JPH055863A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH055863A
JPH055863A JP15728191A JP15728191A JPH055863A JP H055863 A JPH055863 A JP H055863A JP 15728191 A JP15728191 A JP 15728191A JP 15728191 A JP15728191 A JP 15728191A JP H055863 A JPH055863 A JP H055863A
Authority
JP
Japan
Prior art keywords
liquid crystal
cell
crystal cell
driving
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15728191A
Other languages
Japanese (ja)
Inventor
Masahito Ishikawa
正仁 石川
Junko Hirata
純子 平田
Tomiaki Yamamoto
富章 山本
Hitoshi Hado
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15728191A priority Critical patent/JPH055863A/en
Publication of JPH055863A publication Critical patent/JPH055863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the liquid crystal display device of high-quality display which has the visual angle characteristic improved and is superior in visual recognizability. CONSTITUTION:A display device consists of the liquid crystal display element and a driving means 3f which applies a voltage to a driving liquid crystal cell 3, and this liquid crystal display element consists of the driving liquid crystal cell 3, a compensating liquid crystal layer (cell 2) which is arranged adjacently to the driving liquid crystal cell and is twisted along a spiral axis approximately parallel with the substrate normal of the driving liquid crystal cell, and two polarizing plates between which the driving liquid crystal cell 3 and the compensating liquid crystal layer are interposed. In this liquid crystal display element, the compensating liquid crystal layer has >=360 deg. twisting angle, and the thickness of the liquid crystal layer of the cell 3 is approximately equal to that of the compensating liquid crystal layer. The refractive index to extraordinary rays of the cell 3 at the time of applying a voltage, which brings about a display picture to obtain the dark state, to the cell 3 by the driving means is approximately equal to that to ordinary rays of the compensating crystal layer, and the refractive index to ordinary rays the cell 3 is approximately equal to that to extraordinary rays to the compensating liquid crystal layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子に係わ
り、特にコントラスト比の視角依存性を制御した液晶表
示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which the viewing angle dependence of a contrast ratio is controlled.

【0002】[0002]

【従来の技術】薄型軽量、低消費電力という特徴をもつ
液晶表示素子は、日本語ワードプロセッサやデスクトッ
プパーソナルコンピュータ等のパーソナルOA機器の表
示装置として積極的に用いられている。液晶表示素子
(以下LCDと略称)のほとんどは、ねじれネマティッ
ク液晶を用いており、表示方式としては、複屈折モード
と旋光モードの2つの方式に大別できる。
2. Description of the Related Art Liquid crystal display devices, which are thin, lightweight, and have low power consumption, are actively used as display devices for personal OA equipment such as Japanese word processors and desktop personal computers. Most of liquid crystal display elements (hereinafter abbreviated as LCD) use twisted nematic liquid crystal, and the display system can be roughly classified into two systems of a birefringence mode and an optical rotation mode.

【0003】複屈折モードの表示方式のLCDは、一般
に90゜以上ねじれた分子配列をもち(ST方式と呼ば
れる)、急峻な電気光学特性をもつ為、各画素ごとにス
イッチング素子(薄膜トランジスタやダイオード)が無
くても単純なマトリクス状の電極構造でも時分割駆動に
より容易に大容量表示が得られる。しかし、このST方
式では、複屈折効果を利用しているため光の干渉に起因
して表示色が黄色と濃紺色のいわゆるイエローモード表
示や、白色と青色のいわゆるブルーモード表示となり、
白黒表示やカラー表示が不可能であった。
The LCD of the birefringence mode display system generally has a molecular arrangement twisted by 90 ° or more (called the ST system) and has steep electro-optical characteristics, so that a switching element (thin film transistor or diode) is provided for each pixel. Even without a simple structure, a large-capacity display can be easily obtained by time-division driving even with a simple matrix electrode structure. However, in this ST method, since the birefringence effect is used, the display colors are so-called yellow mode display of yellow and dark blue or so-called blue mode display of white and blue due to light interference,
Black and white display and color display were impossible.

【0004】このような表示の色づきを解消する手段と
して、逆にねじれた第2の液晶セルを偏光板と液晶セル
の間に配置することによって白黒表示を実現できること
が特公昭63−53528号公報に開示されている。
As a means for eliminating such coloring of the display, it is possible to realize black and white display by disposing a second liquid crystal cell which is twisted in the opposite direction between a polarizing plate and a liquid crystal cell, as disclosed in Japanese Patent Publication No. 63-53528. Is disclosed in.

【0005】この白黒化の原理は、液晶分子がねじれ配
列とされる表示用液晶セルで楕円偏光となった常光成分
と異常光成分の光を、光学補償板である第2の液晶セル
によって相互に入れ替わらせ、楕円偏光を直線偏光へと
変換される。その結果、光の干渉に起因する着色が解消
され、白黒表示を実現することができる。ここで上述し
たように楕円偏光の直線偏光への変換を行うには、光学
補償板が、表示用液晶セルとリタデーション値が、ほぼ
同一で、かつねじれ方向が相互間で逆であり、それらの
配置は、相互に最近接する液晶分子の配向方位が直交す
るように構成する。しかもこの様なLCDは、表示面法
線からずれた斜めの角度では表示色は着色し白黒の表示
は得られない。
The principle of black and white is that the light of the ordinary light component and the extraordinary light component, which are elliptically polarized in the liquid crystal cell for display in which the liquid crystal molecules are arranged in a twisted pattern, are mutually exchanged by the second liquid crystal cell which is the optical compensator. To convert the elliptically polarized light into linearly polarized light. As a result, coloring due to light interference is eliminated, and black and white display can be realized. Here, in order to convert the elliptically polarized light into the linearly polarized light as described above, the optical compensator has a display liquid crystal cell and a retardation value that are substantially the same, and twist directions are opposite to each other. The arrangement is such that the orientations of the liquid crystal molecules closest to each other are orthogonal to each other. Moreover, in such an LCD, the display color is colored at an oblique angle deviated from the normal to the display surface, and black and white display cannot be obtained.

【0006】ST方式以外に複屈折モードの表示方式の
LCDとしては、負の誘電異方性をもつ液晶を基板に対
して略垂直に配列させた液晶セルを用いる方式(ECB
方式)がある。本方式は、電圧を液晶セルに印加するこ
とにより液晶分子を基板法線に対して傾むかせて液晶セ
ルのリタデーション値を変化させることによって表示を
行おうとするものであるが、このECB方式でも液晶セ
ルを見る角度によってはリタデーション値が大きく変化
し、その結果表示画が見えなくなったり、反転して見え
たりするといった現象が生じる。
As an LCD of a birefringence mode display system other than the ST system, a system using a liquid crystal cell in which liquid crystals having negative dielectric anisotropy are arranged substantially perpendicular to a substrate (ECB
Method). This method is intended to perform display by changing the retardation value of the liquid crystal cell by tilting the liquid crystal molecules with respect to the substrate normal line by applying a voltage to the liquid crystal cell. The retardation value greatly changes depending on the angle at which the liquid crystal cell is viewed, and as a result, a phenomenon such that the displayed image becomes invisible or appears inverted may occur.

【0007】一方、旋光モードのLCDは例えば90゜
ねじれた分子配列をもち(TN方式)、数十ミリ秒の速
い応答速度をもち、高いコントラスト比と良好な階調表
示性を示すことから、時計や電卓、さらにはスイッチン
グ素子を各画素ごとに具備しカラーフィルターと組み合
わせたカラー表示の液晶テレビなど(TFT−LCDや
MIM−LCD)に応用されている。
On the other hand, the LCD in the optical rotation mode has a molecular arrangement twisted by 90 ° (TN system), has a fast response speed of several tens of milliseconds, and shows a high contrast ratio and a good gradation display property. It is applied to a clock, a calculator, and a liquid crystal television (TFT-LCD or MIM-LCD) for color display in which a switching element is provided for each pixel and combined with a color filter.

【0008】カラー表示に関しては偏光板と液晶セルの
間に電圧無印加時に選択散乱を利用したある色相を示す
CN液晶セルを配置し、CN液晶セルと液晶セルへの電
圧印加の有無の組み合わせで特定色相とその補色の2色
カラー表示または、白黒表示モードへの切り替えができ
ることがMol.Cryst.Liq.Cryst.,1977,VOL.39,PP.127-13
8 にて報告されている。
Regarding color display, a CN liquid crystal cell exhibiting a certain hue utilizing selective scattering when no voltage is applied is arranged between a polarizing plate and a liquid crystal cell, and a combination of the presence or absence of voltage application to the CN liquid crystal cell and the liquid crystal cell is used. It is possible to switch to a two-color display mode of a specific hue and its complementary color, or a monochrome display mode Mol.Cryst.Liq.Cryst., 1977, VOL.39, PP.127-13
Reported in 8.

【0009】しかし、これらの複屈折モードや旋光モー
ドや選択散乱を利用した液晶表示素子は、見る角度や方
位によって表示色やコントラスト比が変化するといった
視角依存性をもち、冷陰極線管(CRT)の表示性能を
完全に越えるまでにはいたらない。
However, a liquid crystal display device utilizing these birefringence mode, optical rotation mode and selective scattering has a viewing angle dependency that a display color and a contrast ratio change depending on a viewing angle and an azimuth, and a cold cathode ray tube (CRT). The display performance of is completely exceeded.

【0010】[0010]

【発明が解決しようとする課題】液晶分子は、液晶分子
の長軸方向と短軸方向に異なる屈折率を有することは一
般に知られている。この様な屈折率の異方性を示す液晶
分子にある偏光状態の光が入射すると、その光は液晶分
子の角度に依存して偏光状態が変化する。従って、液晶
セルに対し光が垂直に入射した場合と斜めに入射した場
合とでは、液晶セル中を伝搬する光の偏光状態は異な
り、その結果、液晶表示素子を見る時の方位や角度によ
って表示のパターンが反転して見えたり、表示のパター
ンが全く見えなくなったり、あるいは表示が色づくとい
った現象として現れ、実用上好ましくない。
It is generally known that liquid crystal molecules have different refractive indexes in the major axis direction and the minor axis direction of the liquid crystal molecules. When light of a certain polarization state enters a liquid crystal molecule exhibiting such anisotropy of refractive index, the light changes its polarization state depending on the angle of the liquid crystal molecule. Therefore, the polarization state of the light propagating in the liquid crystal cell is different depending on whether the light enters the liquid crystal cell perpendicularly or obliquely, and as a result, the display state depends on the azimuth and angle when the liquid crystal display element is viewed. The pattern appears in reverse, the display pattern disappears at all, or the display becomes colored, which is not preferable in practice.

【0011】本発明は上記不都合を解決するものであ
る。
The present invention solves the above inconvenience.

【0012】[0012]

【課題を解決するための手段】本発明は、駆動用液晶セ
ルと、この駆動用液晶セルに隣接して配置され駆動用液
晶セルの基板法線とほぼ平行な螺旋軸でねじれた配列を
した補償用液晶層と、前記駆動用液晶セルおよび補償用
液晶層を挟む2枚の偏光板とからなる液晶表示素子と、
前記駆動用液晶セルに電圧を印加する駆動手段とからな
る液晶表示装置において、前記液晶表示素子は、前記補
償用液晶層のねじれ角が360゜以上であり、前記駆動
用液晶セルの液晶層の厚みと前記補償用液晶層の厚みが
ほぼ等しく、かつ、前記駆動手段により暗状態を得る表
示画を生じさせるための電圧を駆動用液晶セルに印加し
た時の駆動用液晶セルの異常光に対する屈折率と、補償
用液晶層の常光に対する屈折率とがほぼ等しく、駆動用
液晶セルの常光に対する屈折率と、補償用液晶層の異常
光に対する屈折率とがほぼ等しいことを特徴とする液晶
表示素子を得るものである。
According to the present invention, a driving liquid crystal cell and an array twisted by a spiral axis which is arranged adjacent to the driving liquid crystal cell and is substantially parallel to a substrate normal line of the driving liquid crystal cell are provided. A liquid crystal display device comprising a compensating liquid crystal layer and two polarizing plates sandwiching the driving liquid crystal cell and the compensating liquid crystal layer;
In a liquid crystal display device comprising a driving means for applying a voltage to the driving liquid crystal cell, the liquid crystal display element has a compensating liquid crystal layer having a twist angle of 360 ° or more, Refraction to extraordinary light of the driving liquid crystal cell when a voltage for generating a display image for obtaining a dark state is applied to the driving liquid crystal cell by the driving means and the thickness of the compensating liquid crystal layer is substantially equal. And the refractive index of the compensating liquid crystal layer for ordinary light are substantially equal to each other, and the refractive index of the driving liquid crystal cell for ordinary light and the refractive index of the compensating liquid crystal layer for extraordinary light are substantially equal to each other. Is what you get.

【0013】駆動用液晶セルとしては、2枚の基板間で
電圧無印加時に基板に対してほぼ垂直に配列した駆動用
液晶セル、あるいはねじれた配列をした種々のセルを用
いることができる。
As the driving liquid crystal cell, it is possible to use a driving liquid crystal cell which is arranged substantially perpendicular to the substrates when no voltage is applied between the two substrates, or various cells arranged in a twisted arrangement.

【0014】[0014]

【作用】一般に液晶表示素子に用いられる偏光板の配置
には大きく分けて2通りあり、液晶セルに電圧を印加し
ないとき光が透過せず、電圧を印加したとき光の透過状
態が得られる(ノーマリークローズ)方式と、液晶セル
に電圧を印加しないとき光が透過し、電圧を印加したと
き光が遮断される(ノーマリーオープン)方式とがあ
る。一例として図3に従来例のTN方式のノーマリーオ
ープンとノーマリークローズの表示面法線から左右の方
向に0゜から60゜まで傾いた時のコントラスト比依存
性を示す。ノーマリーオープンの場合は(10.0)、ノーマ
リークローズの場合は(11.0)で示されている。これらを
比較すると、ノーマリークローズの方がノーマリーオー
プンよりコントラスト比の視角依存性が少ないことが分
かる。コントラスト比とは、光が透過した状態(明状
態)の輝度を光が遮断された状態(暗状態)の輝度で割
った値であり、コントラスト比は暗状態の輝度に大きく
影響する。そこでノーマリーオープンとノーマリークロ
ーズの両方式の暗状態の輝度の左右方向における視角依
存性を測定してみると、図4に示した様な特性が得られ
る。ノーマリーオープンの場合を(10.1)でノーマリーク
ローズの場合を(11.1)で示した。図から明らかなよう
に、ノーマリークローズの方がノーマリーオープンより
暗状態の視角依存性が小さく、その結果ノーマリークロ
ーズの方がノーマリーオープンよりコントラスト比の視
角特性が良くなっている。
In general, there are roughly two types of arrangements of polarizing plates used in liquid crystal display devices. Light is not transmitted when a voltage is not applied to the liquid crystal cell, and a light transmission state is obtained when a voltage is applied ( There are a normally closed system and a system in which light is transmitted when a voltage is not applied to the liquid crystal cell and light is blocked when a voltage is applied (normally open). As an example, FIG. 3 shows the contrast ratio dependence of the conventional TN type normally open and normally closed when the display surface is tilted from 0 ° to 60 ° in the left and right directions. It is indicated by (10.0) in the case of normally open and (11.0) in the case of normally closed. Comparing these, it can be seen that normally closed has less viewing angle dependence of contrast ratio than normally open. The contrast ratio is a value obtained by dividing the brightness in a state where light is transmitted (bright state) by the brightness in a state where light is blocked (dark state), and the contrast ratio greatly affects the brightness in a dark state. Then, when the viewing angle dependence of the brightness in the left-right direction in the dark state of both the normally open type and the normally closed type is measured, the characteristics as shown in FIG. 4 are obtained. The case of normally open is shown in (10.1), and the case of normally closed is shown in (11.1). As is clear from the figure, normally closed has less viewing angle dependency in the dark state than normally open, and as a result, normally closed has better viewing angle characteristics of contrast ratio than normally open.

【0015】ノーマリーオープンとノーマリークローズ
の暗状態の違いを考察してみると、ノーマリーオープン
の場合は光を遮断するために電圧を液晶セルに印加して
おり、ノーマリークローズの場合は光を透過させるため
に液晶セルに電圧を印加している。ノーマリーオープン
の場合に液晶セルに暗状態が得られる電圧値を印加した
時の分子配列状態を計算してみると、図5に示す様にな
る。ここで、図中の7及び8はそれぞれチルト(傾き)
角及びツイスト(ねじれ)角で、チルト角7とは、図6
に示す座標系において液晶セルの基板面をxy面とした
とき、xy面に対する液晶分子(5.1) の長軸(5.1L)の傾
き角を示し、ツイスト角8とは、液晶分子(5.1) をz軸
からxy面へ投射した軸とx軸とのなす角度である。
Considering the difference between the normally open and normally closed dark states, a voltage is applied to the liquid crystal cell in order to block light in the case of normally open, and in the case of normally closed. A voltage is applied to the liquid crystal cell to transmit light. FIG. 5 shows the molecular alignment state when a voltage value capable of obtaining a dark state is applied to the liquid crystal cell in the normally open state. Here, 7 and 8 in the figure are tilts, respectively.
The tilt angle 7 is an angle and a twist (twist) angle.
In the coordinate system shown in, when the substrate surface of the liquid crystal cell is the xy plane, the tilt angle of the major axis (5.1L) of the liquid crystal molecule (5.1) with respect to the xy plane is shown. The twist angle 8 is the liquid crystal molecule (5.1). It is the angle between the axis projected from the z axis to the xy plane and the x axis.

【0016】電圧が印加された状態では、液晶セルの中
央付近では液晶分子が90゜近く傾くが、上下の基板表
面付近では、基板表面の配向規制力の影響を受けて液晶
分子はあまり傾かない。また、ツイスト角はSの字型の
分布となる。
When a voltage is applied, the liquid crystal molecules tilt near 90 ° near the center of the liquid crystal cell, but near the upper and lower substrate surfaces, the liquid crystal molecules do not tilt much due to the influence of the alignment regulating force of the substrate surfaces. .. Further, the twist angle has an S-shaped distribution.

【0017】液晶分子のチルト角がセル厚方向にたいし
て一定で、ツイスト角が線形にねじれている場合、すな
わちノーマリークローズの場合の暗状態の分子配列状態
と比較すると、電圧印加時の分子配列状態は、液晶セル
を見る角度と方位により異なって見え、その結果液晶分
子配列状態の見え方の違いが液晶セル中を伝搬する偏光
状態の違いとなって視角特性に反映される。従ってノー
マリークローズの方が視角特性が良いのは、見る方向角
度による暗状態の分子配列状態の見え方の違いがノーマ
リーオープンより小さいためである。従って、何らかの
方法でどんな方向から見ても同一な分子配列状態が見え
る様に工夫することができれば、ノーマリーオープンの
場合の暗状態の視角特性を改善することができる。
When the tilt angle of the liquid crystal molecules is constant with respect to the cell thickness direction and the twist angle is linearly twisted, that is, when compared with the dark state molecular arrangement state in the normally closed state, the molecular arrangement state when voltage is applied. Are viewed differently depending on the viewing angle and orientation of the liquid crystal cell, and as a result, the difference in the appearance of the liquid crystal molecule alignment state is reflected in the viewing angle characteristics as the difference in the polarization state propagating in the liquid crystal cell. Therefore, the reason why the normally closed characteristic is better is that the difference in the appearance of the molecular arrangement state in the dark state depending on the viewing direction angle is smaller than that in the normally open state. Therefore, if the device can be devised so that the same molecular arrangement state can be seen from any direction by some method, the viewing angle characteristics in the dark state in the normally open state can be improved.

【0018】液晶セル中で見る角度によって最も液晶分
子の見え方の変化の大きいのは、液晶セル中央付近の液
晶分子が大きく傾いた箇所である。そこでこの箇所の見
え方の変化を小さくすることにより視角特性を改善でき
る。
The largest change in the appearance of the liquid crystal molecules depending on the viewing angle in the liquid crystal cell is where the liquid crystal molecules near the center of the liquid crystal cell are greatly inclined. Therefore, the viewing angle characteristics can be improved by reducing the change in the appearance of this portion.

【0019】液晶の配向状態は3次元の屈折率楕円体に
より簡略的に示すことができる。図7は液晶分子が垂直
に立った状態を屈折率楕円体6で示したものであるが、
複屈折現象は、この屈折率楕円体6をある方向からみた
ときの2次元面内での屈折率差に関する現象であるか
ら、z方向から見たときの(すなわち液晶セルを真正面
から見たとき)2次元面内の屈折率体(6.4) は円とな
り、屈折率差と視軸(6.1)から見たときの屈折率体(6.5)
とは異なる。ノーマリーオープン(クロスニコル)の
場合、z方向から見たときの屈折率差は0であるから暗
状態が得られるが、視軸(6.1) から見たときの2次元面
は楕円となり、その結果屈折率差が生じるために暗状態
とはならない。屈折率楕円体6を見る角度(6.3) を大き
くしていくと視軸(6.1) から見える2次元面内の楕円
(6.5) はn61の長さ方向に大きくなり、視軸(6.1) の
方向から見た時より大きい透過光が観測される。
The alignment state of the liquid crystal can be simply shown by a three-dimensional index ellipsoid. FIG. 7 shows the state in which the liquid crystal molecules stand vertically with the index ellipsoid 6.
The birefringence phenomenon is a phenomenon related to the difference in refractive index within the two-dimensional plane when the refractive index ellipsoid 6 is viewed from a certain direction, and therefore when viewed from the z direction (that is, when the liquid crystal cell is viewed from the front directly). ) The refractive index body (6.4) in the two-dimensional plane becomes a circle, and the refractive index body (6.5) when viewed from the refractive index difference and the visual axis (6.1)
Is different from. In the case of normally open (crossed nicols), the dark state is obtained because the refractive index difference when viewed from the z direction is 0, but the two-dimensional surface when viewed from the visual axis (6.1) is an ellipse, and As a result, there is a difference in refractive index, so that the dark state is not obtained. An ellipse in a two-dimensional plane that can be seen from the visual axis (6.1) when the angle (6.3) at which the refractive index ellipsoid 6 is viewed is increased.
(6.5) becomes larger in the length direction of n61, and larger transmitted light is observed when viewed from the direction of the visual axis (6.1).

【0020】従って、この様な屈折率楕円体を光学的に
補償するには、屈折率楕円体を見る角度(6.3) を大きく
していったときn62の長さ方向の屈折率が大きくなる
ような屈折率楕円体(すなわち光学性が負である光学異
方体)を視軸(6.1) 上に配置すれば、2次元面内の楕円
(6.5) が円になり種々の方向から観測しても見かけ上の
屈折率が略同一となり視角特性が向上する。
Therefore, in order to optically compensate such a refractive index ellipsoid, the refractive index in the lengthwise direction of n62 increases as the angle (6.3) for viewing the refractive index ellipse increases. If an index ellipsoid (that is, an optically anisotropic body with negative optical property) is placed on the visual axis (6.1), an ellipse in the two-dimensional plane will be obtained.
(6.5) becomes a circle, and even if observed from various directions, the apparent refractive index becomes almost the same and the viewing angle characteristics are improved.

【0021】光学的に負の光学異方性を示すものとして
は、コレステリック液晶セルがあげられる。コレステリ
ック液晶セルとは液晶分子が螺旋状にねじれた配列をし
ており、一般の液晶が正の光学異方性を有するのに対し
コレステリック液晶セルは螺旋状のねじれ配列により光
学的に負の光学異方性を示す。コントラスト比の視角特
性とは暗状態の輝度の視野角変化に大きく依存すること
から、このようなコレステリック液晶セルを用いてより
良い光学補償効果を得るには、駆動用液晶セルの液晶層
の厚みと前記補償用液晶層の厚みがほぼ等しく、先ほど
述べたように暗状態を生じせしめる電圧が駆動用液晶セ
ルに印加されたときの屈折率楕円体の長軸の長さn1と
短軸の長さn2と、図8に示す、コレステリック液晶セ
ルの液晶の屈折率楕円体9の長軸の長さn1cと短軸の
長さn2cと短軸の長さがの関係が n1=n1c n2=n2c のとき、最も良い補償効果が得られる。
A cholesteric liquid crystal cell is an example of one which exhibits optically negative optical anisotropy. A cholesteric liquid crystal cell has a helical twisted arrangement of liquid crystal molecules.General liquid crystals have a positive optical anisotropy, whereas a cholesteric liquid crystal cell has a helical twisted arrangement that results in an optically negative optical. Shows anisotropy. Since the viewing angle characteristic of the contrast ratio largely depends on the change of the viewing angle of the luminance in the dark state, in order to obtain a better optical compensation effect using such a cholesteric liquid crystal cell, the thickness of the liquid crystal layer of the driving liquid crystal cell is required. And the thickness of the compensating liquid crystal layer is substantially equal to each other, and the length n1 of the major axis and the length of the minor axis of the refractive index ellipsoid when the voltage causing the dark state is applied to the driving liquid crystal cell as described above. The relationship between the length n2 and the major axis length n1c, the minor axis length n2c, and the minor axis length of the index ellipsoid 9 of the liquid crystal of the cholesteric liquid crystal cell shown in FIG. 8 is n1 = n1c n2 = n2c. When, the best compensation effect is obtained.

【0022】以上TN液晶セルを例にとって説明した
が、TN方式のみならずST方式やねじれ角が90゜以
下の小さなねじれ角の表示方式のLCD、さらには垂直
配列をしたECB型の液晶表示素子にも同様な効果が得
られる。
Although the TN liquid crystal cell has been described above as an example, not only the TN type but also the ST type and the LCD of the display type having a small twist angle of 90 ° or less, and further the ECB type liquid crystal display element in which the vertical arrangement is performed. Also has the same effect.

【0023】また上述のコレステリック液晶セルは、ね
じれ性を持つ高分子液晶層を用いることによっても同様
の機能が得られることは言うまでもなく、この場合、例
えば駆動用液晶セルの基板の少なくともどちらか一方
に、この様な高分子液晶層を塗布することにより得ら
れ、製造上容易となりより望ましい液晶表示素子が得ら
れる。この場合、例えばポリシロキサン主鎖とし、側鎖
にビフェニルベンゾエートとコレステリル基を適当な比
で有した様な高分子共重合体液晶などを用いることなど
ができる。
Needless to say, the above-mentioned cholesteric liquid crystal cell can obtain the same function by using a polymer liquid crystal layer having twistability. In this case, for example, at least one of the substrates of the driving liquid crystal cell is used. Further, it is obtained by applying such a polymer liquid crystal layer, and it is easy to manufacture and a more desirable liquid crystal display device can be obtained. In this case, it is possible to use, for example, a high molecular copolymer liquid crystal having a polysiloxane main chain and having biphenylbenzoate and cholesteryl groups in the side chains at an appropriate ratio.

【0024】[0024]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。
EXAMPLES Examples of the liquid crystal display device of the present invention will be described in detail below.

【0025】(実施例1)図1及び図2に本実施例にお
けるセル構成を示す。液晶表示素子は2枚の偏光板1、
4と、これらの間に補償用液晶セル2と駆動用液晶セル
3とを挟む構成を有している。偏光板1は透明基板1a
の内側に偏光膜1bを付けたものであり、偏光板4も同
様に透明基板4aに偏光膜4bをつけて形成される。又
これら偏光板1、4の吸収軸(1.1),(4.1) はそれぞれ直
交するように配置される。
(Embodiment 1) FIGS. 1 and 2 show a cell structure in this embodiment. The liquid crystal display element consists of two polarizing plates 1,
4 and the compensating liquid crystal cell 2 and the driving liquid crystal cell 3 are sandwiched between them. The polarizing plate 1 is a transparent substrate 1a
The polarizing film 1b is attached to the inside of the polarizing plate 4, and the polarizing plate 4 is also formed by attaching the polarizing film 4b to the transparent substrate 4a. The absorption axes (1.1) and (4.1) of these polarizing plates 1 and 4 are arranged so as to be orthogonal to each other.

【0026】補償用液晶セル2はこれらの偏光板1、4
間に配置され、透明基板2a, 2b間に液晶層2cを介
在させた液晶セル構造を有している。
The compensating liquid crystal cell 2 comprises these polarizing plates 1, 4
The liquid crystal cell structure has a liquid crystal layer 2c interposed between the transparent substrates 2a and 2b.

【0027】駆動用液晶セル3は補償用液晶セル2と偏
光板4間に配置される。上側基板3aと下側基板3bと
はそれぞれ透明電極3c、3d間を形成しており、駆動
電源3fに接続される。基板3a, 3b間にねじれネマ
ティック液晶層3eがねじれ角が90゜で導入され、駆
動電源3fから印加電圧に応じて状態を変化する。
The driving liquid crystal cell 3 is arranged between the compensating liquid crystal cell 2 and the polarizing plate 4. The upper substrate 3a and the lower substrate 3b form a space between the transparent electrodes 3c and 3d, respectively, and are connected to the driving power supply 3f. The twisted nematic liquid crystal layer 3e is introduced between the substrates 3a and 3b at a twist angle of 90 °, and the state changes according to the applied voltage from the driving power source 3f.

【0028】駆動用液晶セル3の液晶の光軸は下側基板
3bから上側基板3aへと反時計回りにねじれている
(左ねじれ)。(3.1),(3.2) は、それぞれ上側と下側の
基板のラビング軸で、これらは互いに直交する。駆動用
液晶セル3の液晶層の厚みは6.0μmである。
The optical axis of the liquid crystal of the driving liquid crystal cell 3 is twisted counterclockwise from the lower substrate 3b to the upper substrate 3a (left twist). (3.1) and (3.2) are the rubbing axes of the upper and lower substrates, respectively, which are orthogonal to each other. The thickness of the liquid crystal layer of the driving liquid crystal cell 3 is 6.0 μm.

【0029】補償用液晶セル2は、ねじれ角が3690
゜、厚みが6.0μmの液晶セルで(2.1),(2.2) は、そ
れぞれ上側と下側の基板2a, 2bのラビング軸で、こ
れらは互いに直交している。この補償用液晶セルの液晶
層の厚み方向の屈折率n2cは1.489、セル面内方
向の屈折率n1cが1.524(リタデーション値=−
0.210μm)とし、暗状態(駆動電源3fから液晶
セル電極間に5V印加時)の駆動用液晶セルの屈折率の
セル面内方向の屈折率n2と、厚み方向の屈折率n1と
同一の値とした(n1=n1c、n2=n2c)。
The compensating liquid crystal cell 2 has a twist angle of 3690.
(2.1) and (2.2) are the rubbing axes of the upper and lower substrates 2a and 2b, respectively, which are orthogonal to each other. The refractive index n2c in the thickness direction of the liquid crystal layer of this compensating liquid crystal cell is 1.489, and the refractive index n1c in the cell in-plane direction is 1.524 (retardation value = −
0.210 μm), and the refractive index n2 of the driving liquid crystal cell in the dark state (when 5 V is applied between the driving power source 3f and the liquid crystal cell electrode) is the same as the refractive index n2 in the cell plane direction and the refractive index n1 in the thickness direction. The values were used (n1 = n1c, n2 = n2c).

【0030】偏光板1の吸収軸(1.1) と下側基板のラビ
ング軸(2.2),(3.2) は平行で、偏光板4の吸収軸(4.1)
と上側基板のラビング軸(2.1),(3.1) は平行である。
The absorption axis (1.1) of the polarizing plate 1 and the rubbing axes (2.2), (3.2) of the lower substrate are parallel to each other, and the absorption axis (4.1) of the polarizing plate 4
And the rubbing axes (2.1) and (3.1) of the upper substrate are parallel.

【0031】本構成の液晶表示素子の暗状態(駆動電源
3fから液晶セル電極間に5V印加時)のy軸方位にお
ける視角依存性の一例を図9に従来例も合わせて示す。
図9は、液晶セルの図2のz軸からy及び−y方位に測
定点が0゜から60゜まで傾いたときの液晶セルの暗状
態の透過率を示す図である。図中の(10.1)は本実施例に
おける視角特性を示し、(10.2)は従来例における視角特
性を示す図である。理想的には、液晶セルを見る角度が
どんなに傾いても透過率が小さく、その変化が一定であ
ることが望ましい。従来例と比較すると、本実施例の方
が透過率の傾き角の変化が小さく、表示パネルが対角1
0インチサイズのTFT−LCDを本構成で作成し16
階調表示をしたところ、視点を変化させても16階調間
の識別ができる高コントラストなLCDが実現できた。
コントラスト比の視角特性を測定したところ、60゜
ーンでコントラスト比15:1以上が得られ、入射角が
60゜以上でも表示画の反転や表示色の変化の無い良好
な表示が得られた。
An example of the viewing angle dependence of the y-axis azimuth in the dark state (when 5 V is applied between the driving power source 3f and the liquid crystal cell electrode) of the liquid crystal display element of this structure is shown in FIG.
FIG. 9 is a diagram showing the transmittance of the liquid crystal cell in the dark state when the measurement point is tilted from 0 ° to 60 ° in the y and -y directions from the z-axis of FIG. 2 of the liquid crystal cell. In the figure, (10.1) shows the viewing angle characteristics in the present embodiment, and (10.2) shows the viewing angle characteristics in the conventional example. Ideally, it is desirable that the transmittance is small and the change is constant regardless of the angle at which the liquid crystal cell is viewed. Compared with the conventional example, the change of the inclination angle of the transmittance is smaller in this example, and the display panel has a diagonal angle of 1
A 0-inch size TFT-LCD is created with this configuration.
When gradation display was performed, a high-contrast LCD capable of distinguishing between 16 gradations was realized even if the viewpoint was changed.
Measurement of the viewing angle characteristics of contrast ratio, 60 ° U
In contrast, a contrast ratio of 15: 1 or more was obtained, and even if the incident angle was 60 ° or more, a good display without reversal of display image or change of display color was obtained.

【0032】(比較例1)実施例1において駆動用液晶
セル3と上の偏光板1との間に補償用液晶セル2を配置
しない場合の液晶表示素子の視角特性を測定した。測定
結果を図9の(10.2)に示す。暗状態は視角により変化
し、60゜コーンではコントラスト比の最大値が、5:
1しか得られず、入射角が60゜以上になると見る方位
によって表示画が反転したり、全く見えなくなったりし
た。
(Comparative Example 1) In Example 1, the viewing angle characteristics of the liquid crystal display device in the case where the compensating liquid crystal cell 2 was not arranged between the driving liquid crystal cell 3 and the upper polarizing plate 1 were measured. The measurement result is shown in (10.2) of FIG. The dark state changes depending on the viewing angle, and the maximum contrast ratio in the 60 ° cone is 5:
Only 1 was obtained, and when the incident angle was 60 ° or more, the display image was inverted or completely invisible depending on the viewing direction.

【0033】(比較例2)実施例1において、補償用液
晶セルの液晶層の厚み方向の屈折率n2cが1.34
0、面内方向の屈折率n1cが、1.371で、層の厚
みが6.8μmである補償用液晶セルを用いた(n1≠
n1c、n2≠n2c)。本構成からなる液晶表示素子
の特性を実施例1と同様に測定した結果を図9の(10.
3) に示す。比較例1よりは特性がよいが、60°コー
でコントラスト比を測定すると7:1しか得られなか
った。
Comparative Example 2 In Example 1, the liquid crystal layer of the compensating liquid crystal cell has a refractive index n2c in the thickness direction of 1.34.
0, a refractive index n1c in the in-plane direction was 1.371, and a compensating liquid crystal cell having a layer thickness of 6.8 μm was used (n1 ≠).
n1c, n2 ≠ n2c). The characteristics of the liquid crystal display device having this configuration were measured in the same manner as in Example 1, and the results are shown in FIG.
It is shown in 3). The characteristics are better than those of Comparative Example 1, but the 60 ° coating
When the contrast ratio was measured with a microscope, only 7: 1 was obtained.

【0034】(実施例2)実施例1において、補償用液
晶セル2として、高分子液晶フィルムを用い、実施例1
と同様に配置した。電気光学特性を測定したところ実施
例1と全く同一の特性が得られ、10インチのTFT−
LCDを本構成で作成し16階調表示をしたところ、視
点を変化させても16階調間の識別ができる高コントラ
スト表示のLCDが実現できた。視角特性を測定したと
ころ、60゜コーンでコントラスト比20:1以上が得
られ、入射角が60゜以上でも表示画の反転や表示色の
変化の無い良好な表示が得られた。
Example 2 In Example 1, a polymer liquid crystal film was used as the compensating liquid crystal cell 2, and Example 1 was used.
Arranged in the same way. When the electro-optical characteristics were measured, the same characteristics as in Example 1 were obtained, and 10 inch TFT-
When an LCD was made with this configuration and displayed with 16 gradations, a high contrast display LCD capable of distinguishing between 16 gradations even when the viewpoint was changed was realized. When the viewing angle characteristics were measured, a contrast ratio of 20: 1 or more was obtained with a 60 ° cone , and a good display without inversion of display images or change of display color was obtained even when the incident angle was 60 ° or more.

【0035】(実施例3)実施例1において、基板3
a, 3b間にホメオトロピック配列をした液晶が導入さ
れ、駆動電源3fから印加電圧に応じて状態を変化す
る。液晶の屈折率ne、noはそれぞれ1.578、
1.468であり、液晶層の厚みは7μmである。 補
償用液晶セル2はねじれ角が3690゜、厚みが7.0
μmで、この補償用液晶セルの厚み方向の屈折率n2c
は1.468、セル面内方向の屈折率n1cは1.57
8で、暗状態(駆動電源3fから液晶セル電極間に電圧
無印加時)の駆動用液晶セルの屈折率のセル面内方向の
屈折率n2と、厚み方向の屈折率n1と同一の値とした
(n1=n1c、n2=n2c)。本構成で640×4
80ドットのECB型LCDを作成し、1/240duty
で単純マルチプレクス駆動したところ、視角が50゜ま
で変化しても暗状態の透過率はほぼ一定となった。視角
特性を測定したところ、60゜コーンでコントラスト比
21:1以上が得られ、入射角が60゜以上でも表示画
の反転や表示色の変化の無い良好な表示が得られた。
(Embodiment 3) In Embodiment 1, the substrate 3
A liquid crystal having homeotropic alignment is introduced between a and 3b, and the state changes according to the applied voltage from the driving power supply 3f. The refractive indices ne and no of the liquid crystal are 1.578 and
It is 1.468, and the thickness of the liquid crystal layer is 7 μm. The compensating liquid crystal cell 2 has a twist angle of 3690 ° and a thickness of 7.0.
μm, the refractive index n2c in the thickness direction of the compensating liquid crystal cell
Is 1.468, and the refractive index n1c in the cell in-plane direction is 1.57.
8, the refractive index n2 of the driving liquid crystal cell in the dark state (when no voltage is applied from the driving power source 3f to the liquid crystal cell electrode) is the same as the refractive index n1 in the cell plane direction and the refractive index n1 in the thickness direction. (N1 = n1c, n2 = n2c). 640 × 4 with this configuration
Create an ECB type LCD with 80 dots, 1/240 duty
When the simple multiplex drive was used, the transmittance in the dark state was almost constant even when the viewing angle changed to 50 °. When the viewing angle characteristics were measured, a contrast ratio of 21: 1 or more was obtained with a 60 ° cone , and a good display without inversion of display images or change of display color was obtained even when the incident angle was 60 ° or more.

【0036】[0036]

【発明の効果】本発明によれば、液晶表示素子の視角特
性が改善され、視認性にすぐれる高品位表示の液晶表示
素子を提供することができる。また、本発明をTFTや
MIMなどの3端子、2端子素子を、用いたアクティブ
マトリクス液晶表示素子に応用しても優れた効果が得ら
れることは言うまでもない。
According to the present invention, it is possible to provide a liquid crystal display device of high quality display in which the viewing angle characteristics of the liquid crystal display device are improved and which is excellent in visibility. Needless to say, even if the present invention is applied to an active matrix liquid crystal display element using a 3-terminal or 2-terminal element such as TFT or MIM, excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の液晶表示素子を示す断面
図。
FIG. 1 is a sectional view showing a liquid crystal display element of Example 1 of the present invention.

【図2】本発明の実施例1の液晶表示素子の構成を示す
分解斜視図。
FIG. 2 is an exploded perspective view showing the configuration of the liquid crystal display element according to the first embodiment of the present invention.

【図3】従来のTN型液晶表示素子の左右方向のノーマ
リーオープンとノーマリークローズ方式のコントラスト
比の視角特性を説明する図。
FIG. 3 is a diagram illustrating a viewing angle characteristic of a contrast ratio of a normally open and normally closed type in a left-right direction of a conventional TN type liquid crystal display device.

【図4】従来のTN型液晶表示素子の左右方向のノーマ
リーオープンとノーマリークローズ方式の暗状態の輝度
の視角特性を説明する図。
FIG. 4 is a diagram for explaining a viewing angle characteristic of luminance in a normally open and normally closed dark state of a conventional TN type liquid crystal display device.

【図5】液晶セルに電圧が印加された状態における液晶
セル厚み方向の分子配列を示す図。
FIG. 5 is a view showing a molecular arrangement in the thickness direction of a liquid crystal cell when a voltage is applied to the liquid crystal cell.

【図6】図5の液晶分子のチルト角とツイスト角の座標
系を示す図。
6 is a diagram showing a coordinate system of tilt angles and twist angles of the liquid crystal molecules of FIG.

【図7】液晶分子が立った状態の三次元の屈折率楕円体
を示す図。
FIG. 7 is a diagram showing a three-dimensional refractive index ellipsoid with liquid crystal molecules standing.

【図8】図7の屈折率楕円体を光学補償する屈折率楕円
体を説明する図。
FIG. 8 is a diagram illustrating a refractive index ellipsoid for optically compensating the refractive index ellipsoid of FIG.

【図9】本発明の実施例と従来例による暗状態の視角特
性を説明する図。
FIG. 9 is a diagram for explaining viewing angle characteristics in a dark state according to an example of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1、4 ・・・偏光板 2・・・補償用液晶セル 3・・・駆動用液晶セル 1, 4 ... Polarizing plate 2 ... Compensation liquid crystal cell 3 ... Driving liquid crystal cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama

Claims (1)

【特許請求の範囲】 【請求項1】 駆動用液晶セルと、この駆動用液晶セル
に隣接して配置され駆動用液晶セルの基板法線とほぼ平
行な螺旋軸でねじれた配列をした補償用液晶層と、前記
駆動用液晶セルおよび補償用液晶層を挟む2枚の偏光板
とからなる液晶表示素子と、前記駆動用液晶セルに電圧
を印加する駆動手段とからなる液晶表示装置において、
前記液晶表示素子は、前記補償用液晶層のねじれ角が3
60゜以上であり、前記駆動用液晶セルの液晶層の厚み
と前記補償用液晶層の厚みがほぼ等しく、かつ、前記駆
動手段により暗状態を得る表示画を生じさせるための電
圧を駆動用液晶セルに印加した時の駆動用液晶セルの異
常光に対する屈折率と、補償用液晶層の常光に対する屈
折率とがほぼ等しく、駆動用液晶セルの常光に対する屈
折率と、補償用液晶層の異常光に対する屈折率とがほぼ
等しいことを特徴とする液晶表示素子。
Claim: What is claimed is: 1. A driving liquid crystal cell and a compensation liquid crystal cell, which is arranged adjacent to the driving liquid crystal cell and has a twisted arrangement in a spiral axis substantially parallel to a substrate normal line of the driving liquid crystal cell. A liquid crystal display device comprising a liquid crystal display element comprising a liquid crystal layer, two polarizing plates sandwiching the driving liquid crystal cell and a compensating liquid crystal layer, and a driving means for applying a voltage to the driving liquid crystal cell,
In the liquid crystal display device, the twist angle of the compensating liquid crystal layer is 3
The driving liquid crystal has a voltage of 60 ° or more, a thickness of the liquid crystal layer of the driving liquid crystal cell and a thickness of the compensating liquid crystal layer are substantially equal to each other, and a voltage for generating a display image for obtaining a dark state by the driving means. The refractive index of the driving liquid crystal cell for extraordinary light when applied to the cell and the refractive index of the compensating liquid crystal layer for ordinary light are substantially equal to each other. A liquid crystal display device characterized by having substantially the same refractive index with respect to.
JP15728191A 1991-06-28 1991-06-28 Liquid crystal display element Pending JPH055863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15728191A JPH055863A (en) 1991-06-28 1991-06-28 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15728191A JPH055863A (en) 1991-06-28 1991-06-28 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH055863A true JPH055863A (en) 1993-01-14

Family

ID=15646235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15728191A Pending JPH055863A (en) 1991-06-28 1991-06-28 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH055863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730899A (en) * 1994-09-26 1998-03-24 Sumitomo Chemical Company, Limited Optically anisotropic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730899A (en) * 1994-09-26 1998-03-24 Sumitomo Chemical Company, Limited Optically anisotropic film

Similar Documents

Publication Publication Date Title
KR100386042B1 (en) Liquid crystal display apparatus
US5541753A (en) Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages
US5241408A (en) Liquid crystal display device with compensation and lc twist angle varying in a nonlinear fashion in the thickness direction
EP1131671A1 (en) Vertically aligned helix-deformed liquid crystal display
JPH04258923A (en) Liquid crystal display element
JPH04322223A (en) Liquid crystal display element
JP2856942B2 (en) Liquid crystal display element and optically anisotropic element
JPH04229828A (en) Liquid crystal display element
KR19980033499A (en) Reflective liquid crystal display with twisted nematic hybrid orientation
JPH055863A (en) Liquid crystal display element
JPH05107534A (en) Liquid crystal display element
JP3130686B2 (en) Liquid crystal display device
JPH04322224A (en) Liquid crystal display element
JP3643439B2 (en) Liquid crystal display element
JPH0534671A (en) Liquid crystal display element
JPH02108019A (en) Electro-optical device using ferroelectric liquid crystal
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JPH06130359A (en) Liquid crystal display element and element for compensation
JPH0534657A (en) Liquid crystal display element
JPH05273519A (en) Liquid crystal display element
JPH0553132A (en) Liquid crystal display element
JPH04366808A (en) Liquid crystal display element
JPH09222601A (en) Liquid crystal display element and optically anisotropic element
JPH07175058A (en) Liquid crystal display element
JPH0950026A (en) Liquid crystal display device