JPH0558894U - Fluid pump - Google Patents

Fluid pump

Info

Publication number
JPH0558894U
JPH0558894U JP001134U JP113492U JPH0558894U JP H0558894 U JPH0558894 U JP H0558894U JP 001134 U JP001134 U JP 001134U JP 113492 U JP113492 U JP 113492U JP H0558894 U JPH0558894 U JP H0558894U
Authority
JP
Japan
Prior art keywords
fluid
discharge port
suction port
passage
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP001134U
Other languages
Japanese (ja)
Inventor
浩一 藤原
Original Assignee
日本電子機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子機器株式会社 filed Critical 日本電子機器株式会社
Priority to JP001134U priority Critical patent/JPH0558894U/en
Publication of JPH0558894U publication Critical patent/JPH0558894U/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】 【目的】 ポンプ効率の向上を図ると共に、流体騒音の
低減化を図り、以て、吸音材等の仕様を簡素化し、流体
ポンプの小型、軽量化、コストの低減を図る。 【構成】 ケーシング11とポンプハウジング12とに
より中空円筒状の圧力室13が形成され、該ケーシング
11の表面の外周部には、流体吸込口11aと流体吐出
口11bが前記圧力室13と連通して形成されている。
また、ケーシング11の裏面の外周部には、羽根車14
の羽根14a及び凹部14bに対向する部分を流体吸込
口11aから流体吐出口11bとの間を結んで凹設した
流体通路Aが設けられると共に、流体吸込口11aと流
体吐出口11bとを結ぶ流体通路Aとは反対側の狭小な
周方向隙間部分より流体通路Aへ向かって連通する連通
路Bを形成する。
(57) [Abstract] [Purpose] Aim to improve pump efficiency and reduce fluid noise, simplify specifications of sound absorbing material, etc. to reduce the size, weight and cost of the fluid pump. .. A hollow cylindrical pressure chamber 13 is formed by the casing 11 and the pump housing 12, and a fluid suction port 11a and a fluid discharge port 11b communicate with the pressure chamber 13 at the outer peripheral portion of the surface of the casing 11. Is formed.
Further, the impeller 14 is provided on the outer peripheral portion of the back surface of the casing 11.
Is provided with a recessed fluid passage A connecting between the fluid suction port 11a and the fluid discharge port 11b at a portion facing the blade 14a and the concave portion 14b, and a fluid connecting the fluid suction port 11a and the fluid discharge port 11b. A communication passage B that communicates with the fluid passage A from a narrow circumferential gap on the opposite side of the passage A is formed.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

本考案は、排気ガス浄化のため、排気ガス中に2次空気を送り込みこれらを再 燃焼させて有害成分の低減化を図るための内燃機関のエアーポンプ等に用いられ る流体ポンプに関する。 The present invention relates to a fluid pump used for an air pump or the like of an internal combustion engine for purifying exhaust gas by sending secondary air into the exhaust gas and reburning them to reduce harmful components.

【0002】[0002]

【従来の技術】[Prior Art]

燃料の燃焼により自動車のエンジンから排出される排気ガス中にはCO(一酸 化炭素)HC(炭化水素)及びNOX (窒素酸化物)の有害成分が含まれている 。 これら有害成分のうちCO(一酸化炭素)、HC(炭化水素)はエンジンの排 気ポートの排気ガス中に強制的に2次空気を送り込みこれらを再燃焼させること により低減することができ、さらに2次空気により再燃焼しきらなかったCO、 HCを排気系に設けた酸化触媒により酸化反応させて著しく低減できる。従って 、排気ガス対策上からは2次空気の排気ガス中への効率の良い注入が望まれる。The exhaust gas discharged from an automobile engine by the combustion of fuel contains harmful components CO (monoacid carbon) HC (hydrocarbons) and NO X (nitrogen oxides). Of these harmful components, CO (carbon monoxide) and HC (hydrocarbons) can be reduced by forcibly sending secondary air into the exhaust gas of the exhaust port of the engine and re-combusting them, and CO and HC that have not been reburned by the secondary air can be significantly reduced by causing an oxidation reaction with an oxidation catalyst provided in the exhaust system. Therefore, in terms of exhaust gas measures, efficient injection of secondary air into the exhaust gas is desired.

【0003】 かかる2次空気を排気ガス中へ送り込むための従来のエアーポンプとしては、 例えば、図5及び図6に示すようなものがある。即ち、図のエアーポンプは、筒 状のケーシング1内に所謂渦流型のエアーポンプ2と、該エアーポンプ2を回転 駆動する電動モーター3とを組み込んだものである。 このエアーポンプ2は、ポンプハウジング4とケーシング1間に挟まれた中空 円筒状の圧力室5内に円板状の羽根車6が装着されるように構成される。As a conventional air pump for feeding the secondary air into the exhaust gas, there are, for example, those shown in FIGS. 5 and 6. That is, the illustrated air pump is one in which a so-called vortex type air pump 2 and an electric motor 3 for rotationally driving the air pump 2 are incorporated in a cylindrical casing 1. The air pump 2 is configured such that a disk-shaped impeller 6 is mounted in a hollow cylindrical pressure chamber 5 sandwiched between a pump housing 4 and a casing 1.

【0004】 ケーシング1には、圧力室5に連通する流体吸込口1aと流体吐出口1bが設 けられ、羽根車6の表面の外周部には、流体吸込口1aと流体吐出口1bとに交 互に連通可能なように、羽根6aが所定間隔放射状に複数植設され隣接する羽根 6aの間に凹部6bが形成される。 また、ケーシング1の前記羽根車6の羽根6a及び凹部6bに対向する部分を 流体吸込口1aから流体吐出口1bとの間を結んで流体通路Aが凹設されている 。The casing 1 is provided with a fluid suction port 1a and a fluid discharge port 1b which communicate with the pressure chamber 5, and the outer periphery of the surface of the impeller 6 has a fluid suction port 1a and a fluid discharge port 1b. A plurality of blades 6a are radially arranged at a predetermined interval so that they can communicate with each other, and recesses 6b are formed between adjacent blades 6a. A fluid passage A is formed by connecting a portion of the casing 1 facing the blade 6a and the recess 6b of the impeller 6 between the fluid suction port 1a and the fluid discharge port 1b.

【0005】 羽根車6は、モータ3の出力軸3aの先端部にキーを介して接続され、圧力室 5内で回転することにより、吸込口1aより吸い込まれた空気は、所謂ポンプ作 用により流体通路A内をコイル状の旋回流として徐々に圧力が高められながら吐 出口1b方向へ移動する。 そして、その圧力が高められた空気は、吐出口1bより吐き出され、該吐出口 1bと連通する通路を経てエンジンの排気ポート(図示せず)の排気中に注入さ れ、CO(一酸化炭素)、HC(炭化水素)の有害成分は排気ポート内で再燃焼 させることにより低減が図られていた。The impeller 6 is connected to the tip of the output shaft 3a of the motor 3 via a key and rotates in the pressure chamber 5 so that the air sucked from the suction port 1a is operated by a so-called pump. The fluid passage A moves in the direction of the discharge port 1b while gradually increasing the pressure as a coiled swirling flow. Then, the air whose pressure has been increased is discharged from the discharge port 1b, is injected into the exhaust gas of the exhaust port (not shown) of the engine through a passage communicating with the discharge port 1b, and CO (carbon monoxide) is discharged. ), And harmful components of HC (hydrocarbons) were reduced by reburning in the exhaust port.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、かかる従来の流体ポンプにあっては、羽根車6の凹部6bとケ ーシング1の流体通路A内を吸込口1aから吐出口1bへ向って流体(空気等) が、ポンプ作用によりコイル状の旋回流として徐々に圧力が高められながら進む 際、吐出口1aから吸込口1bへの繰り越し流(持ち去り損失)が生じる。 However, in such a conventional fluid pump, the fluid (air, etc.) flows from the suction port 1a to the discharge port 1b in the recess 6b of the impeller 6 and the fluid passage A of the casing 1 in a coil shape by the pump action. When the pressure is gradually increased as the swirl flow, the carry-over flow (carry-out loss) from the discharge port 1a to the suction port 1b occurs.

【0007】 この繰り越し流(持ち去り損失)により、図7に示すように、吐出口1aと吸 込口1b間で無効な圧力エネルギーM0 が生じ、その結果、ポンプ効率が低下す ることとなり、更に、吐出圧力の変動(脈動)により、音、振動等の流体騒音が 大きくなるといった問題点があった。 そこで、本考案はかかる従来の問題点に鑑みなされたものであり、ポンプ効率 の向上を図ると共に、流体騒音の低減化を図り、以て、吸音材等の仕様を簡素化 し、小型、軽量化、コストの低減が図れる流体ポンプを提供することを目的とす る。Due to this carry-over flow (carry-out loss), as shown in FIG. 7, invalid pressure energy M 0 is generated between the discharge port 1 a and the suction port 1 b, and as a result, the pump efficiency is reduced. Furthermore, there is a problem that fluid noise such as noise and vibration becomes large due to fluctuation (pulsation) of the discharge pressure. Therefore, the present invention has been made in view of the above conventional problems, and aims to improve pump efficiency and reduce fluid noise, thereby simplifying the specifications of sound absorbing material, and reducing the size and weight. It is an object of the present invention to provide a fluid pump that can be manufactured at low cost.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

このため、本考案は、中空円筒状の圧力室と、該圧力室に連通して形成された 流体吸込口及び流体吐出口と、前記流体吸込口と流体吐出口とに交互に連通可能 なように、羽根を外周部に周方向所定間隔で複数設けて隣接する羽根の間に凹部 を形成し、前記圧力室内に収納されて回転駆動される羽根車と、前記羽根車の羽 根及び凹部に面する部分を流体吸込口から流体吐出口との間を結んで凹設した流 体通路とを備えた流体ポンプにおいて、前記流体吸込口と流体吐出口とを結ぶ前 記流体通路とは反対側の狭小な周方向隙間部分より前記流体通路へ向かって連通 する連通路を形成した構成とする。 Therefore, according to the present invention, a hollow cylindrical pressure chamber, a fluid suction port and a fluid discharge port formed in communication with the pressure chamber, and the fluid suction port and the fluid discharge port can be alternately communicated with each other. In addition, a plurality of blades are provided on the outer peripheral portion at predetermined intervals in the circumferential direction to form concave portions between adjacent blades, and the impeller is housed in the pressure chamber and driven to rotate, and the blade and the concave portion of the impeller are formed. In a fluid pump having a concave fluid passage connecting the facing portion from the fluid suction port to the fluid discharge port, the side opposite to the fluid passage connecting the fluid suction port and the fluid discharge port. A communication passage is formed so as to communicate from the narrow circumferential gap portion toward the fluid passage.

【0009】[0009]

【作用】[Action]

かかる構成によれば、羽根車の凹部とケーシングの流体通路内を流体吸込口か ら流体吐出口へ向って流体(空気等)が、ポンプ作用によりコイル状の旋回流と して徐々に圧力が高められながら移動する際、吐出側の圧力室内には繰り越し流 が溜まり、流体吐出口と流体吸込口との間で無効な圧力エネルギーが生じる。 According to this configuration, the fluid (air, etc.) flows from the fluid suction port to the fluid discharge port in the concave portion of the impeller and the casing in the fluid passage, and the pressure gradually becomes a coiled swirl flow due to the pump action. When moving while being elevated, a carry-over flow is accumulated in the pressure chamber on the discharge side, and invalid pressure energy is generated between the fluid discharge port and the fluid suction port.

【0010】 しかし、該繰り越し流が保有している無効な圧力エネルギーを連通路により流 体吸込口側の流体通路に逃がしてやることにより、消滅していた圧力エネルギー を再利用でき、吐出圧力の増加と共に、ポンプ効率の向上が図れる。 また更に、流体吐出口から流体吸込口への繰り越し流が減少することにより、 吐出口側の流体圧力の変動(脈動)がなくなって、流体騒音の低減化を図れ、以 て、吸音材等の仕様を簡素化し、流体ポンプの小型、軽量化、コストの低減が図 れる。However, since the invalid pressure energy held by the carry-over flow is released to the fluid passage on the fluid suction port side by the communication passage, the disappeared pressure energy can be reused and the discharge pressure The pump efficiency can be improved with the increase. Furthermore, since the carry-over flow from the fluid discharge port to the fluid suction port is reduced, the fluctuation (pulsation) of the fluid pressure on the discharge port side is eliminated, and the fluid noise can be reduced. The specifications can be simplified, the fluid pump can be made smaller and lighter, and the cost can be reduced.

【0011】[0011]

【実施例】【Example】

以下に本考案の一実施例を図面に基づいて説明する。 図1及び図2において、ケーシング11とポンプハウジング12とにより中空 円筒状の圧力室13が形成され、該ケーシング11の表面の外周部には、流体吸 込口11aと流体吐出口11bが前記圧力室13と連通して形成されている。 An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, a casing 11 and a pump housing 12 form a hollow cylindrical pressure chamber 13, and a fluid suction port 11a and a fluid discharge port 11b are provided on the outer peripheral portion of the surface of the casing 11 with the pressure. It is formed in communication with the chamber 13.

【0012】 圧力室13には、円板状の羽根車14が略同軸状に配設され、該羽根車14の 表面の外周部には、流体吸込口11aと流体吐出口11bとに交互に連通可能な ように、羽根14aが周方向所定間隔で複数設けられ隣接する羽根14aの間に 凹部14bが形成される。 また、ケーシング11の裏面の外周部には、羽根車14の羽根14a及び凹部 14bに対向する部分を流体吸込口11aから流体吐出口11bとの間を結んで 凹設した流体通路Aが設けられると共に、流体吸込口11aと流体吐出口11b とを結ぶ流体通路Aとは反対側の狭小な周方向隙間部分より流体通路Aへ向かっ て連通する連通路Bを形成する。A disk-shaped impeller 14 is arranged in the pressure chamber 13 in a substantially coaxial manner, and a fluid suction port 11 a and a fluid discharge port 11 b are alternately arranged on the outer peripheral portion of the surface of the impeller 14. A plurality of blades 14a are provided at predetermined intervals in the circumferential direction so that they can communicate with each other, and a recess 14b is formed between adjacent blades 14a. Further, on the outer peripheral portion of the back surface of the casing 11, there is provided a fluid passage A in which a portion of the impeller 14 facing the blade 14a and the recess 14b is connected to connect the fluid suction port 11a to the fluid discharge port 11b. At the same time, a communication passage B is formed which communicates with the fluid passage A from a narrow circumferential gap on the opposite side of the fluid passage A connecting the fluid suction port 11a and the fluid discharge port 11b.

【0013】 なお、羽根車14形状は、放射状羽根、椀型羽根、円弧状羽根の何れともする ことができ、適宜モータ15への負荷が最小限となる羽根形状を選定することが できる。 そして、羽根車14は、ポンプハウジング12にネジ止め固定されたモータ1 5の出力軸15aにキーを介して接続され圧力室13内で回転駆動され、流体を 流体吸込口11aより吸い込み、ポンプ作用により圧力が高められて、流体吐出 口11bより吐き出される。The shape of the impeller 14 can be any of radial blades, bowl-shaped blades, and arc-shaped blades, and the blade shape that minimizes the load on the motor 15 can be selected as appropriate. The impeller 14 is connected to the output shaft 15a of the motor 15 which is screwed and fixed to the pump housing 12 via a key and is rotationally driven in the pressure chamber 13 so as to suck the fluid from the fluid suction port 11a and to perform the pump action. As a result, the pressure is increased and the fluid is discharged from the fluid discharge port 11b.

【0014】 次に、図3により、流体通路A内の空気の流れについて説明すると、流体吸込 口11aから吸い込まれた空気は、羽根車14の回転にともなって、円形断面状 の凹部14bと流体通路A内をコイル状の旋回運動しながら徐々に羽根14aに より圧力が高められて吐出口11bへ向って送られ吐き出されるが、吸い込まれ た空気は、全てが流体吐出口11bより吐き出されず、一部が流体吸込口11a への繰り越し流として滞留することとなる。Next, referring to FIG. 3, the flow of the air in the fluid passage A will be described. The air sucked from the fluid suction port 11 a is rotated by the impeller 14 and the concave portion 14 b having a circular cross section and the fluid The pressure is gradually increased by the blades 14a and is sent toward the discharge port 11b and is discharged while the coil-shaped swirling motion is made in the passage A, but not all the sucked air is discharged from the fluid discharge port 11b. A part of them will stay as a carry-over flow to the fluid suction port 11a.

【0015】 ここで、流体吐出口11bより流体吸込口11aへの繰り越し流量をG0 、有 効流量(流体吐出口11bへ流出する流量)をGe とし、他の損失を考慮しない とすると、ポンプ効率Eは下記の式で表される。 E=Ge /(Ge +G0 ) しかし、流体吸込口11aと流体吐出口11bの中間部分より流体通路Aへ向 かって連通する連通路Bにより、前記繰り越し流が流体吸込口11aへ持ち越さ れることなく該連通路Bを通って流体通路A内へ流れ込むこととなる。そして、 再び流体通路A内をコイル状の旋回運動しながら徐々に羽根14aにより圧力が 高められて吐出口11bより吐き出されることとなる。Here, if the carry-over flow rate from the fluid discharge port 11b to the fluid suction port 11a is G 0 , the effective flow rate (flow rate to the fluid discharge port 11b) is G e, and other losses are not considered, The pump efficiency E is represented by the following formula. E = G e / (G e + G 0 ) However, the carry-over flow is carried over to the fluid suction port 11a by the communication passage B communicating from the intermediate portion of the fluid suction port 11a and the fluid discharge port 11b toward the fluid passage A. Without flowing through the communication passage B into the fluid passage A. Then, the pressure is gradually increased by the blades 14a while being swirled in the fluid passage A again, and the fluid is discharged from the discharge port 11b.

【0016】 次に、図4に示す周方向の圧力分布図により、説明すると、羽根車4の凹部4 bとケーシング11の流体通路A内を流体吸込口1aから流体吐出口1bへ向っ て流体(空気等)が、ポンプ作用によりコイル状の旋回流として徐々に圧力が高 められながら移動する際、吐出側の圧力室内には繰り越し流が溜まり、流体吐出 口11bと流体吸込口11a間で無効な圧力エネルギーM0 が生じる。Next, with reference to the circumferential pressure distribution diagram shown in FIG. 4, the fluid flows in the recess 4 b of the impeller 4 and the fluid passage A of the casing 11 from the fluid suction port 1 a to the fluid discharge port 1 b. When (air, etc.) moves as the coiled swirl flow is gradually increased in pressure by the pump action, the carry-over flow is accumulated in the pressure chamber on the discharge side, and the carry-over flow is accumulated between the fluid discharge port 11b and the fluid suction port 11a. Invalid pressure energy M 0 results.

【0017】 しかし、該繰り越し流が保有している無効な圧力エネルギーM0 を連通路Bに より流体吸込口11a側の流体通路Aに逃がしてやることにより、消滅していた 無効な圧力エネルギーM0 が復活した圧力エネルギーMe として再利用され、エ ネルギー効率の向上が図れると共に、吐出圧力を増加することができる。 なお、無効な圧力エネルギーM0 の減衰を少なくして流体通路Aに逃がすため には、流体通路A内での圧力が無効な圧力エネルギーM0 を保有する繰り越し流 の圧力に近い流体通路A部分に逃がしてやることにより、エネルギー効率の向上 と吐出圧力の増加が更に図れるものである。However, the invalid pressure energy M 0 which the carry-over flow has is released by the communication passage B being released to the fluid passage A on the side of the fluid suction port 11a, so that the invalid pressure energy M which has disappeared. 0 is reused as the restored pressure energy M e , energy efficiency can be improved, and the discharge pressure can be increased. In order to escape the fluid path A is less attenuation of invalid pressure energy M 0, the fluid path A portion close to the pressure of the carry-over flow pressure in the fluid path A's invalid pressure energy M 0 By letting it escape to the end, energy efficiency and discharge pressure can be further increased.

【0018】 これにより、前記式で繰り越し流量G0 が減少し、有効流量Ge が増加するこ ととなり、ポンプ効率Eの向上が図れる。 また更に、流体吐出口11bから流体吸込口11aへの繰り越し流が減少する ことにより、吐出口側の流体圧力の変動(脈動)がなくなって、流体騒音の低減 化を図れ、以て、吸音材等の仕様を簡素化し、流体ポンプの小型、軽量化、コス トの低減が図れる。As a result, the carry-over flow rate G 0 decreases and the effective flow rate G e increases according to the above equation, and the pump efficiency E can be improved. Furthermore, since the carry-over flow from the fluid discharge port 11b to the fluid suction port 11a is reduced, the fluctuation (pulsation) of the fluid pressure on the discharge port side is eliminated, and the fluid noise can be reduced. The specifications of the fluid pump can be simplified, and the size and weight of the fluid pump can be reduced and the cost can be reduced.

【0019】 なお、本考案に係る流体ポンプは、軸流ポンプに限らず遠心方向に吐出する非 容積型ポンプにも適用することが可能であり、また、ここでは、流体ポンプを気 体(空気等)へ応用したものについて述べてきたが、これに限定されず、流体ポ ンプを液体(水等)、粉・粒体等へ幅広く応用することができるのは当然である 。The fluid pump according to the present invention can be applied not only to the axial flow pump but also to a non-displacement type pump that discharges in the centrifugal direction, and here, the fluid pump is a gas (air). However, the present invention is not limited to this, and it is natural that the fluid pump can be widely applied to liquids (water, etc.), powders, granules, etc.

【0020】[0020]

【考案の効果】[Effect of the device]

以上説明したように、本考案によれば、ケーシングの流体吸込口と流体吐出口 の中間部分から流体通路へ向かって連通する連通路を形成したので、繰り越し流 が保有している無効な圧力エネルギーを連通路により流体吸込口側の流体通路に 逃がしてやることにより、消滅していた圧力エネルギーを再利用でき、吐出圧力 の増加と共に、ポンプ効率の向上を図ることができる。 As described above, according to the present invention, since the communication passage communicating from the fluid suction port and the fluid discharge port of the casing toward the fluid passage is formed, the ineffective pressure energy held by the carry-over flow is formed. By letting the fluid flow into the fluid passage on the fluid suction port side by the communication passage, the pressure energy that has disappeared can be reused, and the discharge pressure can be increased and the pump efficiency can be improved.

【0021】 また更に、流体吐出口から流体吸込口への繰り越し流が減少することにより、 吐出口側の流体圧力の変動(脈動)がなくなって、流体騒音の低減化を図れ、以 て、吸音材等の仕様を簡素化し、流体ポンプの小型、軽量化、コストの低減が図 れる。Furthermore, since the carry-over flow from the fluid discharge port to the fluid suction port is reduced, the fluctuation (pulsation) of the fluid pressure on the discharge port side is eliminated, and the fluid noise can be reduced, thereby reducing the sound absorption. The specifications of materials, etc. can be simplified, and the fluid pump can be made smaller, lighter and more cost-effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案に係る流体ポンプの一例を示す平面
図。
FIG. 1 is a plan view showing an example of a fluid pump according to the present invention.

【図2】 図1のA−A断面図。2 is a sectional view taken along line AA of FIG.

【図3】 流体の流れを示す説明図。FIG. 3 is an explanatory diagram showing a flow of fluid.

【図4】 本考案に係る流体ポンプの周方向の圧力分布
を示す説明図。
FIG. 4 is an explanatory view showing a pressure distribution in the circumferential direction of the fluid pump according to the present invention.

【図5】 従来の流体ポンプの一例を示す断面図。FIG. 5 is a sectional view showing an example of a conventional fluid pump.

【図6】 従来の流体ポンプの一例を示す平面図。FIG. 6 is a plan view showing an example of a conventional fluid pump.

【図7】 従来の流体ポンプの周方向の圧力分布を示す
説明図。
FIG. 7 is an explanatory diagram showing a circumferential pressure distribution of a conventional fluid pump.

【符号の説明】[Explanation of symbols]

11 ケーシング 11a 吸込口 11b 吐出口 12 ポンプハウジング 13 圧力室 14 羽根車 14a 羽根 14b 凹部 15 モーター A 流体通路 B 連通路 11 Casing 11a Suction Port 11b Discharge Port 12 Pump Housing 13 Pressure Chamber 14 Impeller 14a Blade 14b Recess 15 Motor A Fluid Passage B Communication Passage

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 中空円筒状の圧力室と、 該圧力室に連通して形成された流体吸込口及び流体吐出
口と、 前記流体吸込口と流体吐出口とに交互に連通可能なよう
に、羽根を外周部に周方向所定間隔で複数設けて隣接す
る羽根の間に凹部を形成し、前記圧力室内に収納されて
回転駆動される羽根車と、 前記羽根車の羽根及び凹部に面する部分を流体吸込口か
ら流体吐出口との間を結んで凹設した流体通路と、 を備えた流体ポンプにおいて、 前記流体吸込口と流体吐出口とを結ぶ前記流体通路とは
反対側の狭小な周方向隙間部分より前記流体通路へ向か
って連通する連通路を形成したことを特徴とする流体ポ
ンプ。
1. A hollow cylindrical pressure chamber, a fluid suction port and a fluid discharge port formed in communication with the pressure chamber, and a fluid suction port and a fluid discharge port which are alternately communicable with each other. A plurality of blades are provided on the outer peripheral portion at predetermined intervals in the circumferential direction to form concave portions between adjacent blades, and the impeller is housed in the pressure chamber and driven to rotate, and a portion facing the blade and the concave portion of the impeller. In a fluid pump provided with a concave fluid passage connecting between the fluid suction port and the fluid discharge port, a narrow circumference on a side opposite to the fluid passage connecting the fluid suction port and the fluid discharge port. A fluid pump characterized in that a communication passage is formed so as to communicate from the direction gap portion toward the fluid passage.
JP001134U 1992-01-16 1992-01-16 Fluid pump Pending JPH0558894U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP001134U JPH0558894U (en) 1992-01-16 1992-01-16 Fluid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP001134U JPH0558894U (en) 1992-01-16 1992-01-16 Fluid pump

Publications (1)

Publication Number Publication Date
JPH0558894U true JPH0558894U (en) 1993-08-03

Family

ID=11492977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP001134U Pending JPH0558894U (en) 1992-01-16 1992-01-16 Fluid pump

Country Status (1)

Country Link
JP (1) JPH0558894U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284275B2 (en) 2007-01-11 2016-03-15 Critical Outcome Technologies Inc. Inhibitor compounds and cancer treatment methods
US9422282B2 (en) 2010-04-01 2016-08-23 Critical Outcome Technologies Inc. Compounds and method for treatment of HIV

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939812A (en) * 1972-08-28 1974-04-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939812A (en) * 1972-08-28 1974-04-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284275B2 (en) 2007-01-11 2016-03-15 Critical Outcome Technologies Inc. Inhibitor compounds and cancer treatment methods
US9422282B2 (en) 2010-04-01 2016-08-23 Critical Outcome Technologies Inc. Compounds and method for treatment of HIV

Similar Documents

Publication Publication Date Title
US6588545B1 (en) Muffler for internal combustion engine
CA1092985A (en) Muffler assembly
CA1308315C (en) Integrated engine air cleaner and venturi resonator
EP1584800B1 (en) Engine exhaust muffler with exhaust emission control function
US4579194A (en) Muffler with catalyst for internal combustion engine
AU2002240379B2 (en) Air turbine for combustion engine
US6840039B2 (en) Exhaust manifold for improvement of purification efficiency and lifetime of a catalytic converter
US4325459A (en) Muffler diffuser
AU2002240379A1 (en) Air turbine for combustion engine
SE9900229D0 (en) Catalytic converter
EP1403476B1 (en) Gas flow silencer
US5339629A (en) External catalytic converter for small internal combustion engines
KR101837559B1 (en) SCR Mixer Having Variable Vane And SCR Apparatus Including The Same
JPH0558894U (en) Fluid pump
US12123332B2 (en) Exhaust discharge system
WO2001053665A1 (en) Exhaust gas treatment device for internal combustion engine
KR101977009B1 (en) exhaust gas reduction device
JP2563462Y2 (en) Fluid pump
EP1576261A1 (en) Housing arranged in an exhaust gas system for a combustion engine
JP4489394B2 (en) Vortex pump
JPH0566296U (en) Fluid pump
JP2003513201A (en) Blower
KR19980062238A (en) Vehicle Exhaust Device
WO2009006385A1 (en) Inlet design for a pump assembly
WO2018050858A1 (en) An exhaust gas treatment system for an internal combustion engine and a method of treatment of exhaust gas