JPH055912A - Multistage optical amplifying device - Google Patents

Multistage optical amplifying device

Info

Publication number
JPH055912A
JPH055912A JP15686991A JP15686991A JPH055912A JP H055912 A JPH055912 A JP H055912A JP 15686991 A JP15686991 A JP 15686991A JP 15686991 A JP15686991 A JP 15686991A JP H055912 A JPH055912 A JP H055912A
Authority
JP
Japan
Prior art keywords
optical
light
signal
signal light
light pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15686991A
Other languages
Japanese (ja)
Other versions
JP2919118B2 (en
Inventor
Hidehiko Takara
秀彦 高良
Atsushi Takada
篤 高田
Masatoshi Saruwatari
正俊 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3156869A priority Critical patent/JP2919118B2/en
Publication of JPH055912A publication Critical patent/JPH055912A/en
Application granted granted Critical
Publication of JP2919118B2 publication Critical patent/JP2919118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To improve the gain and S/N by driving an optical switch arranged on the output side of each optical amplifier synchronously with a signal light pulse to remove natural emission light from the output light of the optical amplifier on the time base synchronously with the signal pulse. CONSTITUTION:When a signal light pulse 35 is made incident on an optical amplifier 13 in the first stage, output light 36 where natual emission light is superposed on the amplified signal light pulse 35 is outputted from the optical amplifier 13 and is made incident on an optical switch 31 in the first stage. A current (or voltage) signal 37 synchronized with the signal light pulse 35 is applied to the optical switch 31 from a driving device 33. The optical switch 31 allows the light to pass through only in the period of existence of the signal in the signal 37 but intercepts the light in the other period. Consequently, signal light 38 where almost all of the natural emission light in the period of the absence of the signal light pulse 35 is removed is outputted from the optical switch 31. With respect to output light of optical amplifiers 14 in second and following stages, the level of natural emission light is reduced by time gating due to optical switches 32 in the same manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信等に用いられる
高利得の多段光増幅装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a high gain multistage optical amplifier used for optical communication and the like.

【0002】[0002]

【従来の技術】図2は従来の光増幅器の一例を示すもの
で、図中、1は励起光源、2は合波器、3は希土類ドー
プ光ファイバ(以下、RDFと称す。)、4は分波器で
ある。前記構成において、信号光パルス(周波数νi
5は励起光源2から出射された励起光(周波数νp )6
と合波器2にて合波され、RDF3に入射される。この
際、励起光6により光ファイバへの添加物である希土類
元素の準位が励起(光励起)され、これによって信号光
パルス5に相当するhνi の準位の反転分布が生じるた
め、該信号光パルス5は誘導放出により増幅される。該
増幅された信号光パルスは分波器4にて励起光6と分離
され、信号光パルス7として出力される。
2. Description of the Related Art FIG. 2 shows an example of a conventional optical amplifier. In the figure, 1 is an excitation light source, 2 is a multiplexer, 3 is a rare earth-doped optical fiber (hereinafter referred to as RDF), and 4 is. It is a duplexer. In the above configuration, the signal light pulse (frequency ν i )
5 is excitation light (frequency ν p ) 6 emitted from the excitation light source 2
Is combined by the multiplexer 2 and is incident on the RDF 3. At this time, the level of the rare earth element, which is an additive to the optical fiber, is excited (photoexcited) by the pumping light 6, and the population inversion of the level of hν i corresponding to the signal light pulse 5 is thereby generated. The light pulse 5 is amplified by stimulated emission. The amplified signal light pulse is separated from the pumping light 6 by the demultiplexer 4 and output as the signal light pulse 7.

【0003】また、図3は従来の光増幅器の他の例を示
すもので、図中、8はレーザダイオード(以下、LDと
称す。)光増幅素子、9は電流源である。前記構成にお
いて、信号光パルス10はLD光増幅素子8に入射され
るが、該LD光増幅素子8には電流源9より直流電流1
1が注入(電流励起)されており、これによってキャリ
ア分布が反転分布になるため、誘導放出が生じて増幅さ
れ信号光パルス12として出力される。
FIG. 3 shows another example of a conventional optical amplifier. In the figure, 8 is a laser diode (hereinafter referred to as LD) optical amplification element, and 9 is a current source. In the above configuration, the signal light pulse 10 is incident on the LD optical amplification element 8, and the LD optical amplification element 8 is supplied with a direct current 1 from the current source 9.
1 is injected (current excitation), and the carrier distribution becomes an inverted distribution by this, and stimulated emission occurs and is amplified and output as a signal light pulse 12.

【0004】一般に、図2の光増幅器は希土類ドープ光
ファイバ(RDF)光増幅器といい、また、図3の光増
幅器はレーザダイオード(LD)光増幅器というが、こ
れらのいずれの光増幅器においても、出力光中には増幅
された信号光パルスの外にRDF又はLD光増幅素子内
で発生した広いスペクトル域に亘る自然放出光(Amplif
ied Spontaneous Emission:ASE)が存在する。そし
て、この自然放出光の発生及び増幅に対してもRDF又
はLD光増幅素子内の反転分布が消費されるため、その
最大利得が制限され、光増幅器1段当りの増幅率(利
得)に上限が生じるという問題があった。
In general, the optical amplifier shown in FIG. 2 is called a rare earth-doped optical fiber (RDF) optical amplifier, and the optical amplifier shown in FIG. 3 is called a laser diode (LD) optical amplifier. In the output light, in addition to the amplified signal light pulse, spontaneous emission light (Amplif
ied Spontaneous Emission (ASE) exists. Since the population inversion within the RDF or LD optical amplification element is consumed even for the generation and amplification of the spontaneous emission light, the maximum gain thereof is limited, and the amplification factor (gain) per one stage of the optical amplifier is limited to the upper limit. There was a problem that.

【0005】このため、従来より複数の光増幅器を直列
に接続することによって高い利得が得られるようになし
た多段光増幅装置が提案されている。
Therefore, conventionally, a multistage optical amplifying device has been proposed in which a high gain is obtained by connecting a plurality of optical amplifiers in series.

【0006】図4は従来の多段光増幅装置の一例を示す
もので、図中、13及び14は1段目及び2段目の光増
幅器、15及び16は1段目及び2段目の光バンドパス
フィルタである。図5は図4の装置の各部における光信
号のスペクトル及び光パワーを示すもので、以下、これ
に従って動作を説明する。
FIG. 4 shows an example of a conventional multi-stage optical amplifier. In the figure, 13 and 14 are optical amplifiers of the first and second stages, and 15 and 16 are optical amplifiers of the first and second stages. It is a bandpass filter. FIG. 5 shows the spectrum and optical power of the optical signal in each part of the apparatus of FIG. 4, and the operation will be described below according to this.

【0007】前記構成において、1段目の光増幅器13
に図5(a) に示すようなスペクトル及び光パワーを有す
る信号光パルス17が入射されると、該信号光パルス1
7は前記同様に増幅されて出力される。この際、出力光
18中には前述したように増幅された信号光パルスの外
に自然放出光が存在するため、該1段目の光増幅器13
の出力光18のスペクトルは図5(b) に示すように自然
放出光の広いスペクトルに入力信号光パルス17の輝線
スペクトルが重畳されたものになる。なお、図5(a) と
の光パワーの差G1は1段目の光増幅器13の利得を示
す。
In the above structure, the first stage optical amplifier 13
When a signal light pulse 17 having a spectrum and optical power as shown in FIG.
7 is amplified and output as described above. At this time, since spontaneous emission light exists in the output light 18 in addition to the signal light pulse amplified as described above, the optical amplifier 13 in the first stage
As shown in FIG. 5B, the output light 18 has a broad spectrum of the spontaneous emission light and the bright line spectrum of the input signal light pulse 17 superimposed on it. The difference G1 in optical power from FIG. 5A shows the gain of the optical amplifier 13 in the first stage.

【0008】前述した自然放出光を含む1段目の光増幅
器13の出力光18を、2段目以降の光増幅器にそのま
ま入射すると、該2段目以降の光増幅器の反転分布は大
部分が自然放出光の増幅に奪われてしまい、信号光パル
スに対する増幅率が著しく低下し、ついには増幅しなく
なる。これは、一段構成の光増幅器において利得媒質
(RDF、LD光増幅素子等)の長さを長くすると自然
放出光が増加し、最大利得が飽和してしまうことと等価
であり、単に複数の光増幅器を直列に接続するだけでは
増幅率が向上しないことを示している。従って、多段構
成により光増幅器の増幅率を向上させるには各光増幅器
間で自然放出光をできるだけ取除くことが必要になる。
When the output light 18 of the first-stage optical amplifier 13 including the above-mentioned spontaneous emission light is directly incident on the second-stage and subsequent optical amplifiers, most of the population inversion of the second-stage and subsequent optical amplifiers is almost the same. It is taken away by the amplification of the spontaneous emission light, the amplification factor for the signal light pulse is significantly reduced, and finally the amplification is stopped. This is equivalent to the fact that when the length of the gain medium (RDF, LD optical amplification element, etc.) is increased in the one-stage optical amplifier, the spontaneous emission light is increased and the maximum gain is saturated. It shows that the amplification factor is not improved only by connecting the amplifiers in series. Therefore, in order to improve the amplification factor of the optical amplifier with the multi-stage configuration, it is necessary to remove as much spontaneous emission light as possible between the optical amplifiers.

【0009】図4の装置では光増幅器13及び14の出
力側にそれぞれ信号光パルスのスペクトルのみを透過さ
せる狭帯域の光バンドパスフィルタ(以下、単に光フィ
ルタと称す。)15及び16を配置することにより自然
放出光を除去していた。即ち、光増幅器13の出力光1
8は光フィルタ15を透過することにより、図5(c)に
示すように不要な自然放出光の一部が取除かれたスペク
トル特性となる。
In the apparatus of FIG. 4, narrow band optical bandpass filters (hereinafter, simply referred to as optical filters) 15 and 16 for transmitting only the spectrum of the signal light pulse are arranged at the output sides of the optical amplifiers 13 and 14, respectively. As a result, the spontaneous emission light was removed. That is, the output light 1 of the optical amplifier 13
By passing through the optical filter 15, 8 has a spectral characteristic in which a part of unnecessary spontaneous emission light is removed as shown in FIG. 5 (c).

【0010】前記自然放出光を一部含む信号光パルス1
9が2段目の光増幅器14に入射されると、該信号光パ
ルス19は自然放出光が低減された分だけ増幅されて出
力される。この際、該2段目の光増幅器14の出力光2
0中にも前記同様に自然放出光が存在するため、該出力
光20のスペクトルは図5(d) に示すようなものとなる
が、光フィルタ16を透過することにより、図5(e)に
示すように不要な自然放出光の一部が取除かれたスペク
トル特性を有する信号光21として出力される。
Signal light pulse 1 including a part of the spontaneous emission light
When 9 is incident on the optical amplifier 14 of the second stage, the signal light pulse 19 is amplified and output by the amount by which the spontaneous emission light is reduced. At this time, the output light 2 of the second-stage optical amplifier 14
Since the spontaneous emission light is also present in 0 as in the above case, the spectrum of the output light 20 becomes as shown in FIG. 5 (d), but by passing through the optical filter 16, the spectrum of FIG. As shown in, the signal light 21 having a spectral characteristic in which a part of unnecessary spontaneous emission light is removed is output.

【0011】また、光増幅器を図4の装置の2段よりさ
らに多段接続した場合も前記同様の動作が行われる。
Also, when the optical amplifiers are connected in multiple stages, rather than the two stages of the apparatus of FIG. 4, the same operation as described above is performed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、前記構
成では自然放出光を完全に除去できないため、増幅率が
飽和してしまうという問題があった。また、前記構成で
は信号光パルスの繰返し周期がそのパルス幅に比べて充
分長い、いわゆるデューティ比が小さい場合に次のよう
な問題があった。
However, the above configuration has a problem that the spontaneous emission light cannot be completely removed, so that the amplification factor is saturated. Further, the above-mentioned configuration has the following problems when the repetition cycle of the signal light pulse is sufficiently longer than the pulse width, that is, when the so-called duty ratio is small.

【0013】前述したように光増幅器の利得媒質はCW
光や直流電流で駆動(励起)されるため、自然放出光は
時間に依存しないCW光となる。この光増幅器にデュー
ティ比の小さな信号光パルスが入射され光増幅される
と、出力光は増幅された信号光パルスにCW光である自
然放出光が重畳されたものとなる。
As described above, the gain medium of the optical amplifier is CW.
Since it is driven (excited) by light or a direct current, spontaneous emission light becomes CW light that does not depend on time. When a signal light pulse with a small duty ratio is incident on this optical amplifier and is optically amplified, the output light is a signal light pulse amplified and a spontaneous emission light which is CW light is superimposed.

【0014】図6(a) は増幅前の入力光を、また、同図
(b) は増幅後の出力光を示すもので、該出力光中にはレ
ベルは低いが不要な自然放出光成分22が常に存在する
ことが分かる。この場合、仮に光フィルタの通過帯域が
信号光パルスのスペクトルと等しくても、自然放出光の
スペクトル幅と光フィルタの通過帯域幅との比(例え
ば、数10分の1程度)に対応して自然放出光のレベル
が下がるだけであり、信号光パルスが存在しない時間領
域、即ち、信号光パルス同士間の自然放出光成分22は
本質的に充分に取除くことができなかった。例えば、増
田、高田 著「Er添加ファイバ増幅器の二段増幅特
性」(1990年 電子情報通信学会春季全国大会講演
論文集 B−980)によれば、5dB程度の改善にと
どまっている。
FIG. 6 (a) shows the input light before amplification, and FIG.
(b) shows the output light after amplification, and it can be seen that there is always an unnecessary spontaneous emission light component 22 in the output light, although its level is low. In this case, even if the pass band of the optical filter is equal to the spectrum of the signal light pulse, it corresponds to the ratio of the spectral width of the spontaneous emission light to the pass band width of the optical filter (for example, about several tenths). Only the level of spontaneous emission light was lowered, and the spontaneous emission light component 22 between the signal light pulses, that is, the spontaneous emission light component 22 between the signal light pulses could not be essentially removed sufficiently. For example, according to Masuda and Takada, "Two-stage amplification characteristics of Er-doped fiber amplifier" (1990 IEICE Spring National Convention Lecture Collection B-980), the improvement is only about 5 dB.

【0015】このようにデューティ比の小さい信号光パ
ルスの光増幅においては時間軸上に常に不要な自然放出
光が存在するため、光増幅器の利得は信号光パルスの増
幅による飽和でなく自然放出光による飽和によって制限
されるという問題があり、また、自然放出光の方が平均
光パワーが大きいため、SN比が大きく劣化するという
問題があった。
As described above, in the optical amplification of the signal light pulse having a small duty ratio, unnecessary spontaneous emission light always exists on the time axis, and therefore the gain of the optical amplifier is not saturated by the amplification of the signal light pulse, but the spontaneous emission light. However, there is a problem that the spontaneous emission light has a larger average optical power, so that the SN ratio is significantly deteriorated.

【0016】本発明は前述した従来の問題点に鑑み、各
光増幅器の出力光中より自然放出光を効果的に除去し、
信号光パルスに対する利得及びSN比を向上し得る多段
光増幅装置を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention effectively removes spontaneous emission light from the output light of each optical amplifier,
It is an object of the present invention to provide a multi-stage optical amplifier which can improve the gain and SN ratio for signal light pulses.

【0017】[0017]

【課題を解決するための手段】本発明では前記目的を達
成するため、請求項1として、信号光パルスを入力光と
し、複数の光増幅器を直列に接続してなる多段光増幅装
置において、各光増幅器の出力側に光スイッチを配置す
るとともに、該光スイッチを信号光パルスに同期して駆
動する駆動装置を設けた多段光増幅装置、また、請求項
2として、信号光パルスを入力光とし、複数の光増幅器
を直列に接続してなる多段光増幅装置において、各光増
幅器の出力側に光スイッチ及び光バンドパスフィルタを
配置するとともに、該光スイッチを信号光パルスに同期
して駆動する駆動装置を設けた多段光増幅装置、また、
請求項3として、信号光パルスを入力光とし、複数の光
増幅器を直列に接続してなる多段光増幅装置において、
各光増幅器の出力側に光スイッチを配置し、該光スイッ
チを信号光パルスに同期して駆動する駆動装置を設ける
とともに、各光増幅器の入力側又は出力側に偏光子を配
置した多段光増幅装置、また、請求項4として、信号光
パルスを入力光とし、複数の光増幅器を直列に接続して
なる多段光増幅装置において、各光増幅器の出力側に光
スイッチ及び光バンドパスフィルタを配置し、該光スイ
ッチを信号光パルスに同期して駆動する駆動装置を設け
るとともに、各光増幅器の入力側又は出力側に偏光子を
配置した多段光増幅装置を提案する。
In order to achieve the above object, the present invention provides a multi-stage optical amplifying device comprising a signal light pulse as an input light and a plurality of optical amplifiers connected in series. A multi-stage optical amplifying device in which an optical switch is arranged on the output side of an optical amplifier, and a driving device for driving the optical switch in synchronization with the signal light pulse is provided, and the signal light pulse is used as input light. In a multi-stage optical amplification device in which a plurality of optical amplifiers are connected in series, an optical switch and an optical bandpass filter are arranged on the output side of each optical amplifier, and the optical switch is driven in synchronization with a signal light pulse. A multi-stage optical amplification device provided with a drive device,
As a third aspect, in a multi-stage optical amplification device in which a signal light pulse is used as input light and a plurality of optical amplifiers are connected in series,
An optical switch is arranged on the output side of each optical amplifier, a driving device for driving the optical switch in synchronization with signal light pulses is provided, and a polarizer is arranged on the input side or output side of each optical amplifier. An optical switch and an optical bandpass filter are disposed on the output side of each optical amplifier in a multi-stage optical amplifying device in which a signal light pulse is used as input light and a plurality of optical amplifiers are connected in series. Then, we propose a multi-stage optical amplifying device in which a driving device for driving the optical switch in synchronization with the signal light pulse is provided and a polarizer is arranged on the input side or the output side of each optical amplifier.

【0018】[0018]

【作用】本発明の請求項1によれば、一の光増幅器で増
幅され出力された光信号は光スイッチに入射されるが、
該光スイッチは信号光パルスに対応した期間のみ光を透
過させ、それ以外の期間は光を遮断するため、信号光パ
ルスのない期間における自然放出光がほとんど除去され
た光信号が次段の光増幅器に入射される。また、請求項
2によれば、前記同様にして信号光パルスのない期間に
おける自然放出光がほとんど除去され、且つ、光バンド
パスフィルタにより波長軸上で自然放出光成分が除去さ
れた光信号が次段の光増幅器に入射される。また、請求
項3によれば、前記同様にして信号光パルスのない期間
における自然放出光がほとんど除去され、且つ、偏光子
により信号光パルスの偏光方向と直交する自然放出光成
分が除去された光信号が次段の光増幅器に入射される。
また、請求項4によれば、前記同様にして信号光パルス
のない期間における自然放出光がほとんど除去され、ま
た、光バンドパスフィルタにより波長軸上で自然放出光
成分が除去され、且つ、偏光子により信号光パルスの偏
光方向と直交する自然放出光成分が除去された光信号が
次段の光増幅器に入射される。
According to the first aspect of the present invention, the optical signal amplified and output by the one optical amplifier is incident on the optical switch.
Since the optical switch transmits light only during the period corresponding to the signal light pulse and blocks the light during the other period, the optical signal in which the spontaneous emission light is almost removed in the period without the signal light pulse is the next stage light. It is incident on the amplifier. Further, according to claim 2, an optical signal in which the spontaneous emission light is almost removed in the same period as the signal light pulse is not present and the spontaneous emission light component is removed on the wavelength axis by the optical bandpass filter is obtained. It is incident on the next stage optical amplifier. Further, according to claim 3, in the same manner as described above, almost all the spontaneous emission light in the period without the signal light pulse is removed, and the spontaneous emission light component orthogonal to the polarization direction of the signal light pulse is removed by the polarizer. The optical signal is incident on the optical amplifier at the next stage.
Further, according to claim 4, in the same manner as above, almost all the spontaneous emission light in the period without the signal light pulse is removed, and the spontaneous emission light component is removed on the wavelength axis by the optical bandpass filter, and the polarization The optical signal from which the spontaneous emission light component orthogonal to the polarization direction of the signal light pulse is removed by the child enters the optical amplifier of the next stage.

【0019】[0019]

【実施例】図1は本発明の多段光増幅装置の第1の実施
例を示すもので、図中、従来例と同一構成部分は同一符
号をもって表す。即ち、13及び14は1段目及び2段
目の光増幅器、31及び32は1段目及び2段目の光ス
イッチ、33及び34は1段目及び2段目の駆動装置で
ある。
1 shows a first embodiment of a multistage optical amplifier of the present invention. In the figure, the same components as those of the conventional example are designated by the same reference numerals. That is, 13 and 14 are first-stage and second-stage optical amplifiers, 31 and 32 are first-stage and second-stage optical switches, and 33 and 34 are first-stage and second-stage driving devices.

【0020】光スイッチ31及び32は光を任意に透過
(オン)又は遮断(オフ)する機能を有するもので、そ
れぞれ光増幅器13及び14の出力側に配置されてい
る。該光スイッチ31及び32としてはレーザダイオー
ド(LD)光スイッチや偏波依存性のない光変調器が使
用できる。
The optical switches 31 and 32 have a function of arbitrarily transmitting (on) or blocking (off) light, and are arranged on the output side of the optical amplifiers 13 and 14, respectively. A laser diode (LD) optical switch or an optical modulator having no polarization dependence can be used as the optical switches 31 and 32.

【0021】LD光スイッチとは前述したLD光増幅器
と同じく電流注入によるキャリアの反転分布を利用した
スイッチであり、電流を注入するとキャリア分布が反転
分布になるため光を透過するが、電流を注入しないと光
を遮断する。また、光変調器としてはLiNbO3 等の
電気光学効果材料を用いた光変調器等が利用できる。こ
の光変調器は印加する電界(電圧)によってその光透過
率が変化(変調)し、これによって光を透過又は遮断す
る。一般に、この光変調器の変調特性は偏波依存性があ
るが、TM,TEの両モード共に等しい電圧で動作する
偏波依存性のないものもあり(参考文献:R.A.Steinber
get al., Appl.Opt.,16,2166,(1977)、又は谷澤 他,
昭和62年信学半導体・材料全大354)、本実施例で
はこの偏波無依存型が使用できる。この偏波無依存型光
変調器は入射する信号光の偏波状態に拘らず、電界によ
って光透過率を変調できるため、あらゆる偏光成分を持
つ自然放出光をスイッチすることが可能である。
The LD optical switch is a switch utilizing the population inversion distribution due to current injection like the above-mentioned LD optical amplifier. When current is injected, the carrier distribution becomes population inversion distribution so that light is transmitted, but current is injected. Otherwise it will block the light. Further, as the optical modulator, an optical modulator using an electro-optical effect material such as LiNbO 3 can be used. This light modulator changes (modulates) its light transmittance according to an applied electric field (voltage), and thereby transmits or blocks light. In general, the modulation characteristics of this optical modulator have polarization dependency, but there are some that operate at the same voltage in both TM and TE modes and have no polarization dependency (reference: RA Steinber).
get al., Appl.Opt., 16,2166, (1977), or Tanizawa et al.,
In 1987, Shinbun University Semiconductor / Material 354), this polarization-independent type can be used in this embodiment. Since this polarization-independent optical modulator can modulate the light transmittance by the electric field regardless of the polarization state of the incident signal light, it is possible to switch spontaneous emission light having all polarization components.

【0022】駆動装置33及び34はそれぞれ光スイッ
チ31及び32を信号光パルスに同期して駆動する機能
を有するもので、信号光パルスに同期したパルス状の電
流(又は電圧)信号を光スイッチ31及び32に供給す
る。
The drive devices 33 and 34 have a function of driving the optical switches 31 and 32 in synchronization with the signal light pulse, respectively, and apply a pulsed current (or voltage) signal synchronized with the signal light pulse to the optical switch 31. And 32.

【0023】ここで、信号光パルスと該電流(又は電
圧)信号とを同期させる手段は種々あるが、例えば光増
幅器に入力される信号光パルスの一部を分波器等により
取出し、光検出器等により光電変換してタイミング信号
となし、これに基いて電流(又は電圧)信号を発生させ
ることによって、信号光パルスに同期した電流(又は電
圧)信号を作成することができる。なお、この場合、電
流(又は電圧)信号の発生タイミングは光増幅器に入力
される信号光パルスよりやや遅れることになるが、光増
幅器の出力光、即ち光スイッチに入力される信号光パル
スも遅れる(特に、RDF光増幅器を用いた場合)の
で、実質的にタイミングを同期させることができる。
There are various means for synchronizing the signal light pulse and the current (or voltage) signal, but for example, a part of the signal light pulse input to the optical amplifier is taken out by a demultiplexer or the like to perform light detection. A photoelectric signal is converted into a timing signal by a device or the like, and a current (or voltage) signal is generated based on this to generate a current (or voltage) signal synchronized with the signal light pulse. In this case, the generation timing of the current (or voltage) signal is slightly delayed from the signal light pulse input to the optical amplifier, but the output light of the optical amplifier, that is, the signal light pulse input to the optical switch is also delayed. (In particular, when the RDF optical amplifier is used), the timing can be substantially synchronized.

【0024】また、光増幅器13及び14としては、従
来例で述べたRDF光増幅器、LD光増幅器のいずれを
用いても良い。
As the optical amplifiers 13 and 14, either the RDF optical amplifier or the LD optical amplifier described in the conventional example may be used.

【0025】図7は前記装置の各部における信号波形を
示すもので、以下、これに基いて動作を説明する。
FIG. 7 shows a signal waveform in each part of the apparatus, and the operation will be described based on this.

【0026】図7(a) に示すような信号光パルス35が
1段目の光増幅器13に入射されると、該光増幅器13
からは図7(b) に示すような増幅された信号光パルスに
自然放出光が重畳された出力光36が出力され、1段目
の光スイッチ31に入射される。ここで、光スイッチ3
1には駆動装置33から図7(c) に示すような信号光パ
ルスに同期した電流(又は電圧)信号37が注入(又は
印加)されており、該光スイッチ31は電流(又は電
圧)信号37中に信号がある期間のみ光を透過し、信号
がない期間は光を遮断する。従って、1段目の光スイッ
チ31からは図7(d) に示すように信号光パルスのない
期間における自然放出光がほとんど除去された信号光3
8が出力される。
When a signal light pulse 35 as shown in FIG. 7 (a) enters the first stage optical amplifier 13, the optical amplifier 13
From the output, output light 36 in which spontaneous emission light is superimposed on the amplified signal light pulse as shown in FIG. 7B is output and enters the first-stage optical switch 31. Here, the optical switch 3
A current (or voltage) signal 37 synchronized with the signal light pulse as shown in FIG. 7 (c) is injected (or applied) from the drive device 33 to the optical switch 1, and the optical switch 31 outputs a current (or voltage) signal. Light is transmitted only when there is a signal in 37, and light is blocked while there is no signal. Therefore, as shown in FIG. 7 (d), the signal light 3 from which the spontaneous emission light is almost removed during the period without the signal light pulse is output from the first-stage optical switch 31.
8 is output.

【0027】この際、電流(又は電圧)信号37のパル
ス幅(≧信号光パルスのパルス幅)をt、繰返し周期
(=信号光パルスの繰返し周期)をTとすると、自然放
出光の除去率(=透過率)Rは、 R=t/T と表される。即ち、光スイッチによる時間ゲーティング
を用いた場合、自然放出光はt/T倍に低減できる。例
えば、信号光パルス35の周波数を1MHz (繰返し周
期T=1μsec )、パルス幅を〜50psecとし、電流
(又は電圧)信号37のパルス幅をt=100psecとす
ると、自然放出光の透過平均パワーは40dB下げられ
ることになる。
At this time, assuming that the pulse width (≧ pulse width of the signal light pulse) of the current (or voltage) signal 37 is t and the repetition period (= repetition period of the signal light pulse) is T, the removal rate of spontaneous emission light is shown. (= Transmittance) R is expressed as R = t / T. That is, when time gating by an optical switch is used, spontaneous emission light can be reduced to t / T times. For example, assuming that the frequency of the signal light pulse 35 is 1 MHz (repetition period T = 1 μsec), the pulse width is ˜50 psec, and the pulse width of the current (or voltage) signal 37 is t = 100 psec, the transmission average power of spontaneous emission light is It will be lowered by 40 dB.

【0028】このように本実施例によれば、従来の光フ
ィルタを用いた場合より自然放出光を充分小さくできる
ため、自然放出光による次段の光増幅器における利得の
劣化を改善することができ、SN比を向上することがで
きる。なお、2段目以降の光増幅器の出力光に対しても
同様に光スイッチによる時間ゲーティングによって自然
放出光のレベルを低減できる。
As described above, according to this embodiment, the spontaneous emission light can be made sufficiently smaller than in the case where the conventional optical filter is used, so that the deterioration of the gain in the next-stage optical amplifier due to the spontaneous emission light can be improved. , SN ratio can be improved. It should be noted that the level of spontaneous emission light can be similarly reduced for the output light of the second and subsequent optical amplifiers by time gating by an optical switch.

【0029】なお、前述したように信号光パルスからタ
イミング信号を作成し、これに基いて電流(又は電圧)
信号を発生させる場合には、信号光パルスがある時のみ
電流(又は電圧)信号も発生することになり、余分な自
然放出光を次の段に出力することがなく、特にマーク率
が小さい場合に有効であるが、駆動装置内に信号光パル
スの繰返し周期に対応したクロック源を内蔵させてお
き、常時、信号光パルスに同期した電流(又は電圧)信
号を発生させるようになしても良い。
As described above, the timing signal is created from the signal light pulse, and the current (or voltage) is based on this.
When a signal is generated, a current (or voltage) signal is also generated only when there is a signal light pulse, and extra spontaneous emission light is not output to the next stage, especially when the mark ratio is small. However, a clock source corresponding to the repetition period of the signal light pulse may be built in the driving device to constantly generate a current (or voltage) signal synchronized with the signal light pulse. ..

【0030】図8は本発明の第2の実施例を示すもの
で、ここでは第1の実施例に従来例で用いた光バンドパ
スフィルタを付加したものを示す。即ち、図中、15及
び16は信号光パルスのスペクトルのみを透過させる狭
帯域の光バンドパスフィルタ(以下、単に光フィルタと
称す。)であり、それぞれ光スイッチ31及び32の出
力側に配置されている。
FIG. 8 shows a second embodiment of the present invention, in which the optical bandpass filter used in the conventional example is added to the first embodiment. That is, in the figure, 15 and 16 are narrow band optical bandpass filters (hereinafter, simply referred to as optical filters) that transmit only the spectrum of the signal light pulse, and are arranged on the output side of the optical switches 31 and 32, respectively. ing.

【0031】本実施例によれば、光スイッチ31及び3
2による時間軸上における自然放出光の除去作用ととも
に、光フィルタ15及び16による波長軸上における自
然放出光の除去作用を利用でき、自然放出光をさらに効
果的に除去することができる。なお、その他の構成・動
作については第1の実施例と同様である。
According to this embodiment, the optical switches 31 and 3 are used.
The effect of removing spontaneous emission light on the time axis by 2 and the effect of removing spontaneous emission light on the wavelength axis by the optical filters 15 and 16 can be used, and the spontaneous emission light can be removed more effectively. The other configurations and operations are the same as those in the first embodiment.

【0032】また、本実施例では光フィルタ15及び1
6をそれぞれ光スイッチ31及び32の出力側に配置し
たが、光スイッチ31及び32の入力側に配置しても良
い。また、光増幅器13及び14としては、従来例で述
べたRDF光増幅器、LD光増幅器のいずれを用いても
良い。また、光スイッチ31及び32としては、LD光
スイッチ、光変調器のいずれを用いても良い。
Further, in this embodiment, the optical filters 15 and 1 are used.
Although 6 is arranged on the output side of the optical switches 31 and 32, respectively, it may be arranged on the input side of the optical switches 31 and 32. Further, as the optical amplifiers 13 and 14, either the RDF optical amplifier or the LD optical amplifier described in the conventional example may be used. Further, as the optical switches 31 and 32, either an LD optical switch or an optical modulator may be used.

【0033】実際に、希土類元素としてEr(エルビウ
ム)をドープした光ファイバを用いたRDF光増幅器の
出力側にLD光スイッチ及び光フィルタを配置し、これ
らを2段組合せた多段光増幅装置を用いて、デューティ
比の小さい信号光パルス(波長1.53μm、周波数2MH
z 、パルス幅10psec、ピークパワー1.5mW)の高
ピークパワー化を行ったところ、励起光パワー24.5mW
及び90mWの時、それぞれ35W及び105Wの高ピ
ークパワー光を得た。この値は自然放出光を全く除去し
なかった場合並びに光フィルタによる除去のみを行った
場合に比べて、それぞれ12dB並びに6dB高い値で
あり、時間軸上における自然放出光の除去作用の有効性
が示された。
Actually, an LD optical switch and an optical filter are arranged on the output side of an RDF optical amplifier using an optical fiber doped with Er (erbium) as a rare earth element, and a multi-stage optical amplifying device combining these two stages is used. Signal pulse with a small duty ratio (wavelength 1.53 μm, frequency 2 MH
z, pulse width 10 psec, peak power 1.5 mW), the peak light power was 24.5 mW.
And 90 mW, high peak power lights of 35 W and 105 W were obtained, respectively. This value is 12 dB higher and 6 dB higher than when the spontaneous emission light was not removed at all and when only the removal by the optical filter was performed, and the effectiveness of the action of removing the spontaneous emission light on the time axis is improved. Was shown.

【0034】図9は本発明の第3の実施例を示すもの
で、ここでは第1の実施例に偏光子を付加したものを示
す。即ち、図中、41及び42は周知の偏光子であり、
それぞれ光増幅器13と光スイッチ31との間及び光増
幅器14と光スイッチ32との間に配置されている。
FIG. 9 shows a third embodiment of the present invention, in which a polarizer is added to the first embodiment. That is, in the figure, 41 and 42 are known polarizers,
They are arranged between the optical amplifier 13 and the optical switch 31 and between the optical amplifier 14 and the optical switch 32, respectively.

【0035】本実施例によれば、信号光パルスの偏光方
向と直交する自然放出光を除去できるので、第1の実施
例に比べてその透過量を1/2(−3dB)にすること
ができる。なお、その他の構成・動作については第1の
実施例と同様である。
According to this embodiment, the spontaneous emission light which is orthogonal to the polarization direction of the signal light pulse can be removed, so that the amount of transmission can be reduced to 1/2 (-3 dB) as compared with the first embodiment. it can. The other configurations and operations are the same as those in the first embodiment.

【0036】また、本実施例では偏光子41及び42を
それぞれ光増幅器13と光スイッチ31との間及び光増
幅器14と光スイッチ32との間に配置したが、光スイ
ッチ31及び32の出力側に配置しても良い。また、光
増幅器13及び14としては、従来例で述べたRDF光
増幅器、LD光増幅器のいずれを用いても良い。また、
光スイッチ31及び32としては、LD光スイッチ、光
変調器のいずれを用いても良い。
In the present embodiment, the polarizers 41 and 42 are arranged between the optical amplifier 13 and the optical switch 31 and between the optical amplifier 14 and the optical switch 32, respectively. It may be placed in. Further, as the optical amplifiers 13 and 14, either the RDF optical amplifier or the LD optical amplifier described in the conventional example may be used. Also,
As the optical switches 31 and 32, either an LD optical switch or an optical modulator may be used.

【0037】また、光スイッチ31及び32として、L
iNbO3 等の電気光学効果材料を用いた光変調器等を
利用する場合、光透過特性が入射光の偏光方向に依存す
るタイプであっても良い。即ち、光スイッチ31及び3
2として偏波依存性のある光変調器を用いた場合、信号
光の偏光方向、偏光子41及び42の透過偏光方向並び
に光スイッチ31及び32の変調偏光方向を同一方向に
設定すれば、光スイッチ31及び32で変調される偏光
方向以外の自然放出光は偏光子41及び42によって除
去されるため、第1の実施例の場合と同様に時間軸上に
おいて自然放出光が除去される。
Further, as the optical switches 31 and 32, L
When an optical modulator using an electro-optic effect material such as iNbO 3 is used, it may be of a type whose light transmission characteristics depend on the polarization direction of incident light. That is, the optical switches 31 and 3
When an optical modulator having polarization dependency is used as 2, if the polarization direction of the signal light, the transmission polarization direction of the polarizers 41 and 42, and the modulation polarization direction of the optical switches 31 and 32 are set to the same direction, Since the spontaneous emission light other than the polarization direction modulated by the switches 31 and 32 is removed by the polarizers 41 and 42, the spontaneous emission light is removed on the time axis as in the case of the first embodiment.

【0038】図10は本発明の第4の実施例を示すもの
で、ここでは第1の実施例に従来例で用いた光バンドパ
スフィルタ並びに第3の実施例で用いた偏光子を付加し
たものを示す。即ち、図中、15及び16は光フィル
タ、41及び42は偏光子であり、光フィルタ15及び
16はそれぞれ光スイッチ31及び32の出力側に、ま
た、偏光子41及び42はそれぞれ光増幅器13と光ス
イッチ31との間及び光増幅器14と光スイッチ32と
の間に配置されている。
FIG. 10 shows a fourth embodiment of the present invention, in which the optical bandpass filter used in the conventional example and the polarizer used in the third embodiment are added to the first embodiment. Show things. That is, in the figure, 15 and 16 are optical filters, 41 and 42 are polarizers, the optical filters 15 and 16 are on the output side of the optical switches 31 and 32, and the polarizers 41 and 42 are on the optical amplifier 13 respectively. And the optical switch 31 and between the optical amplifier 14 and the optical switch 32.

【0039】本実施例によれば、光フィルタ15及び1
6により波長軸上において自然放出光を除去できるとと
もに、偏光子41及び42により信号光パルスの偏光方
向と直交する自然放出光を除去できるので、自然放出光
を極めて効果的に除去することができる。なお、その他
の構成・動作については第1の実施例と同様である。
According to this embodiment, the optical filters 15 and 1 are
6 can remove the spontaneous emission light on the wavelength axis, and the polarizers 41 and 42 can remove the spontaneous emission light orthogonal to the polarization direction of the signal light pulse. Therefore, the spontaneous emission light can be removed very effectively. .. The other configurations and operations are the same as those in the first embodiment.

【0040】また、本実施例では光フィルタ15及び1
6をそれぞれ光スイッチ31及び32の出力側に配置し
たが、光スイッチ31及び32の入力側に配置しても良
い。また、本実施例では偏光子41及び42をそれぞれ
光増幅器13と光スイッチ31との間及び光増幅器14
と光スイッチ32との間に配置したが、光スイッチ31
及び32の出力側に配置しても良い。また、光増幅器1
3及び14としては、従来例で述べたRDF光増幅器、
LD光増幅器のいずれを用いても良い。また、光スイッ
チ31及び32としては、LD光スイッチ、光変調器の
いずれを用いても良い。
Further, in this embodiment, the optical filters 15 and 1 are used.
Although 6 is arranged on the output side of the optical switches 31 and 32, respectively, it may be arranged on the input side of the optical switches 31 and 32. In the present embodiment, the polarizers 41 and 42 are provided between the optical amplifier 13 and the optical switch 31, respectively, and the optical amplifier 14 is provided.
The optical switch 31 is disposed between the optical switch 31 and the optical switch 32.
And 32 may be arranged on the output side. Also, the optical amplifier 1
3 and 14, RDF optical amplifier described in the conventional example,
Any of the LD optical amplifiers may be used. Further, as the optical switches 31 and 32, either an LD optical switch or an optical modulator may be used.

【0041】[0041]

【発明の効果】以上説明したように本発明の請求項1に
よれば、各光増幅器の出力側に光スイッチを配置すると
ともに、該光スイッチを信号光パルスに同期して駆動す
る駆動装置を設けたため、光増幅器の出力光から自然放
出光を信号光パルスに同期して時間軸上で除去すること
ができ、スペクトルの全領域で自然放出光のレベルを低
減することができ、これよってデューティ比の小さい信
号光パルスにおいても信号光成分と自然放出光成分との
比を大きく取ることができ、従って、自然放出光による
利得の飽和を防ぎ、信号光パルスに対する利得及びSN
比を向上することができる。
As described above, according to claim 1 of the present invention, an optical switch is arranged on the output side of each optical amplifier, and a driving device for driving the optical switch in synchronization with a signal light pulse is provided. Since it is provided, the spontaneous emission light can be removed from the output light of the optical amplifier on the time axis in synchronization with the signal light pulse, and the level of the spontaneous emission light can be reduced in the entire region of the spectrum. Even in a signal light pulse having a small ratio, the ratio of the signal light component and the spontaneous emission light component can be made large, and therefore, the saturation of the gain due to the spontaneous emission light can be prevented, and the gain and the SN
The ratio can be improved.

【0042】また、本発明の請求項2によれば、各光増
幅器の出力側に光スイッチ及び光バンドパスフィルタを
配置するとともに、該光スイッチを信号光パルスに同期
して駆動する駆動装置を設けたため、光増幅器の出力光
から自然放出光を信号光パルスに同期して時間軸上で除
去することができるとともに、波長軸上で除去すること
ができ、従って、信号光パルスに対する利得及びSN比
をさらに向上することができる。
According to a second aspect of the present invention, an optical switch and an optical bandpass filter are arranged on the output side of each optical amplifier, and a driving device for driving the optical switch in synchronization with a signal light pulse is provided. Since it is provided, the spontaneous emission light can be removed from the output light of the optical amplifier on the time axis in synchronization with the signal light pulse, and can be removed on the wavelength axis. The ratio can be further improved.

【0043】また、本発明の請求項3によれば、各光増
幅器の出力側に光スイッチを配置し、該光スイッチを信
号光パルスに同期して駆動する駆動装置を設けるととも
に、各光増幅器の入力側又は出力側に偏光子を配置した
ため、光増幅器の出力光から自然放出光を信号光パルス
に同期して時間軸上で除去することができるとともに、
信号光パルスの偏光方向と直交する自然放出光を除去す
ることができ、従って、信号光パルスに対する利得及び
SN比をさらに向上することができる。
According to claim 3 of the present invention, an optical switch is arranged on the output side of each optical amplifier, and a drive device for driving the optical switch in synchronization with the signal light pulse is provided, and each optical amplifier is provided. Since the polarizer is arranged on the input side or the output side of, the spontaneous emission light can be removed from the output light of the optical amplifier on the time axis in synchronization with the signal light pulse.
Spontaneous emission light orthogonal to the polarization direction of the signal light pulse can be removed, and therefore the gain and the signal-to-noise ratio for the signal light pulse can be further improved.

【0044】また、本発明の請求項4によれば、各光増
幅器の出力側に光スイッチ及び光バンドパスフィルタを
配置し、該光スイッチを信号光パルスに同期して駆動す
る駆動装置を設けるとともに、各光増幅器の入力側又は
出力側に偏光子を配置したため、光増幅器の出力光から
自然放出光を信号光パルスに同期して時間軸上で除去す
ることができ、また、波長軸上で除去することができる
とともに、信号光パルスの偏光方向と直交する自然放出
光を除去することができ、従って、信号光パルスに対す
る利得及びSN比をさらに向上することができる。
According to a fourth aspect of the present invention, an optical switch and an optical bandpass filter are arranged on the output side of each optical amplifier, and a drive device for driving the optical switch in synchronization with a signal light pulse is provided. In addition, since a polarizer is placed on the input side or output side of each optical amplifier, spontaneous emission light can be removed from the output light of the optical amplifier on the time axis in synchronization with the signal light pulse, and on the wavelength axis. And the spontaneous emission light orthogonal to the polarization direction of the signal light pulse can be removed. Therefore, the gain and SN ratio for the signal light pulse can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多段光増幅装置の第1の実施例を示す
構成図
FIG. 1 is a configuration diagram showing a first embodiment of a multistage optical amplifier of the present invention.

【図2】従来の光増幅器の一例を示す構成図FIG. 2 is a configuration diagram showing an example of a conventional optical amplifier.

【図3】従来の光増幅器の他の例を示す構成図FIG. 3 is a configuration diagram showing another example of a conventional optical amplifier.

【図4】従来の多段光増幅装置の一例を示す構成図FIG. 4 is a configuration diagram showing an example of a conventional multistage optical amplifier.

【図5】図4の装置の各部における光信号のスペクトル
及び光パワーを示すグラフ
5 is a graph showing the spectrum and optical power of an optical signal in each part of the apparatus of FIG.

【図6】図4の装置における入力光及び出力光を示す波
形図
6 is a waveform diagram showing input light and output light in the device of FIG.

【図7】図1の装置の各部における信号波形図7 is a signal waveform diagram in each part of the apparatus of FIG.

【図8】本発明の多段光増幅装置の第2の実施例を示す
構成図
FIG. 8 is a configuration diagram showing a second embodiment of the multistage optical amplifier of the present invention.

【図9】本発明の多段光増幅装置の第3の実施例を示す
構成図
FIG. 9 is a configuration diagram showing a third embodiment of the multistage optical amplifier of the present invention.

【図10】本発明の多段光増幅装置の第4の実施例を示
す構成図
FIG. 10 is a configuration diagram showing a fourth embodiment of the multistage optical amplifier of the present invention.

【符号の説明】[Explanation of symbols]

13,14…光増幅器、15,16…光バンドパスフィ
ルタ、31,32…光スイッチ、33,34…駆動装
置、41,42…偏光子。
13, 14 ... Optical amplifier, 15, 16 ... Optical bandpass filter, 31, 32 ... Optical switch, 33, 34 ... Driving device, 41, 42 ... Polarizer.

Claims (1)

【特許請求の範囲】 【請求項1】 信号光パルスを入力光とし、複数の光増
幅器を直列に接続してなる多段光増幅装置において、各
光増幅器の出力側に光スイッチを配置するとともに、該
光スイッチを信号光パルスに同期して駆動する駆動装置
を設けたことを特徴とする多段光増幅装置。 【請求項2】 信号光パルスを入力光とし、複数の光増
幅器を直列に接続してなる多段光増幅装置において、各
光増幅器の出力側に光スイッチ及び光バンドパスフィル
タを配置するとともに、該光スイッチを信号光パルスに
同期して駆動する駆動装置を設けたことを特徴とする多
段光増幅装置。 【請求項3】 信号光パルスを入力光とし、複数の光増
幅器を直列に接続してなる多段光増幅装置において、各
光増幅器の出力側に光スイッチを配置し、該光スイッチ
を信号光パルスに同期して駆動する駆動装置を設けると
ともに、各光増幅器の入力側又は出力側に偏光子を配置
したことを特徴とする多段光増幅装置。 【請求項4】 信号光パルスを入力光とし、複数の光増
幅器を直列に接続してなる多段光増幅装置において、各
光増幅器の出力側に光スイッチ及び光バンドパスフィル
タを配置し、該光スイッチを信号光パルスに同期して駆
動する駆動装置を設けるとともに、各光増幅器の入力側
又は出力側に偏光子を配置したことを特徴とする多段光
増幅装置。
Claim: What is claimed is: 1. In a multi-stage optical amplifying device in which a signal light pulse is used as input light and a plurality of optical amplifiers are connected in series, an optical switch is arranged on the output side of each optical amplifier, and A multistage optical amplifying device comprising a driving device for driving the optical switch in synchronization with a signal light pulse. 2. A multistage optical amplifying device comprising a signal light pulse as input light and a plurality of optical amplifiers connected in series, wherein an optical switch and an optical bandpass filter are arranged on the output side of each optical amplifier, and A multi-stage optical amplification device comprising a drive device for driving an optical switch in synchronization with a signal light pulse. 3. In a multi-stage optical amplifying device in which a plurality of optical amplifiers are connected in series using a signal light pulse as input light, an optical switch is arranged on the output side of each optical amplifier, and the optical switch is used as the signal light pulse. A multistage optical amplifying device, characterized in that a driving device that is driven in synchronization with is provided, and a polarizer is arranged on the input side or the output side of each optical amplifier. 4. A multistage optical amplifying device comprising a signal light pulse as input light and a plurality of optical amplifiers connected in series, wherein an optical switch and an optical bandpass filter are arranged on the output side of each optical amplifier, A multistage optical amplifying device comprising a driving device for driving a switch in synchronization with a signal light pulse, and a polarizer being arranged on an input side or an output side of each optical amplifier.
JP3156869A 1991-06-27 1991-06-27 Multi-stage optical amplifier Expired - Fee Related JP2919118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3156869A JP2919118B2 (en) 1991-06-27 1991-06-27 Multi-stage optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3156869A JP2919118B2 (en) 1991-06-27 1991-06-27 Multi-stage optical amplifier

Publications (2)

Publication Number Publication Date
JPH055912A true JPH055912A (en) 1993-01-14
JP2919118B2 JP2919118B2 (en) 1999-07-12

Family

ID=15637171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3156869A Expired - Fee Related JP2919118B2 (en) 1991-06-27 1991-06-27 Multi-stage optical amplifier

Country Status (1)

Country Link
JP (1) JP2919118B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715074A (en) * 1993-06-22 1995-01-17 Kansai Electric Power Co Inc:The Wavelength multiplexing optical amplifier
JPH0990441A (en) * 1995-09-21 1997-04-04 Nec Corp Burst light amplifier
US6160658A (en) * 1996-11-01 2000-12-12 Nec Corporation Optical amplifier for wavelength multiplexing optical transmission
JP2003031875A (en) * 2001-07-13 2003-01-31 Fujikura Ltd Polarization-preserving optical fiber amplifier
JP2003069114A (en) * 2001-08-27 2003-03-07 Fujikura Ltd Photoamplifier
WO2006114842A1 (en) * 2005-04-08 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Laser device
KR100840057B1 (en) * 2006-12-06 2008-06-19 미쓰비시덴키 가부시키가이샤 Laser device
JP2008244339A (en) * 2007-03-28 2008-10-09 Sumitomo Osaka Cement Co Ltd Optical pulse laser system
JP2008258323A (en) * 2007-04-03 2008-10-23 Furukawa Electric Co Ltd:The Pulse laser device
JP2008309620A (en) * 2007-06-14 2008-12-25 Mitsubishi Electric Corp Light wave radar device
JP2009503894A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Multimode fiber optical amplifier and optical signal amplification method
JP2013065804A (en) * 2010-12-20 2013-04-11 Gigaphoton Inc Laser device and ultraviolet light generation system equipped with the same
CN103974906A (en) * 2011-11-17 2014-08-06 堺化学工业株式会社 Surface-treated zinc oxide powder, anti-bacterial agent, and anti-bacterial composition
WO2015122374A3 (en) * 2014-02-13 2015-10-15 スペクトロニクス株式会社 Laser light-source apparatus and laser pulse light generating method
WO2015122375A3 (en) * 2014-02-13 2015-10-15 スペクトロニクス株式会社 Laser light-source apparatus and laser pulse light generating method
WO2018092281A1 (en) * 2016-11-18 2018-05-24 ギガフォトン株式会社 Laser device and extreme ultraviolet light generation device
JP2020502817A (en) * 2016-12-22 2020-01-23 タレス Amplifier system with frequency drift and multiple outputs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189830A (en) * 1986-02-17 1987-08-19 Nec Corp Optical repeater
JPH03278627A (en) * 1990-03-27 1991-12-10 Nec Corp Optical reproduction repeater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189830A (en) * 1986-02-17 1987-08-19 Nec Corp Optical repeater
JPH03278627A (en) * 1990-03-27 1991-12-10 Nec Corp Optical reproduction repeater

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715074A (en) * 1993-06-22 1995-01-17 Kansai Electric Power Co Inc:The Wavelength multiplexing optical amplifier
JPH0990441A (en) * 1995-09-21 1997-04-04 Nec Corp Burst light amplifier
US6160658A (en) * 1996-11-01 2000-12-12 Nec Corporation Optical amplifier for wavelength multiplexing optical transmission
JP2003031875A (en) * 2001-07-13 2003-01-31 Fujikura Ltd Polarization-preserving optical fiber amplifier
JP2003069114A (en) * 2001-08-27 2003-03-07 Fujikura Ltd Photoamplifier
JPWO2006114842A1 (en) * 2005-04-08 2008-12-11 三菱電機株式会社 Laser equipment
DE112005001423B4 (en) * 2005-04-08 2015-05-28 Mitsubishi Electric Corp. laser system
US7564879B2 (en) 2005-04-08 2009-07-21 Mitsubishi Electric Corporation Laser system
JP4640336B2 (en) * 2005-04-08 2011-03-02 三菱電機株式会社 Laser equipment
WO2006114842A1 (en) * 2005-04-08 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Laser device
JP2009503894A (en) * 2005-08-02 2009-01-29 アイティーティー マニュファクチャリング エンタープライジーズ, インコーポレイテッド Multimode fiber optical amplifier and optical signal amplification method
KR100840057B1 (en) * 2006-12-06 2008-06-19 미쓰비시덴키 가부시키가이샤 Laser device
JP2008244339A (en) * 2007-03-28 2008-10-09 Sumitomo Osaka Cement Co Ltd Optical pulse laser system
JP2008258323A (en) * 2007-04-03 2008-10-23 Furukawa Electric Co Ltd:The Pulse laser device
JP2008309620A (en) * 2007-06-14 2008-12-25 Mitsubishi Electric Corp Light wave radar device
JP2013065804A (en) * 2010-12-20 2013-04-11 Gigaphoton Inc Laser device and ultraviolet light generation system equipped with the same
US9318864B2 (en) 2010-12-20 2016-04-19 Gigaphoton Inc. Laser beam output control with optical shutter
CN103974906A (en) * 2011-11-17 2014-08-06 堺化学工业株式会社 Surface-treated zinc oxide powder, anti-bacterial agent, and anti-bacterial composition
US20170054268A1 (en) * 2014-02-13 2017-02-23 Spectronix Corporation Laser light-source apparatus and laser pulse light generating method
WO2015122375A3 (en) * 2014-02-13 2015-10-15 スペクトロニクス株式会社 Laser light-source apparatus and laser pulse light generating method
CN105940575A (en) * 2014-02-13 2016-09-14 斯佩克卓尼克斯株式会社 Laser light-source apparatus and laser pulse light generating method
US20170012402A1 (en) * 2014-02-13 2017-01-12 Spectronix Corporation Laser light-source apparatus and laser pulse light generating method
WO2015122374A3 (en) * 2014-02-13 2015-10-15 スペクトロニクス株式会社 Laser light-source apparatus and laser pulse light generating method
JPWO2015122374A1 (en) * 2014-02-13 2017-03-30 スペクトロニクス株式会社 Laser light source device and laser pulse light generation method
JPWO2015122375A1 (en) * 2014-02-13 2017-03-30 スペクトロニクス株式会社 Laser light source device and laser pulse light generation method
US9680285B2 (en) 2014-02-13 2017-06-13 Spectronix Corporation Laser light-source apparatus and laser pulse light generating method
US9859675B2 (en) 2014-02-13 2018-01-02 Spectronix Corporation Laser light-source apparatus and laser pulse light generating method
WO2018092281A1 (en) * 2016-11-18 2018-05-24 ギガフォトン株式会社 Laser device and extreme ultraviolet light generation device
US10481422B2 (en) 2016-11-18 2019-11-19 Gigaphoton Inc. Laser device and extreme ultraviolet light generation device
JP2020502817A (en) * 2016-12-22 2020-01-23 タレス Amplifier system with frequency drift and multiple outputs

Also Published As

Publication number Publication date
JP2919118B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP2919118B2 (en) Multi-stage optical amplifier
US8593725B2 (en) Pulsed optical source
JPH10268369A (en) Light pulse amplifying device, chirp pulse amplifying device, and parametric chirp pulse amplifying device
KR101915757B1 (en) Optical pulse laser with low repetition rate and driving method of the same
JPH0521880A (en) High-output optical pulse generator
JPH06224505A (en) Optical fiber amplifier
JPH08304859A (en) Optical fiber amplifier
KR101915750B1 (en) Optical pulse laser with low repetition rate and driving method of the same
JP2907666B2 (en) Dummy optical input control type constant gain optical fiber amplification method and apparatus
JPH06152034A (en) Dummy light input controlled optical fiber amplification
JP3278605B2 (en) Light limiter
JP2536288B2 (en) Optical amplifier
JPH03242627A (en) Multistage light amplifier device
KR100545778B1 (en) Apparatus and method for equalizing pulse amplitude in rational aberration harmonic mode-locked semiconductor fiber laser
JP2604479B2 (en) Mode-locked laser device
Malik et al. Record-high sensitivity receiver using phase sensitive fiber optical parametric amplification
JPH08146474A (en) Formation of light pulse and device therefor
JP2619096B2 (en) Optical amplifier
Chieng et al. Suppression of relaxation oscillations in tunable fiber lasers with a nonlinear amplified loop mirror
JPH0745889A (en) Mode-locked ring laser
CN113949479B (en) Signal light amplifying device, method and storage medium
JP2000332332A (en) Fiber raman amplifier and optical fiber communication system using same
JP2001305594A (en) Optical parametric amplifier
JPH05251832A (en) Pulse light source and pulsed light amplifier
JPH11121845A (en) Mode locking laser beam source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees