量産す
ることができ、この軟磁性粉末を用いて高効率でエネル
ギー消費量の少ない樹脂結合圧粉電磁気部品を低コスト
で生産でき、産業の発展に大いに貢献することができ
る。
Therefore, according to the present invention, the metastable (F
e, M) It is possible to mass-produce soft magnetic powder with low Hc containing 16 N 2 phase, and use this soft magnetic powder to produce highly efficient and low energy consumption resin-bonded powder electromagnetic components at low cost. , Can greatly contribute to the development of industry.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 33/04 D 8414−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 33/04 D 8414-4K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 MをTi,Zr,Hf,V,Nbおよび
Taのうちの1種または2種以上とすると、M粉末に、
α−Fe相とε−FeX N相(X=2〜3)を主体組織
とする窒化処理Fe粉末を配合し、得られた配合粉末に
高エネルギーを与えながら混合粉砕処理することを特徴
とする、Mを固溶した準安定Fe162 相(以下、準安
定(Fe,M)162 相と記す)を有する軟磁性粉末の
製造法。
1. When M is one or more of Ti, Zr, Hf, V, Nb and Ta, M powder is
It is characterized in that nitriding Fe powder having an α-Fe phase and an ε-Fe X N phase (X = 2 to 3) as a main structure is blended, and the resulting blended powder is mixed and pulverized while applying high energy. A method for producing a soft magnetic powder having a metastable Fe 16 N 2 phase (hereinafter referred to as a metastable (Fe, M) 16 N 2 phase) in which M is solid-solved.
【請求項2】 Fe−M合金粉末に、α−Fe相とε−
FeX N相(X=2〜3)を主体組織とする窒化処理F
e粉末を配合し、得られた配合粉末に高エネルギーを与
えながら混合粉砕処理することを特徴とする、準安定
(Fe,M)162 相を有する軟磁性粉末の製造法。
2. An Fe-M alloy powder containing α-Fe phase and ε-
Nitrogenation treatment F mainly composed of Fe x N phase (X = 2 to 3)
A method for producing a soft magnetic powder having a metastable (Fe, M) 16 N 2 phase, which comprises blending e powder and subjecting the obtained blended powder to a mixing and pulverizing treatment while applying high energy.
【請求項3】 M粉末およびFe−M粉末に、α−Fe
相とε−FeX N相(X=2〜3)を主体組織とする窒
化処理Fe粉末を配合し、得られた配合粉末に高エネル
ギーを与えながら混合粉砕処理することを特徴とする、
準安定(Fe,M)162 相を有する軟磁性粉末の製造
法。
3. The M powder and the Fe-M powder are mixed with α-Fe.
Phase and ε-Fe X N phase (X = 2 to 3) as a main structure are mixed, and nitriding Fe powder is mixed, and the resulting mixed powder is mixed and pulverized while giving high energy,
Method for producing soft magnetic powder having metastable (Fe, M) 16 N 2 phase.
【請求項4】 上記配合粉末は、全体組成で(F
1-Y ,MY1-Z Z (但し、YおよびZはそれぞれ
モル比でY=0.02〜0.15,Z=0.05〜0.
15)となるように配合して得られた配合粉末であるこ
とを特徴とする請求項1,2又は3記載の準安定(F
e,M)162 相を有する軟磁性粉末の製造法。
4. The above-mentioned compounded powder has a total composition of (F
e 1-Y , M Y ) 1-Z N Z (wherein Y and Z are in a molar ratio of Y = 0.02 to 0.15, Z = 0.05 to 0.
15) The metastable (F) according to claim 1, characterized in that it is a compounded powder obtained by compounding such that
e, M) A method for producing a soft magnetic powder having a 16 N 2 phase.
JP3248367A 1991-09-02 1991-09-02 Production of soft magnetic powder Withdrawn JPH0559409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3248367A JPH0559409A (en) 1991-09-02 1991-09-02 Production of soft magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3248367A JPH0559409A (en) 1991-09-02 1991-09-02 Production of soft magnetic powder

Publications (1)

Publication Number Publication Date
JPH0559409A true JPH0559409A (en) 1993-03-09

Family

ID=17177050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3248367A Withdrawn JPH0559409A (en) 1991-09-02 1991-09-02 Production of soft magnetic powder

Country Status (1)

Country Link
JP (1) JPH0559409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890380A (en) * 2022-05-12 2022-08-12 刘威 Metastable hydrogen storage alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890380A (en) * 2022-05-12 2022-08-12 刘威 Metastable hydrogen storage alloy and preparation method thereof
CN114890380B (en) * 2022-05-12 2023-12-19 刘威 Metastable state hydrogen storage alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
CN107251176B (en) The manufacturing method of R-T-B based sintered magnet
JPH0974006A (en) Magnetic material and bonded magnet
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JPH06346101A (en) Magnetically anisotropic powder and its production
JPH08191006A (en) Magnetic material
JPH05326239A (en) Production of fe-n or fe-si-n based soft magnetic powder having high saturation flux density
JP3135665B2 (en) Magnetic materials and bonded magnets
JPH0559409A (en) Production of soft magnetic powder
JPH0766021A (en) Permanent magnet
JPS5841336B2 (en) Sonoseihou
JPH0559408A (en) Production of soft magnetic powder
JPH0590018A (en) Manufacture of magnetic powder
JPH0559410A (en) Production of soft magnetic powder
JPH059511A (en) Production of fe-co soft magnetic powder
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JPH059503A (en) Production of fe-co soft magnetic powder
JPH04293702A (en) Production of soft magnetic powder low in coercive force
JPH0578701A (en) Production of soft magnetic powder
JPH0574620A (en) Manufacture of soft magnetic powder
JPH059502A (en) Production of soft magnetic powder
JPH0513210A (en) Manufacture of fe-co-based magnetically soft powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH0565506A (en) Production of soft magnetic powder
JPH0582326A (en) Manufacture of soft magnetic powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203