JPH0559388B2 - - Google Patents

Info

Publication number
JPH0559388B2
JPH0559388B2 JP62088811A JP8881187A JPH0559388B2 JP H0559388 B2 JPH0559388 B2 JP H0559388B2 JP 62088811 A JP62088811 A JP 62088811A JP 8881187 A JP8881187 A JP 8881187A JP H0559388 B2 JPH0559388 B2 JP H0559388B2
Authority
JP
Japan
Prior art keywords
excitation
acoustic radiation
underwater
radiation surface
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62088811A
Other languages
Japanese (ja)
Other versions
JPS63255676A (en
Inventor
Hajime Fujita
Kyoshi Koyano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8881187A priority Critical patent/JPS63255676A/en
Publication of JPS63255676A publication Critical patent/JPS63255676A/en
Publication of JPH0559388B2 publication Critical patent/JPH0559388B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中に音波を送波したり、水中を伝播
してくる音波を受波する水中音響トランスデユー
サのような水中送受波器およびそれを用いたソナ
ーシステムに係り、特に低周波を使用するものに
好適である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to underwater transducers such as underwater acoustic transducers that transmit sound waves underwater and receive sound waves propagating underwater; It is particularly suitable for sonar systems that use low frequencies.

〔従来の技術〕[Conventional technology]

従来の水中送受波器としては、ジヤーナル・オ
ブ・アコーステイカル・ソサイアテイ・オブ・ア
メリカ(Journal of Acoustical Society of
America)第68巻、第1031〜1037頁(1980年)
に記載されているものがある。これは、振動子の
縦方向振動を直接送受波信号として利用するもの
であるが、このようなものでは、振動子が大きく
重くなるので、大容量のアレイを構成することが
難しい。
As a conventional underwater transducer, the Journal of Acoustical Society of America
America) Vol. 68, pp. 1031-1037 (1980)
There are things listed in. This uses the longitudinal vibration of the vibrator as a direct transmission/reception signal, but with such a vibrator, the vibrator is large and heavy, making it difficult to construct a large-capacity array.

低周波送受波器を小型化する試みとしては前記
文献の第1049〜1052頁に記載されたフレツクステ
ンシヨナル方式のものがある。この方式の送受波
器は楕円円筒状の振動シエルの空間部分にその長
軸方向に電歪加振素子を嵌着して振動シエルを長
軸方向に加振し、それと逆位相で振動する短軸方
向の面を音響放射面としたものである。この方式
のものでは、音響放射面が両面に存在するため、
アレイ状に送受波器を並べて構成する場合には片
面からの音響放射を何等かの方法で止めることが
必要となり、効率が著しく悪くなる。すなわち、
両面放射型送受波器の効率は50%を越えることが
できない。また、両面とも曲面なので、アレイ状
に送受波器を取付けることも困難になる。また、
水中目標物探知システムは複数個の送受波器を円
筒状に配列したものと、送受信系信号処理部およ
び表示部とから基本的構成がなされている。しか
し、複数個の送受波器を用いて円筒状アレイを構
成し、音響ビームを制御する場合には、円筒状ア
レイの内、外両面に同位相の音波を放射すると音
波が干渉してビーム制御上好ましくない。
As an attempt to miniaturize a low frequency transducer, there is a flextensional system described on pages 1049 to 1052 of the above-mentioned document. In this type of transducer, an electrostrictive excitation element is fitted in the space of an elliptical cylindrical vibration shell in the long axis direction, and the vibration shell is vibrated in the long axis direction. The axial surface is the acoustic radiation surface. With this method, there are acoustic radiation surfaces on both sides, so
When arranging transducers in an array, it is necessary to use some method to stop acoustic radiation from one side, resulting in a significant decrease in efficiency. That is,
The efficiency of double-sided emitting transducers cannot exceed 50%. Furthermore, since both surfaces are curved, it is difficult to install transducers in an array. Also,
An underwater target detection system basically consists of a plurality of transducers arranged in a cylindrical shape, a transceiver system signal processing section, and a display section. However, when controlling acoustic beams by constructing a cylindrical array using multiple transducers, if sound waves with the same phase are emitted to both the inner and outer surfaces of the cylindrical array, the sound waves will interfere and control the beam. Not good.

また、複数個の送受波器を用いて平面状アレイ
を構成した場合において、例えば全ての送受波器
を同一位相の電気信号で励振すると、平面上アレ
イの配列面と直角方向に音響ビームが形成され
る。この場合、両面放射型送受波器を用いると平
面状アレイの表裏に同様のビームを形成し、音波
の放射方向は表裏の2方向となり、受波するとき
も同様となる。したがつて、送受における信号の
方位性を判別することはできなくなる。
In addition, when a planar array is configured using multiple transducers, for example, if all the transducers are excited with electrical signals of the same phase, an acoustic beam will be formed in a direction perpendicular to the arrangement plane of the planar array. be done. In this case, when a double-sided emitting type transducer is used, similar beams are formed on the front and back sides of the planar array, and the sound waves are radiated in two directions, the front and back sides, and the same is true when receiving waves. Therefore, it is no longer possible to determine the direction of signals in transmission and reception.

片面放射型送受波器を用いれば、音響放射面が
一方向であるから、これに直角方向の音響ビーム
が1本だけ作られ、送波・受波共に音波の方向が
定まる。また、配列した各送受波器を励振する電
気信号の位相を制御して音響ビームの方位を制御
する場合も、片面放射型送受波器を用いれば、音
波の方向を定めた制御が可能となる。この片面放
射型送受波器の従来例としては特開昭61−80995
号公報に記載されたものがある。これはフレツク
ステンシヨナル方式の送受波器であつて、円筒ま
たは円環状の電歪または磁歪素子を用いた送受波
器である。これは、振動シエルの片方を取除き蓋
を取付けて片面放射としたものであるが、この送
受波器を、アレイ状に配置した場合、単位放射面
が球形となり、アレイとしての面積効率が低下す
る。また、円筒状の電歪又は磁歪素子の呼吸振動
モードの振動振幅は、直線素子の振幅に比して小
さく、十分な出力を得られない。さらに、円筒素
子を精密に加工して振動シエルに一様に嵌着する
ことも難しい。
If a single-sided radiation type transducer is used, since the acoustic radiation surface is unidirectional, only one acoustic beam is created in a direction perpendicular to the acoustic radiation surface, and the direction of the sound waves for both transmission and reception is determined. Additionally, when controlling the direction of an acoustic beam by controlling the phase of the electrical signal that excites each transducer in an array, using a single-sided transducer makes it possible to control the direction of the sound waves. . A conventional example of this single-sided radiation type transducer is Japanese Patent Application Laid-Open No. 61-80995.
There is something described in the No. This is a flextension type transducer and uses a cylindrical or annular electrostrictive or magnetostrictive element. This is achieved by removing one side of the vibration shell and attaching a lid to achieve single-sided radiation. However, when these transducers are arranged in an array, the unit radiation surface becomes spherical, reducing the area efficiency of the array. do. Furthermore, the vibration amplitude of the cylindrical electrostrictive or magnetostrictive element in the respiratory vibration mode is smaller than that of the linear element, and a sufficient output cannot be obtained. Furthermore, it is also difficult to precisely machine the cylindrical element and fit it uniformly into the vibration shell.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、送受波器をアレイとして配置
する場合に音響放射効率が悪くなつたり、取付け
が難しい、面積効率が悪い、組立てが難しいなど
の不具合があつた。
The above-mentioned conventional technology has problems such as poor acoustic radiation efficiency when arranging the transducers as an array, difficulty in mounting, poor area efficiency, and difficulty in assembly.

本発明の目的は、音響放射効率が良くしかも面
積効率も良好な水中送受波器およびそれを用いた
ソナーシステムを提供することにある。
An object of the present invention is to provide an underwater transducer with good acoustic radiation efficiency and good area efficiency, and a sonar system using the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴は、湾曲した可撓性の音響放射面
と、剛性の高いほぼ平面状に形成された基底部
と、前記音響放射面と基底部とを接続する接続部
と、それらの両側部を塞ぐ側壁とからなるシエル
とを備えた水中送受波器において、多数の加振素
子要素を積層して加振手段を形成し、この加振手
段は各加振要素毎に積層方向に電気的に励振され
前記加振手段の積層方向の少なくとも一端部を前
記音響放射面と前記接続部との境界域における前
記シエル内壁に固定したことを特徴とする水中送
受波器にある。
The features of the present invention include a curved and flexible acoustic radiation surface, a highly rigid base portion formed in a substantially planar shape, a connecting portion connecting the acoustic radiation surface and the base portion, and both side portions thereof. In an underwater transducer equipped with a shell consisting of a side wall that closes the The underwater transducer is characterized in that at least one end portion of the excitation means in the stacking direction is fixed to the inner wall of the shell in a boundary area between the acoustic radiation surface and the connection portion.

本発明の他の特徴は、上記水中送波器におい
て、他端部を前記基底部に固定したことにある。
さらに、本発明の特徴は、円筒状の取付枠の周囲
面、または平板状の取付枠面に上記水中送受波基
を格子状に複数配列したことにある。
Another feature of the present invention resides in that the other end of the underwater transmitter is fixed to the base.
Furthermore, the present invention is characterized in that a plurality of the underwater wave transmitting/receiving bases are arranged in a grid pattern on the peripheral surface of the cylindrical mounting frame or on the surface of the flat mounting frame.

〔作用〕[Effect]

各加振素子要素に通電すると、各加振素子要素
は電極方向に変位する。したがつて、加振素子要
素が多数積層されて形成された加振手段は、通電
毎に積層方向に加振素子要素数に比例して変位す
る。加振素子要素の通電方向や断続を繰り返すこ
とにより、加振手段は励振される。ところで、加
振手段は少なくとも一端を音響放射面と接続部と
の境界域に取付けられているので、加振手段は片
面に設けられた音響放射面を変位させようとす
る。ここで、音響放射面は可撓性を有しているの
で、容易に変位する。加振手段の他端を剛性の高
い基底部に取付けると、基底部端の加振手段は基
底部の剛性のため変位しにくいのに対し、接続部
側の加振手段は変位しやすい。この結果、加振素
子要素を電気的に励振すると、シエルは加振手段
との固定部(加振点)において加振され、その振
動振幅は、シエル構造固有の特徴により、音響放
射面の中央部付近で加振点振幅の数倍から十数倍
に増幅され、音響放射が片面側のみになされる。
When each vibration element element is energized, each vibration element element is displaced in the direction of the electrode. Therefore, the excitation means formed by laminating a large number of excitation element elements is displaced in the stacking direction in proportion to the number of excitation element elements each time electricity is applied. The excitation means is excited by repeating the direction of energization and the on/off of the energization element. By the way, since at least one end of the vibration excitation means is attached to the boundary area between the acoustic radiation surface and the connecting portion, the vibration excitation means tends to displace the acoustic radiation surface provided on one side. Here, since the acoustic radiation surface has flexibility, it is easily displaced. When the other end of the vibrating means is attached to a highly rigid base, the vibrating means at the end of the base is difficult to displace due to the rigidity of the base, whereas the vibrating means on the connection side is easily displaced. As a result, when the excitation element element is electrically excited, the shell is excited at the fixed part (excitation point) with the excitation means, and the vibration amplitude is at the center of the acoustic radiation surface due to the unique characteristics of the shell structure. The amplitude is amplified from several times to more than ten times the amplitude of the excitation point near the area, and the acoustic radiation is emitted only from one side.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に従つて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図において、1は可撓性の音響
放射面で、この音響放射面1は平板状で剛性の高
い基底部3に接続部20を介して取付部4で取付
けられている。6は音響放射面の両側端の開口部
を塞ぐように設けられた側壁部である。前記音響
放射面1、基底部3、接続部20、及び側壁部6
によりシエル10が構成されている。2はシエル
10内に圧縮バイアスを加えて設けられた加振素
子であり、この加振素子2は、シエル10内に2
個設けられていて、それぞれの加振素子2の一端
は音響放射面1と接続部20との境界域1aにお
けるシエル内壁に固定され、また各加振素子2の
他端部はシエルの基底部3の中央部に形成された
取付部3aに固定されている。また、各加振素子
2はその長手方向に直線状に多数配列された角材
状の細長い加振素子要素2aを多数直線状に積層
して構成されている。加振素子要素2aは圧電素
子などにより構成されており、各加振素子要素2
aの+電極どうしは+リード線14aにより接続
され、またマイナス電極どうしは−リード線14
bにより接続されている。第3図に示すように、
送波時には発振器15の信号を電力増幅器16で
増幅して+、−リード線14a,14b間を電気
的に励振し、これが第1図に矢印で示すように音
響放射面1に振動を生じさせ、媒管中に音波を送
波する。
In FIGS. 1 and 2, reference numeral 1 denotes a flexible acoustic radiation surface, and this acoustic radiation surface 1 is attached to a flat, highly rigid base portion 3 via a connecting portion 20 at a mounting portion 4. . Reference numeral 6 denotes side wall portions provided so as to close the openings at both ends of the acoustic radiation surface. The acoustic radiation surface 1, the base portion 3, the connecting portion 20, and the side wall portion 6
The shell 10 is configured by: 2 is an excitation element provided within the shell 10 by applying a compression bias;
One end of each excitation element 2 is fixed to the inner wall of the shell in the boundary area 1a between the acoustic radiation surface 1 and the connection part 20, and the other end of each excitation element 2 is fixed to the base of the shell. It is fixed to a mounting part 3a formed in the center of 3. Furthermore, each vibration element 2 is constructed by linearly stacking a large number of rectangular, elongated vibration element elements 2a arranged linearly in the longitudinal direction. The vibrating element 2a is composed of a piezoelectric element, etc., and each vibrating element 2a
The positive electrodes of a are connected to each other by the positive lead wire 14a, and the negative electrodes are connected to each other by the negative lead wire 14a.
connected by b. As shown in Figure 3,
During wave transmission, the signal from the oscillator 15 is amplified by the power amplifier 16 to electrically excite between the + and - lead wires 14a and 14b, which causes vibrations on the acoustic radiation surface 1 as shown by arrows in FIG. , transmits sound waves into the medium pipe.

ここで、各加振素子要素2aが電気的に励振さ
れると、各加振素子要素2aはその積層方向に変
位し、シエルとの取付部には、シエルをを押す力
または引く力が作用する。シエルとの取付部の中
で、基底部3側は基底部3の剛性が高いのでこの
押す力または引く力によつて変位することができ
ない。これに対し、境界域1a側の加振素子端は
音響放射面1が可撓性を有しているので容易に変
位する。これにより、音響放射面は、加振素子2
の縦振動振幅の数倍から十数倍の振動振幅を得
る。
Here, when each excitation element element 2a is electrically excited, each excitation element element 2a is displaced in the stacking direction, and a force that pushes or pulls the shell is applied to the attachment part with the shell. do. Among the attachment parts to the shell, the base part 3 side cannot be displaced by this pushing or pulling force because the base part 3 has high rigidity. On the other hand, the end of the vibrating element on the boundary area 1a side is easily displaced because the acoustic radiation surface 1 has flexibility. As a result, the acoustic radiation surface is
Obtain a vibration amplitude that is several times to ten times as large as the longitudinal vibration amplitude.

また、媒管中に存在する音波により音響放射面
1が振動するとリード線14a,14b間に電気
信号を誘起し、第4図に示す前置増幅器17の受
信信号出力端子18a,18b間に受信電気信号
を生じ、信号処理系へ送出する。
Further, when the acoustic radiation surface 1 vibrates due to the sound waves existing in the medium pipe, an electric signal is induced between the lead wires 14a and 14b, and is received between the received signal output terminals 18a and 18b of the preamplifier 17 shown in FIG. Generates an electrical signal and sends it to the signal processing system.

第5図は本発明の送受波器を筒状アレイとして
用いたソナーシステムを示すものである。図にお
いて、32は筒状の取付枠で、この取付枠32に
は第1図及び第2図に示すような送受波器31が
周方向及び軸方向に多数配列されている。なお、
第5図において、33は送受信系信号処理部、3
4は表示部である。
FIG. 5 shows a sonar system using the transducer of the present invention as a cylindrical array. In the figure, 32 is a cylindrical mounting frame, and in this mounting frame 32, a large number of transducers 31 as shown in FIGS. 1 and 2 are arranged in the circumferential direction and the axial direction. In addition,
In FIG. 5, 33 is a transmitting/receiving system signal processing section;
4 is a display section.

送受波器31を周方向及び軸方向に多数配列し
てなる第5図に示した水中送受波器の平面図を第
6図に、正面図を第7図に示す。
A plan view of the underwater transducer shown in FIG. 5, in which a large number of transducers 31 are arranged in the circumferential direction and the axial direction, is shown in FIG. 6, and a front view is shown in FIG. 7.

第8図及び第9図は第1図及び第2図に示した
ような送受波器31を平板状の取付枠35に横方
向及び縦方向に多数配列した場合の実施例を示す
ものである。
FIGS. 8 and 9 show an embodiment in which a large number of transducers 31 as shown in FIGS. 1 and 2 are arranged horizontally and vertically in a flat mounting frame 35. .

なお、上記第1図及び第2図に示す送受波器に
おいて、加振素子の積層方向に垂直な方向、すな
わち横方向剛性が小さいと、縦振動に加えて横振
動が発生して動作が不安定となるが、本実施例で
は加振素子2を加振点と基底部に固着するように
しているので、不安定な動作を防止できると共
に、十分な加振力を得ることができる。
In addition, in the transducer shown in FIGS. 1 and 2 above, if the stiffness in the direction perpendicular to the stacking direction of the excitation element, that is, in the lateral direction, is small, lateral vibration will occur in addition to longitudinal vibration, resulting in malfunction. However, in this embodiment, since the excitation element 2 is fixed to the excitation point and the base, unstable operation can be prevented and sufficient excitation force can be obtained.

加振点の位置すなわち境界域1aの位置はシエ
ルの振動モードを決定する上できわめて重要であ
る。すなわち接続部20の長さl0を短くしすぎる
と、接続部20の曲げ剛性が高くなつて十分な加
振振幅が得られない。逆に、l0が長すぎると音響
放射面1が小さくなると共に、音響放射面1の振
動振幅と加振点すなわち境界域1aの振動振幅と
の比を十分大きく取れず、フレツクステンシヨナ
ル型送受波器の長所が生かせなくなる。接続部2
0の長さl0はこのような点を考慮に入れて決定さ
れる。
The position of the excitation point, that is, the position of the boundary area 1a, is extremely important in determining the vibration mode of the shell. That is, if the length l 0 of the connecting portion 20 is made too short, the bending rigidity of the connecting portion 20 becomes high and a sufficient excitation amplitude cannot be obtained. On the other hand, if l 0 is too long, the acoustic radiation surface 1 will become small and the ratio of the vibration amplitude of the acoustic radiation surface 1 to the vibration amplitude of the excitation point, that is, the boundary area 1a, will not be sufficiently large, resulting in a flextension type The strengths of the transducer cannot be utilized. Connection part 2
The length l 0 of 0 is determined taking these points into consideration.

第10図〜第15図はそれぞれ本発明における
送受波器の他の実施例を示すものである。
FIGS. 10 to 15 each show other embodiments of the transducer according to the present invention.

第10図〜第12図の実施例はそれぞれ加振素
子2の別の取付方を示すものである。第10図に
示す実施例は一つの加振素子2で構成したもの
で、構造が簡素化され、かつ振動の対称性も優れ
ている。しかし、加振素子2の長さが長くなるた
め加振素子2の横振動は発生し易い。第11図に
示す実施例は、第10図の実施例において加振素
子2の横振動を防止するため、基底部3の取付部
3aを突出させて加振素子を2つに分割して、そ
れぞれの一端を取付部3aに取付けるようにした
ものである。第12図の実施例は、音響放射面1
と接続部20との境界域1aにおけるシエルの形
状が曲面形状であるのに対し、加振素子2がほぼ
垂直となるように取付けたもので、加振素子の振
動が効率よく音響放射面を振動させる力となるよ
うにしたものである。
The embodiments shown in FIGS. 10 to 12 each show another way of attaching the vibrating element 2. The embodiment shown in FIG. 10 is composed of one vibrating element 2, and has a simple structure and excellent vibration symmetry. However, since the length of the vibrating element 2 becomes long, transverse vibration of the vibrating element 2 is likely to occur. In the embodiment shown in FIG. 11, in order to prevent the lateral vibration of the vibration element 2 in the embodiment shown in FIG. One end of each is attached to a mounting portion 3a. The embodiment shown in FIG.
While the shape of the shell in the boundary area 1a between the connecting portion 20 and the connecting portion 20 is a curved shape, the excitation element 2 is installed almost vertically, so that the vibration of the excitation element efficiently spreads over the acoustic radiation surface. It is designed to provide a vibrating force.

本実施例によれば、加振素子2の基底部3への
取付部3aが、基底部3の中央部から若干外側に
寄つた所となり、加振素子2の長さも短くなる。
したがつて、動作の安定性は増すが、加振素子2
の長さが短くなるため、加振能力は若干小さくな
る。
According to this embodiment, the attachment portion 3a of the vibration element 2 to the base portion 3 is located slightly outward from the center portion of the base portion 3, and the length of the vibration element 2 is also shortened.
Therefore, although the stability of the operation increases, the vibration element 2
Since the length of is shortened, the vibration excitation capacity becomes slightly smaller.

第13図〜第15図はそれぞれシエル10の構
造を変えた実施例である。第13図に示す実施例
は、音響放射部1、接続部20、及び基底部3を
一体構造としてシエル10を製作したものであ
る。第14図の実施例は、送受波器31を筒状取
付枠などへ取付ける取付部4を、基底部3と接続
部との結合部分よりも内側に設けるようにしたも
ので、取付部4にはねじ孔4aが形成されてい
る。この実施例によれば、取付部4をシエル10
外へ突出させないので、送受波器31をアレイ状
に並べて配置する際の全体面積効率が向上する。
第15図は、シエル10を断面楕円状に形成した
ものである。この実施例では、接続部20が加振
素子2を取付けている境界域1aよりも内側に入
つており、加振素子2を中心にして音響放射面1
と接続部20が対称となるので、振動特性が向上
するという効果がある。
13 to 15 show examples in which the structure of the shell 10 is changed. In the embodiment shown in FIG. 13, the shell 10 is manufactured by making the acoustic radiation part 1, the connecting part 20, and the base part 3 into an integral structure. In the embodiment shown in FIG. 14, the mounting part 4 for mounting the transducer 31 to a cylindrical mounting frame or the like is provided inside the joint part between the base part 3 and the connecting part. A screw hole 4a is formed therein. According to this embodiment, the mounting portion 4 is connected to the shell 10.
Since they do not protrude outward, the overall area efficiency when arranging the transducers 31 in an array is improved.
FIG. 15 shows the shell 10 formed to have an elliptical cross section. In this embodiment, the connecting portion 20 is located inside the boundary area 1a where the excitation element 2 is attached, and the acoustic radiation surface 1 is located around the excitation element 2.
Since the connecting portion 20 is symmetrical with the connecting portion 20, there is an effect that the vibration characteristics are improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、剛性の高い基
底部に可撓性の音響放射面を設け、加振要素を積
層した加振手段を積層方向に励振することにより
音響放射面を振動させるように構成したので、加
振素子の振動変位を大幅に上回る振動変位を音響
放射面に与えることができ、音響放射効率が高く
しかも面積効率も良好な水中送受波器およびそれ
を用いたソナーシステムを得ることができる効果
がある。
As explained above, the present invention provides a flexible acoustic radiation surface on a highly rigid base, and vibrates the acoustic radiation surface by exciting an excitation means in which excitation elements are laminated in the lamination direction. Because of this configuration, it is possible to apply a vibration displacement to the acoustic radiation surface that is significantly greater than the vibration displacement of the excitation element, and an underwater transducer with high acoustic radiation efficiency and good area efficiency, and a sonar system using the same. There are effects that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の送受波器の一
実施例を示すもので、第1図はその縦断面図、第
2図は第1図に示した送受波器の斜視図、第3図
および第4図は本発明の送受波器の送波時の駆動
回路図と受波時の駆動回路図、第5図は本発明の
送受波器を筒状取付枠に多数取付けて使用する場
合のソナーシステムの概略系統図、第6図および
第7図はそれぞれ第5図に示す筒状取付枠に取付
けて構成したソナーシステムの平面図及び正面
図、第8図及び第9図は送受波器を平板状の取付
枠に多数配列してソナーシステムを構成した場合
の実施例を示す平面図と正面図、第10図〜第1
2図はそれぞれ本発明の送受波器の他の実施例を
示す縦断面図、第13図〜第15図はそれぞれ本
発明の送受波器の更に他の実施例を示す一部断面
正面図である。 1……音響放射面、1a……境界域、2……加
振素子、2a……加振素子要素、3……基底部、
3a……取付部、6……側壁部、10……シエ
ル、20……接続部、31……送受波器、32…
…筒状取付枠、35……平板状取付枠。
1 and 2 show an embodiment of the transducer of the present invention, FIG. 1 is a longitudinal sectional view thereof, FIG. 2 is a perspective view of the transducer shown in FIG. 1, 3 and 4 are drive circuit diagrams of the transducer of the present invention during wave transmission and wave reception, and FIG. A schematic system diagram of the sonar system in use, FIGS. 6 and 7 are respectively a plan view and a front view of the sonar system configured by being attached to the cylindrical mounting frame shown in FIG. 5, and FIGS. 8 and 9. 10 to 1 are a plan view and a front view showing an embodiment in which a sonar system is constructed by arranging a large number of transducers in a flat mounting frame;
2 is a vertical sectional view showing another embodiment of the transducer of the present invention, and FIGS. 13 to 15 are partially sectional front views showing still other embodiments of the transducer of the present invention. be. DESCRIPTION OF SYMBOLS 1... Acoustic radiation surface, 1a... Boundary area, 2... Excitation element, 2a... Excitation element element, 3... Base part,
3a... Mounting part, 6... Side wall part, 10... Shell, 20... Connection part, 31... Transducer, 32...
...Tubular mounting frame, 35...Flat mounting frame.

Claims (1)

【特許請求の範囲】 1 湾曲した可撓性の音響放射面と、剛性の高い
ほぼ平面状に形成された基底部と、前記音響放射
面と基底部とを接続する接続部と、それらの両側
部を塞ぐ側壁とを有するシエルとを備えた片面放
射型の水中送受波器において、 多数の加振素子要素を積層して加振手段を形成
し、この加振手段は各加振素子要素ごとに積層方
向に電気的に励振され、この加振手段の積層方向
の少なくとも一端部を前記音響放射面と前記接続
部との境界域における前記シエル内壁に固定した
ことを特徴とする水中送受波器。 2 前記加振手段の他端部を前記基底部に固定し
たことを特徴とする特許請求の範囲第1項に記載
の水中送受波器。 3 円筒状の取付枠の周囲面または平板状の取付
枠面に特許請求の範囲第1項または第2項に記載
の水中送受波器を複数個格子状に配列したことを
特徴とするソナーシステム。 4 前記水中送受波器は夫々基底部を前記円筒状
の取付枠の周囲面または平板状の取付枠面に面し
て配列したことを特徴とする特許請求の範囲第3
項に記載のソナーシステム。
[Scope of Claims] 1. A curved and flexible acoustic radiation surface, a highly rigid base portion formed in a substantially planar shape, a connecting portion connecting the acoustic radiation surface and the base portion, and both sides thereof. In a single-sided underwater transmitter/receiver equipped with a shell having a side wall that closes the side wall, a large number of excitation element elements are laminated to form an excitation means, and this excitation means is arranged separately for each excitation element element. An underwater transducer characterized in that the excitation means is electrically excited in the lamination direction, and at least one end of the excitation means in the lamination direction is fixed to the inner wall of the shell in the boundary area between the acoustic radiation surface and the connection part. . 2. The underwater transducer according to claim 1, wherein the other end of the vibrating means is fixed to the base. 3. A sonar system characterized in that a plurality of underwater transducers according to claim 1 or 2 are arranged in a grid pattern on the peripheral surface of a cylindrical mounting frame or on the surface of a flat mounting frame. . 4. Claim 3, characterized in that each of the underwater transducers is arranged with its base portion facing the peripheral surface of the cylindrical mounting frame or the flat mounting frame surface.
The sonar system described in section.
JP8881187A 1987-04-13 1987-04-13 Underwater wave transmitter-receiver Granted JPS63255676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8881187A JPS63255676A (en) 1987-04-13 1987-04-13 Underwater wave transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8881187A JPS63255676A (en) 1987-04-13 1987-04-13 Underwater wave transmitter-receiver

Publications (2)

Publication Number Publication Date
JPS63255676A JPS63255676A (en) 1988-10-21
JPH0559388B2 true JPH0559388B2 (en) 1993-08-30

Family

ID=13953277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8881187A Granted JPS63255676A (en) 1987-04-13 1987-04-13 Underwater wave transmitter-receiver

Country Status (1)

Country Link
JP (1) JPS63255676A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277787A (en) * 1988-04-30 1989-11-08 Nec Corp Underwater ultrasonic transmitter/receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851699A (en) * 1981-09-02 1983-03-26 ポラロイド・コ−ポレ−シヨン Electroacoustic converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160699U (en) * 1984-04-03 1985-10-25 株式会社村田製作所 Ultrasonic transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851699A (en) * 1981-09-02 1983-03-26 ポラロイド・コ−ポレ−シヨン Electroacoustic converter

Also Published As

Publication number Publication date
JPS63255676A (en) 1988-10-21

Similar Documents

Publication Publication Date Title
US4706230A (en) Underwater low-frequency ultrasonic wave transmitter
US6617765B1 (en) Underwater broadband acoustic transducer
US5303210A (en) Integrated resonant cavity acoustic transducer
US4122725A (en) Length mode piezoelectric ultrasonic transducer for inspection of solid objects
US4462093A (en) Symmetrical shell support for flextensional transducer
JPH0559388B2 (en)
JP5050652B2 (en) Transmitter and driving method thereof
JPH02309799A (en) Transmitter-receiver
JP3538817B2 (en) Underwater transmitter / receiver capable of emitting multiple frequencies
JP2947115B2 (en) Broadband low frequency underwater transmitter and driving method thereof
JPH08256396A (en) Underwater acoustic transmitter
JP2937172B2 (en) Vibration transmitting and receiving device and vibration transmitting and receiving method
JPH02238799A (en) Transmitter-receiver for sonar
JP3652566B2 (en) Ultrasonic transducer
JP3652566B6 (en) Ultrasonic transducer
JP3205944B2 (en) Acoustic transducer
JPS631798B2 (en)
JP2972857B2 (en) Flexural vibration transducer array
JP2600178Y2 (en) Ultrasonic transceiver
KR100517061B1 (en) Underwater-use electroacoustic transducer
JP2571175Y2 (en) Acoustic transducer
SU547975A1 (en) Piezoelectric transducer
JPS6133318B2 (en)
JP2020141354A (en) Laminated vibrator
JP2776368B2 (en) Sonic underwater transmitter and method for adjusting its characteristics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 14