JPH0558917B2 - - Google Patents

Info

Publication number
JPH0558917B2
JPH0558917B2 JP59247334A JP24733484A JPH0558917B2 JP H0558917 B2 JPH0558917 B2 JP H0558917B2 JP 59247334 A JP59247334 A JP 59247334A JP 24733484 A JP24733484 A JP 24733484A JP H0558917 B2 JPH0558917 B2 JP H0558917B2
Authority
JP
Japan
Prior art keywords
layer
ink material
ink
recording
thermal transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59247334A
Other languages
Japanese (ja)
Other versions
JPS61125885A (en
Inventor
Tadao Kobashi
Hiroshi Oonishi
Hiroshi Ezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59247334A priority Critical patent/JPS61125885A/en
Publication of JPS61125885A publication Critical patent/JPS61125885A/en
Publication of JPH0558917B2 publication Critical patent/JPH0558917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サーマル記録ヘツド等を利用して単
色階調画像やフルカラー画像等を連続階調で記録
媒体に熱転写記録するに有用な熱転写記録シート
及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermal transfer recording sheet and a thermal transfer recording sheet useful for thermal transfer recording of monochromatic gradation images, full-color images, etc. in continuous gradation onto a recording medium using a thermal recording head or the like. The present invention relates to a manufacturing method thereof.

従来の技術 従来の熱転写記録シートとしては、厚さが7μ
m程度のポリエチレンテレフタレート(PET)
フイルムやコンデンサ紙等のシート状の耐熱性基
体表面に、バインダ材料としてカルナウバワツク
ス20重量%,エステルワツクス40重量%,鉱物油
10重量%,その他の補助剤10重量%から成るホツ
トメルト材料を用い、このホツトメルトバインダ
材料に顔料色材を20重量%を混合したインク材料
層から成る厚さが4μm程度の熱転写層を、ホツ
トメルトコーデイング法で形成し、溶融転写温度
が60℃程度の熱転写記録シートが公知である(例
えば、ワイ・トクナガおよびケイ・スギヤマ,
“サーマル インク−トランスフアー イメージ
ング,アイイーイーイー トランザクシヨンズ
オン エレクトロン デバイシズ,ED−27巻,
218〜222頁,1980年(Y.Tokunaga and K.
Sugiyama,“Thermal Ink−Transfer
Imaging”,IEEE Trans.on Electron Devices,
vol.ED−27,PP.218〜222,1980.)) この種の熱転写記録シートを用いての熱転写
は、一般に、記録紙などの記録媒体(受像体)と
熱転写記録シートとを圧接した状態で、基体シー
ト裏面に公知のサーマル記録ヘツドを圧接し、熱
転写層を基体シートを介してサーマル記録ヘツド
で選択的に昇温記録制御し、インク材料を記録媒
体に溶融転写させる。
Conventional technology Conventional thermal transfer recording sheets have a thickness of 7 μm.
m polyethylene terephthalate (PET)
Apply 20% by weight of carnauba wax, 40% by weight of ester wax, and mineral oil as binder materials to the surface of a sheet-like heat-resistant substrate such as film or capacitor paper.
A thermal transfer layer with a thickness of about 4 μm is formed by using a hot melt material consisting of 10% by weight of 10% by weight and 10% by weight of other auxiliaries, and an ink material layer of 20% by weight of a pigment coloring material mixed with this hotmelt binder material. A thermal transfer recording sheet formed by a melt coding method and having a melt transfer temperature of about 60°C is known (for example, Wai Tokunaga and Kei Sugiyama,
“Thermal Ink-Transfer Imaging, IEE Transactions
On Electron Devices, ED-27 volume,
pp. 218-222, 1980 (Y. Tokunaga and K.
Sugiyama, “Thermal Ink-Transfer
Imaging”,IEEE Trans.on Electron Devices,
vol.ED-27, PP.218-222, 1980.)) Thermal transfer using this type of thermal transfer recording sheet is generally carried out in a state in which a recording medium (image receptor) such as recording paper and the thermal transfer recording sheet are brought into pressure contact. Then, a known thermal recording head is pressed against the back surface of the base sheet, and the temperature of the thermal transfer layer is selectively heated and recorded by the thermal recording head through the base sheet to melt and transfer the ink material to the recording medium.

発明が解決しようとする問題点 このような従来の熱転写記録シートでは、イン
ク材料層は基体シート側からインク材料層表面に
迄、バインダ材料の溶融が完了した状態で初めて
記録媒体(受像体)にインク材料が粘着,転写さ
れる。この場合、インク材料層の厚み方向に溶融
したインク材料が一度に記録媒体に付着,転写さ
れるため、文字や図形等の如き二値濃度記録には
有用であるが、中間調を有する画像等、連続階調
性を要求される用途には使用し得ず、デイザ法,
濃度パターン法等、デイジイタル階調法が検討さ
れている。
Problems to be Solved by the Invention In such conventional thermal transfer recording sheets, the ink material layer is applied to the recording medium (image receptor) only after the binder material has completely melted from the base sheet side to the surface of the ink material layer. The ink material is adhered and transferred. In this case, since the ink material melted in the thickness direction of the ink material layer is attached and transferred to the recording medium at once, it is useful for binary density recording such as characters and figures, but it is useful for recording images with halftones, etc. , it cannot be used for applications that require continuous gradation, and the dither method,
Digital gradation methods such as the density pattern method are being considered.

然し乍らこの種のデイジタル階調法によると、
複雑な記録信号処理を必要とするため装置が高価
となるのみならず、高画質は期待し得ず、加えて
綜合解像度がサーマル記録ヘツドの記録密度より
も大幅に低下することは避け得なかつた。
However, according to this kind of digital gradation method,
Not only is the equipment expensive because it requires complex recording signal processing, but high image quality cannot be expected, and in addition, it is inevitable that the overall resolution will be significantly lower than the recording density of the thermal recording head. .

本発明はかゝる点に鑑みてなされたもので、昇
温記録制御に対応して転写記録濃度を連続性をも
つて制御し得る熱転写記録シートと、その製造法
を提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a thermal transfer recording sheet that can continuously control the transfer recording density in response to temperature-rising recording control, and a method for manufacturing the same. There is.

問題点を解決するための手段 本発明は上記問題点を解決するために、シート
状の耐熱性基体上に、昇温記録制御によつてその
粘性が減少制御される熱転写性のインク材料層が
設置され、更にこのインク材料層表面上に、その
粘性かつ減少制御された前記のインク材料が浸透
可能な有隙性の固体粒子層を設置して熱転写記録
シートが構成される。
Means for Solving the Problems In order to solve the above problems, the present invention provides a heat-transferable ink material layer whose viscosity is controlled to be reduced by temperature-raising recording control on a sheet-like heat-resistant substrate. A thermal transfer recording sheet is constructed by further disposing on the surface of this ink material layer a porous solid particle layer through which the ink material whose viscosity and reduction is controlled can penetrate.

また、上記の熱転写記録シートは、前記のイン
ク材料層表面に、固体粒子と、ホツトメルトバイ
ンダ材料と、このバインダ材料の溶剤とを含む混
合液液材料を塗布し、前記溶剤の蒸発,除去によ
り有隙性の固体粒子層を形成することを特徴とす
るいわゆるソルベントコーテイングによる製造方
法を用いて製造される。
In addition, the above thermal transfer recording sheet is produced by applying a liquid mixture material containing solid particles, a hot melt binder material, and a solvent for this binder material to the surface of the ink material layer, and by evaporating and removing the solvent. It is manufactured using a manufacturing method using so-called solvent coating, which is characterized by forming a porous solid particle layer.

作 用 斯かる熱転写記録シートにおいては、固体粒子
層の存在により、この固体粒子がスペーサーの役
割をし、たとえインク材料層表面部迄、バインダ
材料、いわゆるインク材料が熱溶融してもインク
材料が一度に記録媒体に付着転写されることが防
止される。この溶融インク材料が更に加熱され、
固体粒子がインク材料の構成々分たるバインダ材
料の融点(乃至は軟化点)以上に昇温した状態
で、いわゆる溶融インク材料が固体粒子層の間隙
部、すなわち固体粒子の表面を伝わつて記録媒体
側に浸透、押し出され、記録媒体に転写される。
この浸透、押し出し量は、溶融インク材料の温度
及びその粘性低下、すなわちサーマル記録ヘツド
からの加熱量に対応する。この昇温記録制御が終
了し、且つインク材料層に残存するインク材料が
元の固形状態に迄、冷却される以前において熱転
写記録シートと記録媒体とをはがすと、表面に溶
融インク材料の一部が被着した固体粒子も記録媒
体に付着転写される。
Function: Due to the presence of the solid particle layer in such a thermal transfer recording sheet, the solid particles act as a spacer, and even if the binder material, so-called ink material, is thermally melted to the surface of the ink material layer, the ink material does not reach the surface of the ink material layer. This prevents the particles from being attached and transferred to the recording medium all at once. This molten ink material is further heated,
When the solid particles are heated to a temperature higher than the melting point (or softening point) of the binder material that makes up the ink material, the so-called molten ink material travels through the gaps between the solid particle layers, that is, the surface of the solid particles, and forms the recording medium. It penetrates to the side, is extruded, and is transferred to the recording medium.
The amount of penetration and extrusion corresponds to the temperature of the molten ink material and its viscosity reduction, ie, the amount of heat from the thermal recording head. When the thermal transfer recording sheet and the recording medium are peeled off after this temperature increase recording control has been completed and before the ink material remaining in the ink material layer has cooled down to its original solid state, a portion of the molten ink material will appear on the surface. The solid particles adhered to are also adhered and transferred to the recording medium.

斯くして本発明にかゝる熱転写記録シートにお
いては、間隙を形成する固体粒子表面を介しての
インク浸透,更には固体粒子表面に被着して、記
録媒体に転写されるインク材料量は、サーマル記
録ヘツドによる昇温記録制御量、すなわち加熱量
に基く溶融インク材料量に対応するから、記録媒
体の転写記録光学濃度は、サーマル記録ヘツドの
発熱抵抗素子への印加電力,パルス幅,発熱回数
等に対応して連続的に制御されることになる。
Thus, in the thermal transfer recording sheet according to the present invention, the amount of ink material that permeates through the solid particle surfaces forming the gaps, and further adheres to the solid particle surfaces and is transferred to the recording medium is small. , corresponds to the temperature increase recording control amount by the thermal recording head, that is, the amount of melted ink material based on the amount of heating, so the transfer recording optical density of the recording medium depends on the power applied to the heating resistor element of the thermal recording head, the pulse width, and the heat generated. It will be continuously controlled in accordance with the number of times, etc.

また、本発明において重要な役割をする有隙性
の固体粒子層は、前述のソルベントコーテイング
法では、混合バインダ材料量及び溶剤稀釈量を適
当に制御することにより、その蒸発によつて溶融
インク材料が浸透する微細間隙を効果的に高密度
に構成できる。
In addition, in the above-mentioned solvent coating method, the porous solid particle layer, which plays an important role in the present invention, is formed by evaporating the molten ink material by appropriately controlling the amount of mixed binder material and the amount of solvent dilution. It is possible to effectively create a high-density micro-gap through which water can penetrate.

実施例 第1図は、本発明にかゝる熱転写記録シートの
一実施例の断面構造を示す。
Embodiment FIG. 1 shows a cross-sectional structure of an embodiment of a thermal transfer recording sheet according to the present invention.

100は熱転写記録シート、110は例えば厚
さが4〜15μmのコンデンサ紙、ポリエチレンテ
レフタレート(PET)フイルム等のシート状の
耐熱性基体である。基体表面110aには顔料,
染料乃至はこれらの両方から成る色材122と例
えばカルナバワツクス等のホツトメルト材から成
るバインダ材料121とを含む例えば厚さが1〜
3μm程度の薄いインク材料層120が被着され
る。インク材料層表面120aには、例えばアル
ミナ,酸化チタン,ガラス等の無機粉末粒子やエ
ポキシ,ポリイミド等の有機樹脂粉末粒子等の耐
熱性の固体粒子131を高温状態で吹き付け、バ
インダ材料121によつて融着せしめて間隙13
5を有する有隙性の固体粒子層130を形成す
る。
100 is a thermal transfer recording sheet, and 110 is a sheet-like heat-resistant substrate such as capacitor paper or polyethylene terephthalate (PET) film having a thickness of 4 to 15 μm. Pigment,
A coloring material 122 made of a dye or both of these and a binder material 121 made of a hot melt material such as carnauba wax, for example, has a thickness of 1 to 1.
A thin layer 120 of ink material on the order of 3 μm is deposited. On the surface 120a of the ink material layer, heat-resistant solid particles 131 such as inorganic powder particles of alumina, titanium oxide, glass, etc. or organic resin powder particles of epoxy, polyimide, etc. are sprayed at high temperature, and the binder material 121 is used. Gap 13 by fusing
A porous solid particle layer 130 having a particle diameter of 5 is formed.

そして、この熱転写記録シート100は、固体
粒子層130の表面側に非塗工紙,塗工紙,合成
紙,プラスチツクフイルム等の記録媒体(受像
体)200を、基体110の裏面110b側にサ
ーマル記録ヘツド300を配し、ゴムローラ等に
よる記録プラテン400により圧力500が加え
られて圧接されると共に、その回転600によ
り、シート状100及び媒体200は矢印60
1,602の如く紙送りされて熱転写記録され
る。
This thermal transfer recording sheet 100 has a recording medium (image receptor) 200 such as non-coated paper, coated paper, synthetic paper, plastic film, etc. on the front side of the solid particle layer 130, and a thermal recording medium (image receptor) 200 on the back side 110b of the base body 110. A recording head 300 is disposed, and a pressure 500 is applied by a recording platen 400 made of a rubber roller or the like, and the sheet 100 and the medium 200 are brought into contact with each other by the rotation 600 of the recording platen 400 as indicated by the arrow 60.
1,602, the paper is fed and recorded by thermal transfer.

次に、この熱転写記録シートによる記録は次の
ようにして行なわれる。図においてサーマル記録
ヘツド300の発熱抵抗体350を、端子33
1,341間に記録信号700を加えて通電発熱
させると、基体110を介してインク材料層12
0が加熱される。この加熱量に応じてバインダ材
料121、従つていわゆるインク材料層120は
基体表面110a側から溶融を開始するが、この
溶融がインク材料層表面120aに迄達しても固
体粒子131がスペーサの役割をし、従来の熱溶
融転写記録シートとは異なつて溶融インク材料1
20′の記録媒体表面200aへの転写は生じな
い。何故ならば固体粒子131は全体としてバイ
ンダ材料121の融点に迄未だ昇温していないか
らである。
Next, recording using this thermal transfer recording sheet is performed as follows. In the figure, the heating resistor 350 of the thermal recording head 300 is connected to the terminal 33.
When a recording signal 700 is applied between 1,341 and energized to generate heat, the ink material layer 12 is transferred through the base 110.
0 is heated. Depending on the amount of heating, the binder material 121, and therefore the so-called ink material layer 120, starts to melt from the base surface 110a side, but even if this melting reaches the ink material layer surface 120a, the solid particles 131 do not function as spacers. However, unlike conventional thermal melt transfer recording sheets, melt ink material 1
20' is not transferred to the recording medium surface 200a. This is because the solid particles 131 as a whole have not yet been heated to the melting point of the binder material 121.

固体粒子131が、溶融インク材料120′に
よつて更に加熱され、その温度がバインダ材料1
21の融点(乃至は軟化点)を越えた状態で初め
て表面200aへの転写がAで表示した如く開始
する。この場合、押圧500が高い時は、低粘性
化した溶融インク材料120′中へ固体粒子13
1が進入押し込まれ、インク材料120′は固体
粒子131間の間隙135内に浸透,押し出され
る。したがつてインク材料120′の表面は間隙
135内を上昇する。
The solid particles 131 are further heated by the molten ink material 120' until the temperature reaches the binder material 1.
Transfer to the surface 200a begins as indicated by A only when the melting point (or softening point) of 21 is exceeded. In this case, when the pressing force 500 is high, the solid particles 13 are transferred into the low-viscosity molten ink material 120'.
1 is pushed in, and the ink material 120' penetrates into the gaps 135 between the solid particles 131 and is forced out. The surface of ink material 120' thus rises within gap 135.

この場合、溶融したバインダ材料121、換言
すれば溶融インク材料120′の濡れ角(接触角)
を、固体粒子表面131a、及び記録媒体表面2
00aに対して90゜以内で可能な範囲で小、すな
わち親インク性に選んでおくと、その濡れ角に対
応して溶融インク材料120′(換言すれば溶融
したバインダ材料121)の表面張力、更には媒
体表面200aと粒子表面131aとの間隙の毛
管現象によつて、間隙135内を粒子表面131
aに沿つてインク浸透123を生じ、媒体表面2
00aに溶融インク材料120′が付着,転写さ
れる。
In this case, the wetting angle (contact angle) of the molten binder material 121, in other words the molten ink material 120'
, the solid particle surface 131a, and the recording medium surface 2
If the angle is selected to be as small as possible within 90 degrees with respect to 00a, that is, ink affinity, the surface tension of the molten ink material 120' (in other words, the molten binder material 121), Furthermore, due to the capillary phenomenon in the gap between the medium surface 200a and the particle surface 131a, the particle surface 131 flows through the gap 135.
a, causing ink penetration 123 along media surface 2
The molten ink material 120' is attached and transferred to 00a.

記録信号700の印加が終わり、層120内の
粒子表面131aの溶融インク材料120′が元
の固形状態に復帰する以前、好しくは溶融状態に
おいて紙送り601,602に伴なつて適当なる
時定数をもつて記録媒体200と熱転写記録シー
ト100とを剥離すると、Bに例示した如く未転
写の一部のインク材料120′が表面131aに
被着した固体粒子131も、記録媒体表面200
aに転写されて、インク材料120′を形成する
バインダ材料、色材122、及び固体粒子131
から成る転写記録140を生じる。
Before the application of the recording signal 700 ends and the molten ink material 120' on the particle surface 131a in the layer 120 returns to its original solid state, preferably in the molten state, an appropriate time constant is set as the paper feeds 601, 602. When the recording medium 200 and the thermal transfer recording sheet 100 are separated from each other with
binder material, colorant 122, and solid particles 131 that are transferred to a to form ink material 120'.
A transfer record 140 consisting of is produced.

粒子表面131a、従つて間隙135を介して
のインク浸透123の量は、インク材料120′
の溶融に伴なう粘性低下、また粒子表面131a
に付着しての転写は、インク溶融と対応するか
ら、発熱抵抗素子350に印加される電力、記録
信号700のパルス幅Pw、発熱回数に対応して、
転写記録140の光学濃度に連続的に制御される
ことになる。
The amount of ink penetration 123 through the particle surface 131a and thus the gap 135 is determined by the amount of ink material 120'
The viscosity decreases due to the melting of the particles, and the particle surface 131a
Since the transfer by adhering to the ink corresponds to melting of the ink, it depends on the electric power applied to the heating resistor element 350, the pulse width P w of the recording signal 700, and the number of times of heat generation.
The optical density of the transfer record 140 is continuously controlled.

斯くして、記録ヘツド300として公知のリニ
ヤ型のサーマル記録ヘツドを用い、記録プラテン
400の回転600に対応して、線順次でパルス
幅(Pw)変調記録信号700を各発熱抵抗素子
に印加すると連続階調で、単色中間調画像が、ま
た基体110上に面順次で、シアン,マゼンタ,
イエローのインク材料層120を配し、パルス幅
変調信号700で面順次でこれらの原色インク材
料を昇温記録制御して重ね転写記録すると、フル
カラー画像の転写記録が行える。
In this way, a known linear thermal recording head is used as the recording head 300, and a pulse width (P w ) modulated recording signal 700 is applied to each heating resistor element line-sequentially in response to the rotation 600 of the recording platen 400. Then, a continuous-tone, single-color half-tone image is formed on the substrate 110 sequentially in cyan, magenta,
By disposing a yellow ink material layer 120 and controlling the recording temperature of these primary color ink materials one after another using a pulse width modulation signal 700 and overlapping transfer recording, a full color image can be transferred and recorded.

この場合、固体粒子131の存在は、スペーサ
ーの設割をするため、重ね転写する場合には先に
転写記録されたインク材料のバツク転写を防止
し、良好なフルカラー画像が行える利点がある。
In this case, the presence of the solid particles 131 has the advantage of providing a spacer, which prevents back-transfer of the ink material previously transferred and recorded in the case of overlapping transfer, resulting in a good full-color image.

固体粒子131の融点(乃至は軟化点)は、バ
インダ材料121の融点(乃至は軟化点)よりも
低くくても、同程度でも、或いはそれ以上であつ
ても良いが、スペーサー粒子としての働きを持た
せる点からは、少くともバインダ材料121より
も高融点(軟化点)、更に好しくはインク材料1
20′の熱転写中に溶融しない高融点材料を選ぶ
ことが推奨される。固体粒子131の粒径はその
熱容量が過大にならない範囲で自由に選択でき
る。色材122として顔料が用いられ、熱溶融イ
ンク材料120′中に完全に進入埋没し得ない場
合には、インク材料層120の厚みよりも粒子1
31の粒径は小にできるが、そのスペーサー的役
割から一般的には平均粒径10μm以下,1.5μm以
上でインク材料層120の厚さ以上に選ばれる。
固体粒子131は、転写記録140の色彩を、イ
ンク材料120′と比較して著しく変色させない
よう、透明,無色,白色,淡色等、著しく着色し
ていないものが好しい。
The melting point (or softening point) of the solid particles 131 may be lower than, the same level, or higher than the melting point (or softening point) of the binder material 121, but the solid particles 131 may function as spacer particles. From the point of view of giving the binder material 121 a higher melting point (softening point) than the binder material 121, more preferably the ink material 1
It is recommended to choose a high melting point material that will not melt during the thermal transfer of 20'. The particle size of the solid particles 131 can be freely selected within a range that does not increase the heat capacity. When a pigment is used as the coloring material 122 and cannot be completely embedded in the heat-melting ink material 120', the thickness of the particles 1 is smaller than the thickness of the ink material layer 120.
The particle size of the ink layer 31 can be made small, but because of its role as a spacer, it is generally selected to have an average particle size of 10 μm or less, 1.5 μm or more, and greater than the thickness of the ink material layer 120.
The solid particles 131 are preferably transparent, colorless, white, light-colored, or not significantly colored so that the color of the transfer record 140 does not change significantly compared to the ink material 120'.

サーマル記録ヘツド300としては、アルミナ
基板等の平板表面301に発熱抵抗素子を4ドツ
ト/mm〜16ドツト/mmの密度で配列したいわゆる
平面型ヘツドも使用できるが、その平面性なる故
に記録プラテン400の曲率半径が大きい場合等
においては、熱転写シート100と記録媒体20
0の剥離が、昇温度記録制御後において速やかに
行なえ得ず、そのため、狭いパルス幅PW域の記
録信号700印加部において、溶融インク材料1
20′が固化し連続階調性が低下する場合がある。
また、押圧500不足から、固体粒子131を効
果的に溶融インク材料120′に押し込み得ず、
所期の転写記録濃度が確保し得ない場合が発生す
る。
As the thermal recording head 300, a so-called flat type head in which heating resistive elements are arranged at a density of 4 dots/mm to 16 dots/mm on a flat plate surface 301 such as an alumina substrate can also be used, but due to its flatness, the recording platen 400 When the radius of curvature of the thermal transfer sheet 100 and the recording medium 20 are large,
0 cannot be peeled off quickly after the temperature increase recording control, and therefore, the molten ink material 1 cannot be peeled off quickly after the temperature increase recording control.
20' may solidify, resulting in poor continuous gradation.
Furthermore, due to the insufficient pressing force of 500, the solid particles 131 cannot be effectively pushed into the molten ink material 120'.
There may be cases where the desired transfer recording density cannot be secured.

この難点は、第1図に例示せる如く、従来のよ
うにアルミナ磁器等の基体310の表面平面30
1上ではなく、その縁端面302上に、発熱抵抗
素子350を図示紙面の法線方向に互に分離して
4ドツト/mm〜12ドツト/mm程度に配列したいわ
ゆるエツヂ型ヘツドの採用により解決される。こ
のヘツドによると、記録ヘツド300による圧接
幅は、基体310の厚さに対応して紙送り60
1,602方向に例えば2〜4mm程度に極めて狭
くできる。従つて昇温記録制御後のシート100
と媒体200の剥離が図示の如く速やか行えるの
みならず、圧接幅の減少により、単位面積当りの
圧接圧力強度も大にでき、効果的に間隙135を
介してインク浸透123が行え、所期の濃度で連
続階調転写記録ができる利点がある。なお、図に
おいて321,322は放熱板を兼ねた機械的強
の補強体である。
This difficulty lies in the fact that, as illustrated in FIG.
This problem is solved by adopting a so-called edge type head in which heating resistive elements 350 are arranged on the edge surface 302, not on the edge surface 302, separated from each other in the normal direction of the drawing paper and arranged at about 4 dots/mm to 12 dots/mm. be done. According to this head, the pressure contact width by the recording head 300 corresponds to the thickness of the base 310, and the paper feed 60
It can be extremely narrow, for example, about 2 to 4 mm in the 1,602 direction. Therefore, sheet 100 after temperature increase recording control
Not only can the medium 200 be quickly peeled off as shown in the figure, but also the pressure strength per unit area can be increased by reducing the pressure width, and the ink penetration 123 can be effectively performed through the gap 135 to achieve the desired result. It has the advantage of being able to perform continuous tone transfer recording at high density. In the figure, 321 and 322 are mechanically strong reinforcing bodies that also serve as heat sinks.

第2図は、本発明にかゝる熱転写記録シートの
他の実施例の断面構造図である。
FIG. 2 is a cross-sectional structural diagram of another embodiment of the thermal transfer recording sheet according to the present invention.

本例では、固体粒子131は、バインダ材料層
132によつてインク材料層表面120a上に固
着されて間隙135を有する有隙性の固体粒子層
130が形成される。
In this example, the solid particles 131 are fixed onto the ink material layer surface 120a by the binder material layer 132 to form a porous solid particle layer 130 having gaps 135.

固体粒子131は、バインダ材料層表面132
a(固体粒子131が存在していない部分の表面)
より突出して、固体粒子層130は凹凸表面を形
成し、その突出粒子の間がインク浸透123(第
1図参照)のための間隙135を形成する。
The solid particles 131 are attached to the binder material layer surface 132.
a (Surface of part where solid particles 131 are not present)
More protruding, the solid particle layer 130 forms an uneven surface, and the protruding particles form gaps 135 for ink penetration 123 (see FIG. 1).

バインダ材料132は、ポリエステル樹脂,ポ
リビニルブチラー樹脂,エチルセルローズ等の耐
熱性材料でも構成できるが、ホツトメルト材で構
成することが推奨される。この場合、その融点
(乃至は軟化点)はバインダ材料121と比較し
て高くても低くても同程度であつても良いが、時
に高感度で転写記録140を得るためにはバイン
ダ材料132の融点(乃至は軟化点)はバインダ
材料121よりも低く選ばれる。例えばバインダ
材料121が融点83℃のカルナバワツクスで構成
される時、融点51℃の固形パラフインや軟化点70
℃の脂環族飽和炭化水素樹脂でバインダ材料13
2を構成する。
Although the binder material 132 can be made of a heat-resistant material such as polyester resin, polyvinyl butylar resin, or ethyl cellulose, it is recommended that it be made of a hot melt material. In this case, the melting point (or softening point) of the binder material 132 may be higher, lower, or about the same as that of the binder material 121; The melting point (or softening point) is chosen to be lower than the binder material 121. For example, when the binder material 121 is made of carnauba wax with a melting point of 83°C, solid paraffin with a melting point of 51°C or a softening point of 70°C is used.
Binder material with alicyclic saturated hydrocarbon resin at 13 °C
2.

このようにバインダ材料132をホツトメルト
材で構成すると、第1図において溶融インク材料
120′によりにバインダ材料層132が溶融,
低粘性化され、粒子表面131a,間隙135を
介してのインク浸透123を容易にする。
When the binder material 132 is made of a hot melt material in this way, the binder material layer 132 is melted by the melted ink material 120' in FIG.
The viscosity is reduced, facilitating ink penetration 123 through the particle surfaces 131a and gaps 135.

なお、バインダ材料層132をホツトメルト材
で構成する時、バインダ材料121と相溶性でも
非相溶性であつても良い。相溶性に選ばれる時
は、バインダ材料132は転写記録140内にお
いてはバインダ材料121と相溶状態が形成され
て析出することがないので、滑らかな転写記録1
40を形成する利点がある。また同時に、バイン
ダ材料層132が溶融インク材料120′によつ
て低温で極めて容易に相溶,低粘性化し、インク
浸透123を可能とするため、高感度転写記録が
できる利点がある。カルナバワツクス形のバイン
ダ材料121に相溶性のバインダ材料132とし
ては、例えば脂肪族系石油樹脂の使用が推奨され
る。
Note that when the binder material layer 132 is made of a hot melt material, it may be compatible or incompatible with the binder material 121. When the binder material 132 is selected for compatibility, the binder material 132 forms a compatible state with the binder material 121 in the transfer record 140 and does not precipitate, resulting in a smooth transfer record 1.
40 is advantageous. At the same time, the binder material layer 132 is extremely easily compatible with the molten ink material 120' at low temperatures and has a low viscosity, allowing ink penetration 123, which has the advantage of enabling high-sensitivity transfer recording. As the binder material 132 that is compatible with the carnauba wax type binder material 121, it is recommended to use, for example, an aliphatic petroleum resin.

これら有隙性の固体粒子層130の形成は、常
温(例えば25℃)でバインダ材料121に対して
不溶性にして、且つバインダ材料132を溶解す
る溶剤を選び、この溶剤と、バインダ材料132
及び固体粒子131の稀釈混合溶液を作り、常温
でインク材料層表面120a上にソルベントコー
テイング法で薄く成層し、溶剤を蒸発,除去する
ことにより極めて容易に有隙性の固体粒子層13
0が製作できる。バインダ材料層132の厚さは
バインダ材料132の混合量を少なく選び溶剤混
入量を多くすることにより容易に、固体粒子13
1の粒径よりも薄くでき、効率良く間隙135が
形成され、層130は凹凸表面を構成する。
These porous solid particle layers 130 are formed by selecting a solvent that is insoluble in the binder material 121 and dissolving the binder material 132 at room temperature (for example, 25° C.), and using this solvent and the binder material 132.
A diluted mixed solution of solid particles 131 is prepared, and a thin layer is formed on the surface 120a of the ink material layer at room temperature by a solvent coating method, and the solvent is evaporated and removed to form a porous solid particle layer 13.
0 can be produced. The thickness of the binder material layer 132 can be easily adjusted by selecting a small amount of the binder material 132 mixed and increasing the amount of solvent mixed.
The layer 130 can be made thinner than the grain size of 1, efficiently forming gaps 135, and forming an uneven surface.

この場合、固体粒子表面131aには薄くバイ
ンダ材料132が被着され、粒子表面131aに
対する溶融インク材料120′の濡れ性が改善さ
れるため、インク浸透123をより容易にできる
利点がある。
In this case, the binder material 132 is thinly applied to the solid particle surface 131a, and the wettability of the molten ink material 120' to the particle surface 131a is improved, so that there is an advantage that the ink permeation 123 can be made easier.

なお、第2図においては、固体粒子131の粒
径に分布をもたせて固体粒子層130が構成され
ている。粒径の小さな粒子131は熱容量が小な
るため、溶融インク材料120′によつて容易に
昇温し、粒子表面131aを介して低い加熱量で
インク浸透123を生じ、大なる粒子131では
インク浸透123には大なる加熱量を必要とす
る。従つて粒子131に適当なる粒径分布を持た
せることにより転写記録140の連続階調性の動
作域が拡大できる優れた利点がある。この場合、
記録紙などの媒体表面200aは通常、μmオー
ダーから10μmオーダーの微細な凹凸を有するた
め、たとえ粒子131の径が異なつていても高い
確率で媒体表面200aと粒子131との接触が
確保され、インク転写記録には障害とならない。
In addition, in FIG. 2, the solid particle layer 130 is configured such that the particle size of the solid particles 131 is distributed. Particles 131 with a small particle size have a small heat capacity, so they are easily heated by the molten ink material 120', causing ink penetration 123 through the particle surface 131a with a small amount of heating, while large particles 131 do not have ink penetration. 123 requires a large amount of heating. Therefore, by providing the particles 131 with a suitable particle size distribution, there is an excellent advantage that the continuous tone operation range of the transfer recording 140 can be expanded. in this case,
Since the surface 200a of a medium such as recording paper usually has fine irregularities on the order of μm to 10 μm, contact between the medium surface 200a and the particles 131 is ensured with a high probability even if the diameters of the particles 131 are different. It does not interfere with ink transfer recording.

固体粒子131は、バインダ材料121更には
バインダ材料132と比較して適当に高い融点
(軟化点)を有する限りにおいてはホツトメルト
バインダ材から成る粉末粒子が使用できる。これ
らホツトメルト型の固体粒子131としては、例
えば軟化点が145〜165℃の芳香族系石油樹脂粉末
等が使用できる。なお、第1図,第2図におい
て、固体粒子131は球形状に表示してあるが、
その粒形は多角形状等必ずしも粒形は問わない。
As the solid particles 131, powder particles made of a hot melt binder material can be used as long as they have a suitably higher melting point (softening point) than the binder material 121 or even the binder material 132. As these hot melt type solid particles 131, for example, aromatic petroleum resin powder having a softening point of 145 to 165° C. can be used. Although the solid particles 131 are shown in a spherical shape in FIGS. 1 and 2,
The particle shape does not necessarily matter, such as a polygonal shape.

以下、本発明にかゝる熱転写記録シートの製造
実施例について述べる。
Examples of manufacturing a thermal transfer recording sheet according to the present invention will be described below.

〔実施例 1〕 インク材料120において、バインダ材料12
1としてカルナバワツクス(融点83℃)とカスタ
ーワツクス(融点85.5℃)のホツトメルト複合材
を用い、これに色材122として無機顔料たるカ
ーボンブラツクを40重量%混合し、この混合材料
を加熱3本ミルでホツトメルト複合材を溶融せし
めて練肉する。この練肉インク材料を厚さ9μm
のPETフイルムから成る耐熱性基体110上に
ホツトメルトコーテイングし、厚さ約1μmの黒
色のインク材料層120を成層する。
[Example 1] In the ink material 120, the binder material 12
A hot melt composite of carnauba wax (melting point 83°C) and castor wax (melting point 85.5°C) was used as 1, and 40% by weight of carbon black, an inorganic pigment, was mixed therein as coloring material 122, and this mixed material was heated 3. This mill melts and kneads the hot melt composite material. This kneaded ink material has a thickness of 9 μm.
A black ink material layer 120 having a thickness of approximately 1 μm is layered on a heat-resistant substrate 110 made of a PET film by hot melt coating.

有隙性の固体粒子層130塗布用材料として、
平均粒径3μmのアルミナ粉末粒子から成る固体
粒子131を75重量部、バインダ材料132とし
て脂環族飽和炭化水素樹脂(荒川林産化学社製ア
ルコンP−70,軟化点70℃)から成るホツトメル
ト材を25重量部,バインダ材料121には常温非
溶解性にしてバインダ材料132には常温溶解性
の溶剤としてキシレンを150重量部を混合し、ボ
ールミルで混合溶解する。
As a material for coating the porous solid particle layer 130,
75 parts by weight of solid particles 131 made of alumina powder particles with an average particle size of 3 μm, and a hot melt material made of an alicyclic saturated hydrocarbon resin (Alcon P-70 manufactured by Arakawa Forestry Chemical Co., Ltd., softening point 70°C) as the binder material 132. 25 parts by weight of xylene, which is a solvent insoluble at room temperature for the binder material 121 and soluble at room temperature for the binder material 132, are mixed and dissolved in a ball mill.

この混合溶解液を市販の#3のバーコーター
で、インク材料層表面120aに常温でソルベン
トコーテイングし、溶剤を蒸発,除去する。
This mixed solution is solvent coated on the surface 120a of the ink material layer at room temperature using a commercially available #3 bar coater, and the solvent is evaporated and removed.

得られた固体粒子層130は、凹凸表面を有し
有隙性で、斯くして熱転写記録シート100が製
造できる。
The obtained solid particle layer 130 has an uneven surface and is porous, and thus the thermal transfer recording sheet 100 can be manufactured.

〔実施例 2〕 実施例1において、カーボンブラツクの替りに
フタロシアニン有機顔料(CI Pigment Blue
15)を40重量%混合し、同様に厚さ約1μmのシ
アン色のインク材料層120をホツトメルトコー
テイングする。
[Example 2] In Example 1, a phthalocyanine organic pigment (CI Pigment Blue) was used instead of carbon black.
15) in an amount of 40% by weight and similarly hot-melt coated with a cyan ink material layer 120 having a thickness of approximately 1 μm.

有隙性の固体粒子層130塗布用材料は、平均
粒径3μmの透明石英ガラスから成る固体粉末粒
子131を40重量部、バインダ材料132として
前記バインダ材料121と相溶性のホツトメルト
材として脂肪族系石油樹脂(三井石油化学社製ハ
イレツツ100G,軟化点100℃)を25重量部、溶剤
としてキシレンを150重量部を混合し、以下実施
例1と同様にソルベントコーテイングする。
The material for coating the porous solid particle layer 130 includes 40 parts by weight of solid powder particles 131 made of transparent quartz glass with an average particle size of 3 μm, a binder material 132, and an aliphatic hot melt material compatible with the binder material 121. 25 parts by weight of petroleum resin (Hiretz 100G manufactured by Mitsui Petrochemicals, softening point 100°C) and 150 parts by weight of xylene as a solvent were mixed, and solvent coating was applied in the same manner as in Example 1.

得られた固体粒子層130は凹凸表面を有し有
隙性であり、熱転写記録シート100が製造でき
る。
The obtained solid particle layer 130 has an uneven surface and is porous, so that the thermal transfer recording sheet 100 can be manufactured.

なお、第2図の構成において、固体粒子131
の平均粒径は、熱容量過大化、インク浸透123
長の過長化による熱転写感度の低下を防止する観
点から10μm以下、またスペーサー的約割から
1.5μm以上の範囲内に選ぶことが望ましく、分布
粒径範囲内における少くとも一部の固体粒子13
1の粒径が、インク材料層120及び固体粒子1
31を層表面120aに固着するバインダ材料層
132の全厚みよりも大になるよう選定されるこ
とが、良好を連続階調性を得る観点から推奨され
る。
Note that in the configuration shown in FIG. 2, the solid particles 131
The average particle size of
10 μm or less in order to prevent a decrease in thermal transfer sensitivity due to excessive length, and from the perspective of a spacer.
It is desirable to select the particle size within the range of 1.5 μm or more, and at least some of the solid particles within the distribution particle size range13
1 in the ink material layer 120 and the solid particles 1
From the viewpoint of obtaining good continuous gradation, it is recommended that the binder material layer 132 be selected to be larger than the total thickness of the binder material layer 132 that fixes the layer 31 to the layer surface 120a.

また、以上の実施例では、バインダ材料121
は常温固形のホツトメルトバインダ材を用いた場
合を中心にその構成を述べたが、バインダ材料1
21は融点(軟化点)が常温(例えば25℃)以下
にあり、常温では溶融状態にあるいわゆる粘着材
も使用できる。この場合、常温粘度が低いとベタ
付きを生ずるので、例えば常温(例えば25℃)で
その粘度が1000ポアズ以上のポリブテン等の粘着
剤を使用する。
Further, in the above embodiment, the binder material 121
described the structure mainly using a hot melt binder material that is solid at room temperature, but binder material 1
No. 21 has a melting point (softening point) below room temperature (for example, 25° C.), and so-called adhesive materials that are in a molten state at room temperature can also be used. In this case, since stickiness occurs if the viscosity at room temperature is low, use an adhesive such as polybutene that has a viscosity of 1000 poise or more at room temperature (for example, 25° C.).

これらの粘着剤から成るバインダ材料121も
昇温記録制御によつてその粘性が低下し、効果的
に間隙135並びに固体粒子131を介して転写
記録140を生じる。
The viscosity of the binder material 121 made of these adhesives is also reduced by the temperature increase recording control, and a transfer record 140 is effectively produced through the gap 135 and the solid particles 131.

以上の如く、シート状の耐熱性基体上に、昇温
記録制御によつてその粘性が減少制御されるバイ
ンダ材料を含む熱転写性のインク材料層が設置さ
れ、更にこのインク材料層表面上に、その粘性が
減少制御された前記のインク材料が浸透可能な有
隙性の固体粒子層が設置された本発明にかゝる熱
転写記録シートを用い、この熱転写記録シートと
記録媒体(受像体)とを、サーマル記録ヘツドと
これに対向する記録プラテンとの間に介挿圧接さ
せると共に、これらの熱転写記録シートと記録媒
体とを同方向に紙送りする関係にあつて、前記耐
熱性基体の裏面側にサーマル記録ヘツドが、また
前記固体粒子層表面側に記録媒体を圧接した状態
で、前記耐熱性基体を介してインク材料層及び固
体粒子層をサーマル記録ヘツドで昇温記録制御
し、この昇温記録制御が終了すると共に、この昇
温記録部がサーマル記録ヘツドの記録部を通過
し、且つ前記バインダ材料の粘性が元の温度状態
に復帰する以前において、前記の熱転写記録シー
トと記録媒体とを剥離し、前記固体粒子表面にイ
ンク材料が付着した状態で、この固体粒子を前記
記録媒体に付着,転写せしめることを原理とする
熱転写記録方法及び熱転写記録装置によると、連
続階調で良好な熱転写記録ができる。特にこの場
合、第1図に例示したエツジ型のサーマル記録ヘ
ツドを利用すると、押圧力が大にでき、また昇温
記録制御後、速やかに熱転写記録シートと記録媒
体の剥離が行えるため、良好な中間調画像が転写
記録できる利点がある。
As described above, a heat-transferable ink material layer containing a binder material whose viscosity is controlled to be reduced by temperature increase recording control is provided on a sheet-like heat-resistant substrate, and further on the surface of this ink material layer, Using the thermal transfer recording sheet according to the present invention, which is provided with a porous solid particle layer that is permeable to the ink material whose viscosity is controlled to be reduced, the thermal transfer recording sheet and the recording medium (image receptor) are connected to each other. is inserted between the thermal recording head and the recording platen facing it, and the thermal transfer recording sheet and the recording medium are fed in the same direction. Then, with the recording medium in pressure contact with the surface side of the solid particle layer, the thermal recording head controls and records the temperature of the ink material layer and the solid particle layer through the heat-resistant substrate, and this temperature increase is controlled by the thermal recording head. When the recording control is completed, the temperature-raising recording section passes through the recording section of the thermal recording head, and before the viscosity of the binder material returns to its original temperature state, the thermal transfer recording sheet and the recording medium are heated. According to a thermal transfer recording method and a thermal transfer recording device based on the principle of attaching and transferring the solid particles to the recording medium with the ink material attached to the surface of the solid particles after peeling off, it is possible to achieve good thermal transfer with continuous gradation. Can record. Particularly in this case, if the edge-type thermal recording head illustrated in FIG. It has the advantage that halftone images can be transferred and recorded.

なお、固体粒子131としては、構成材料が異
なるか、比熱の異なる複数種の固体粒子を混合し
て用い、記録特性を調節することもできる。
Note that, as the solid particles 131, it is also possible to adjust the recording characteristics by using a mixture of a plurality of types of solid particles having different constituent materials or different specific heats.

また、インク材料層120のバインダ材料12
1の材質、バインダ材料121と色材122の混
合比、層120の塗工料を変えたり、固体粒子1
31の配設密度,粒径,粒径分布,バインダ材料
132の量,材質等を変えても記録特性が調節で
きる。これらは、三原色法等で、フルカラー重ね
転写記録する場合、各原色熱転写記録シートの記
録特性の調節に適用される。
Furthermore, the binder material 12 of the ink material layer 120
The material of layer 1, the mixing ratio of binder material 121 and coloring material 122, and the coating material of layer 120 may be changed.
The recording characteristics can be adjusted by changing the arrangement density, particle size, particle size distribution of the binder material 132, amount of the binder material 132, material quality, etc. These are applied to adjust the recording characteristics of each primary color thermal transfer recording sheet when performing full color overlapping transfer recording using the three primary color method or the like.

発明の効果 以上述べた如く本発明は有隙性の固体粒子層を
具えた熱転写記録シートであり、従来公知の熱溶
融転写記録シートでは困難であつた連続階調での
熱転写記録を可能とし、単色中間調画像は勿論の
こと、フルカラー画像も実現でき、その産業上の
効果は極めて大なるものがある。
Effects of the Invention As described above, the present invention is a thermal transfer recording sheet provided with a porous solid particle layer, which enables thermal transfer recording in continuous gradations, which has been difficult with conventional heat-melting transfer recording sheets. Not only monochromatic half-tone images but also full-color images can be realized, and the industrial effects thereof are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかゝる熱転写記録シートの
一実施例の構成を示す図、第2図は、本発明に
かゝる熱転写記録シートの他の実施例の断面構造
図である。 100……熱転写記録シート、110……耐熱
性基体、120……インク材料層、130……有
隙性の固体粒子層、140……転写記録、200
……記録媒体、300……サーマル記録ヘツド、
400……記録プラテン、700……記録信号。
FIG. 1 is a diagram showing the structure of one embodiment of a thermal transfer recording sheet according to the present invention, and FIG. 2 is a sectional view of another embodiment of the thermal transfer recording sheet according to the present invention. 100...Thermal transfer recording sheet, 110...Heat-resistant substrate, 120...Ink material layer, 130...Porous solid particle layer, 140...Transfer recording, 200
... Recording medium, 300 ... Thermal recording head,
400...recording platen, 700...recording signal.

Claims (1)

【特許請求の範囲】 1 シート状の耐熱性基体上に、昇温記録制御に
よつてその粘性が減少制御される熱転写性のイン
ク材料層が設置され、更にこの表面上に前記イン
ク材料層に含まれるバインダ材料より高い融点ま
たは軟化点を有する固体粒子を、厚み方向に重な
らないように粒状に配置した固体粒子層を設置し
たことを特徴とする熱転写記録シート。 2 インク材料層表面に、固体粒子がホツトメル
ト材をバインダ材料として固着されて固体粒子層
が形成されたことを特徴とする特許請求の範囲第
1項記載の熱転写記録シート。 3 シート状の耐熱性基体上に、昇温制御によつ
てその粘性が減少制御される熱転写性のインク材
料層が設置され、更にこの表面上に前記インク材
料層より高い融点または軟化点を有する固体粒子
を、厚み方向に重ならないように粒状に配置した
固体粒子層を設置した熱転写記録シートを製造す
るに際し、前記インク材料層表面に、固体粒子
と、ホツトメルトバインダ材料と、このバインダ
材料の溶剤とを含む混合溶液材料を塗布し、前記
溶剤の蒸発除去により有隙性の固体粒子層を形成
することを特徴とする熱転写記録シートの製造方
法。
[Scope of Claims] 1. A thermally transferable ink material layer whose viscosity is controlled to be reduced by temperature increase recording control is provided on a sheet-like heat-resistant substrate, and a layer of the ink material is further disposed on the surface of the heat-transferable ink material layer. 1. A thermal transfer recording sheet comprising a solid particle layer in which solid particles having a melting point or softening point higher than that of a binder material contained are arranged in a granular manner so as not to overlap in the thickness direction. 2. The thermal transfer recording sheet according to claim 1, wherein a solid particle layer is formed by fixing solid particles to the surface of the ink material layer using a hot melt material as a binder material. 3. A heat-transferable ink material layer whose viscosity is controlled to be reduced by controlling temperature is provided on the sheet-like heat-resistant substrate, and further has a melting point or softening point higher than that of the ink material layer on the surface of the heat-transferable ink material layer. When manufacturing a thermal transfer recording sheet with a solid particle layer in which solid particles are arranged in a granular manner so as not to overlap in the thickness direction, solid particles, a hot melt binder material, and a layer of this binder material are coated on the surface of the ink material layer. 1. A method for producing a thermal transfer recording sheet, comprising applying a mixed solution material containing a solvent, and forming a porous solid particle layer by evaporating and removing the solvent.
JP59247334A 1984-11-22 1984-11-22 Thermal transfer recording sheet and production thereof Granted JPS61125885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247334A JPS61125885A (en) 1984-11-22 1984-11-22 Thermal transfer recording sheet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247334A JPS61125885A (en) 1984-11-22 1984-11-22 Thermal transfer recording sheet and production thereof

Publications (2)

Publication Number Publication Date
JPS61125885A JPS61125885A (en) 1986-06-13
JPH0558917B2 true JPH0558917B2 (en) 1993-08-27

Family

ID=17161858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247334A Granted JPS61125885A (en) 1984-11-22 1984-11-22 Thermal transfer recording sheet and production thereof

Country Status (1)

Country Link
JP (1) JPS61125885A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737187B2 (en) * 1988-06-16 1995-04-26 本州製紙株式会社 Thermal recording

Also Published As

Publication number Publication date
JPS61125885A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US4826717A (en) Thermal transfer sheet
JPH0330520B2 (en)
JPS61137787A (en) Thermal transfer recording sheet
JPS5964394A (en) Thermal recording medium
JPH0558917B2 (en)
JPS61104888A (en) Thermal transfer recording sheet and manufacture thereof
JPS60253593A (en) Thermal transfer recording method
JPS61162387A (en) Thermal transfer medium
JPH0548754B2 (en)
JP2559025B2 (en) Thermal transfer recording method
JPS61125895A (en) Thermal transfer recorder
JPS61125894A (en) Thermal transfer recorder
JPH0257029B2 (en)
JPS61125886A (en) Thermal transfer recording sheet
JPS61125896A (en) Thermal transfer recorder
JPH058117B2 (en)
JPH0729505B2 (en) Thermal transfer recording sheet and thermal transfer recording method
JPS61125891A (en) Thermal transfer recording sheet
JPS62158093A (en) Ink sheet for thermal transfer recording
JPS61125887A (en) Thermal transfer recording sheet
JPH0712744B2 (en) Thermal transfer recording sheet
JPH0710626B2 (en) Thermal transfer recording method
JPS61286192A (en) Ink sheet for thermal transfer recording
JPS61280990A (en) Recording medium
JPS6120763A (en) Thermal transfer recording method and themal transfer recording sheet