JPH0558469B2 - - Google Patents

Info

Publication number
JPH0558469B2
JPH0558469B2 JP4200186A JP4200186A JPH0558469B2 JP H0558469 B2 JPH0558469 B2 JP H0558469B2 JP 4200186 A JP4200186 A JP 4200186A JP 4200186 A JP4200186 A JP 4200186A JP H0558469 B2 JPH0558469 B2 JP H0558469B2
Authority
JP
Japan
Prior art keywords
resin
resol resin
phenol
parts
resol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4200186A
Other languages
Japanese (ja)
Other versions
JPS62201971A (en
Inventor
Akira Kikuchi
Kaoru Yamaguchi
Atsuhiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP4200186A priority Critical patent/JPS62201971A/en
Publication of JPS62201971A publication Critical patent/JPS62201971A/en
Publication of JPH0558469B2 publication Critical patent/JPH0558469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は水性の接着缶用下塗り剤に関し、より
詳細には缶素材に塗布され、サイドシーム部にお
いてはポリアミド系接着剤と缶素材に対する接着
性を利用してプライマーとして機能する水性の下
塗り剤に関するものである。 (従来の技術) いわゆる接着缶とはスリーピース缶の中にあつ
て、缶胴のシームを接着により行つている缶の総
称のことである。接着缶が近年金属容器に占める
重要性を増している背景には従来の錫メツキを施
したブリキに代り、クロムメツキ鋼板やクロム酸
処理鋼板等のテインフリースチール、さらにはニ
ツケルメツキ鋼板、アルミメツキ鋼板、アルミ板
といつた様々な缶素材が開発、供給されている事
にある。すなわち、これらの素材はブリキの様に
ハンダ付ができないため、スリーピース缶の缶胴
を作るに当つては従来とは異なりサイドシームを
溶接もしくは接着剤で接合する方法を取らなけれ
ばならない。 サイドシームを接着剤で行う場合、通常テイン
フリースチール等の缶素材に対して下塗り剤の塗
布、焼付を行ない、次にポリアミド系接着剤を用
いホツトメルト接着を行う。したがつて下塗り剤
に求められる特性は、缶素材および接着剤に対す
る強固な接着力であり、かつ缶内面塗料としての
耐食性、加工性などの諸物性も同時に必要とされ
る。このような観点から従来より接着缶用下塗り
剤としてはエポキシ=フエノール系の溶剤型塗料
が使用されてきた。しかし近年にいたり有機溶剤
による大気汚染の問題や石油系資源の省資源に対
する社会的関心の高まりと共にコーテイング業界
や容器業界においても有機溶剤を使用しないか、
もしくは可能なかぎり有機溶剤の含有率を少なく
した塗料への移行が積極的に計られている。特に
接着缶用下塗り剤は接着缶製造において多量に使
用される塗料であり、かつ接着缶の性能に与える
影響も大きい。接着缶の製造量の増大に対してそ
の使用量も増大しており水性化が強く望まれる所
以である。 水性の缶用塗料としてはこれまでエポキシ樹脂
系のものが主として検討され、エポキシ樹脂を水
中に分散させる方法として種々の方法が提案され
ている。例えば界面活性剤を使用してエポキシ樹
脂を分散ささせる方法としてはアニオン系および
ノニオン系界面活性剤を使用する方法が知られて
いるが貯蔵安定性、衛生性、化学的および機械的
性能が劣り缶用塗料としては不適当である。この
解決方法としてはエポキシ樹脂をアクリル系樹脂
で変性して、乳化力のあるセグメントを分子中に
導入した自己乳化型エポキシ樹脂が種々提案され
て来ている。このような自己乳化型エポキシ樹脂
は塗膜中に界面活性剤を含まないので自体強固な
形成塗膜が得られる。またこれらの塗料はより早
い硬化速度が必要とされる場合には水溶性アミノ
樹脂やフエノール樹脂が配合される。しかし、こ
のような従来技術をもつてしては接着缶用下塗り
剤として用いた場合、下地缶素材およびポリアミ
ド系接着剤に対し充分な接着力が得られなかつ
た。 (発明が解決しようとする問題点) 本研究者らは上記のごとき状況を鑑み鋭意検討
を重ねた結果、従来のエポキシ=フエノール系の
溶剤型下塗りの性能、すなわち下地素材とポリア
ミド系接着剤に対する強固な接着力を維持するこ
とによる缶体の密閉性を保証しおよび内容物から
の下地素材の保護層としての機能等を損なうこと
なく有機溶剤の低減もしくは実質上有機溶剤のフ
リー化に成功したものである。 〔発明の構成〕 (問題点を解決するための手段) すなわち、本発明はビスフエノール型エポキシ
樹脂100重量部に対して、下記(イ)、(ロ)もしくは(ハ)
から選ばれる少なくとも1種のレゾール樹脂10〜
60部を予備的に縮合した後、該予備縮合物にカル
ボキシル基含有アクリル系樹脂をエステル化触媒
の存在下に反応せしめてなる潜在的に自己乳化性
の複合樹脂組成物をアミンもしくはアンモニアに
て少なくとも部分的に中和して水性触媒中に分散
せしめてなる水性の接着缶用下塗り剤に関する。 (イ) 3官能以上のフエノールおよび2官能性フエ
ノールの混合フエノールとホルムアルデヒドと
をアルカリ触媒の存在下に反応せしめて得られ
る重量平均分子量800以上3000未満のレゾール
樹脂。 (ロ) 3官能以上のフエノールおよび2官能性能フ
エノールをそれぞれ個別にアルカリ触媒の存在
下にホルムアルデヒドと反応せしめて得られる
重量平均分子量800以上3000未満のレゾール樹
脂を混合したレゾール樹脂。 (ハ) 3官能以上のフエノールとホルムアルデヒド
とをアルカリ触媒の存在下に反応せしめて得ら
れるレゾール樹脂の存在下に2官能性フエノー
ルを反応せしめて得らおる重量平均分子量800
以上3000未満のレゾール樹脂。 本発明におけるレゾール樹脂において使用され
る3官能以上のフエノールとしては従来よりレゾ
ール樹脂の製造に用いられる3官能以上のフエノ
ールは全て使用できるが、例えば3官能性フエノ
ールとしてはフエノール(石炭酸)、m−クレゾ
ール、m−エチルフエノール、3,5−キシレノ
ール、m−メトキシフエノール等が使用でき、4
官能性フエノールとしてはビスフエノールA、ビ
スフエノールB、ビスフエノールF、1,1−ビ
ス(4−ヒドロキシフエニル)エタン等が使用で
きる。また、2官能性フエノールも従来よりレゾ
ール樹脂の製造に用いられている2官能性フエノ
ールはすべて使用できるが、例えばo−クレゾー
ル、p−クレゾール、p−tertブチルフエノー
ル、p−エチルフエノール、2,3−キシレノー
ル、2,5−キシレノール、p−tertアミノフエ
ノール、p−ノニルフエノール、p−フエニルフ
エノール、p−シクロヘキシルフエノール等の2
官能性フエノールの1種もしくは2種以上の組合
せが最も好ましい。 またレゾール樹脂製造に用いられるアルカリ触
媒としては水酸化ナトリウム、水酸化カリウム、
水酸化マグネシウム、塩基性金属塩、アンモニ
ア、ヘキサメチレンテトラミン、トリエチルアミ
ン、トリメチルアミン、ピリジン等のアルカリ触
媒が好ましい。 以上のようなフエノールおよびアルカリ触媒、
それにホルムアルデヒドを用いてレゾール樹脂を
製造する条件は種々のものがあるが、特に水性の
接着缶用下塗り剤の成分として使用する場合以下
の様な(イ)、(ロ)もしくは(ハ)の条件で製造されること
が重要である。すなわち(イ)3官能以上のフエノー
ルおよび2官能性フエノールの混合フエノールと
ホルムアルデヒドとをアルカリ触媒の存在下に重
量平均分子量800以上3000未満になるように反応
せしめて得られたレゾール樹脂であること、(ロ)3
官能以上のフエノールおよび2官能性フエノール
をそれぞれ個別にアルカリ触媒の存在下にホルム
アルデヒドと反応せしめて得られる重量平均分子
量800以上3000未満のレゾール樹脂を混合したレ
ゾール樹脂であること、(ハ)3官能以上のフエノー
ルとホルムアルデヒドとをアルカリ触媒の存在下
に反応せしめて得られるレゾール樹脂の存在下に
2官能性フエノールを反応せしめて得られる重量
平均分子量800以上3000未満のレゾール樹脂であ
ること。 このようなレゾール樹脂(イ)、(ロ)もしくは(ハ)にお
いては、3官能以上のフエノールと2官能性フエ
ノールの配合割合が重量比で50〜95/50〜5であ
ることが好ましい。このようなレゾール樹脂にお
いては3官能以上のフエノール類によつて耐内容
物性、耐食性を持たせ2官能性フエノール類によ
り、樹脂に可撓性を持たせている。 樹脂の構造からみると3官能以上のフエノール
によつて架橋密度を調整すると共に、2官能性フ
エノールによつて架橋点間の平均距離を調整して
いると考えられる。そして前記(イ)、(ロ)もしくは(ハ)
のそれぞれのレゾール樹脂製造法により、多官能
性フエノールと2官能性フエノールとをメチレン
結合でランダムもしくはブロツク状につなぐこと
ができる。 このようにして得られたレゾール樹脂は特に重
量平均分子量800以上3000未満において加工性と
接着性のバランスが良好であり、接着缶用の下塗
り剤の一方の成分とすることで、下地素材(テイ
ンフリースチール等の鋼板)−下塗り剤−ポリア
ミド系接着剤の構造物において初期接着力はもと
より加工ひずみを与えたり、熱水中での経時試験
を行つても充分な接着強度が保たれ、接着缶用下
塗り剤として優れた特性を持つものを得ることが
できる。 ここで重量平均分子量の測定には高速液体クロ
マトグラフイを使用した。溶媒にはテトラヒドロ
フランを用い、カラムにはShodex GPC A−
80M(商品名:昭和電工株式会社製)を2本つな
げたものを使用した。試料濃度0.15%、注入量
100μ、流量1ml/min、検出器示差屈折計の条
件で測定を行つた。検量線の作成にはスチレンモ
ノマーおよび標準ポリスチレンA−500、A−
1000、A−2500、A−5000、F−1、F−2、F
−4、F−10、F−20、F−40、F−80(東洋曹
達工業株式会社製)を使用し、重量平均分子量は
ポリスチレン換算の値として求めた。 複合樹脂組成物中におけるレゾール樹脂の量は
未変性ビスフエノール型エポキシ樹脂100重量部
に対して10〜60重量部であることが必要であり、
10重量部より少ないと塗膜の硬化性を劣り、下地
素材やポリアミド系接着剤に対する接着力も充分
な値が得られない。また、60重量部を超えると塗
膜の加工性などの物性が低下する。 本発明において、使用されるビスフエノール型
エポキシ樹脂としてはビスフエノールA、ビスフ
エノールB、ビスフエノールF等のビスフエノー
ル類とエピクロルヒドリンとをアルカリ触媒の存
在下に反応せしめてなるエポキシ樹脂があり、市
販品としてはシエル化学株式会社のエピコート
828、エピコート1001、エピコート1004、エピコ
ート1007、エピコート1009、エピコート1010など
がある。また上記ビスフエノール型エポキシ樹脂
のエポキシ基または水酸基に脱水ヒマシ油脂肪
酸、大豆油脂肪酸、ヤシ油脂肪酸などの植物油脂
肪酸もしくはビスフエノールAなどの変性剤を反
応せしめた変性エポキシ樹脂を使用することもで
きる。 上記エポキシ樹脂とレゾール樹脂の予備縮合は
形成塗膜の均一性をより増すために行う。予備縮
合の反応条件は90ないし130℃で1時間から7時
間である。 本発明においてカルボキシル基含有アクリル系
樹脂は、アクリル酸、メタクリル酸などの一塩基
性カルボン酸モノマーおよびその他の共重合性モ
ノマーからなるモノマー混合物を有機溶液中でア
ゾビスイソブチロニトリルなどの通常のラジカル
重合開始剤を用いて共重合せしめることにより得
ることができる。上記共重合性モノマーとして
は、アクリル酸メチル、アクリル酸エチル、アク
リル酸イソプロピル、アクリル酸n−ブチル、ア
クリル酸イソブチル、アクリル酸n−アミル、ア
クリル酸イソアミル、アクリル酸n−ヘキシル、
アクリル酸2−エチルヘキシル、アクリル酸n−
オクチル、アクリル酸デシル、アクリル酸ドデシ
ルなどのアクリル酸エステル類、メタクリル酸メ
チル、メタクリル酸プロピル、メタクリル酸n−
ブチル、メタクリル酸イソブチル、メタクリル酸
n−アミル、メタクリル酸n−ヘキシル、メタク
リル酸n−オクチル、メタクリル酸2−エチルヘ
キシル、メタクリル酸デシル、メタクリル酸ドデ
シルなどのメタクリル酸エステル類、スチレン、
ビニルトルエン、2−メチルスチレン、t−ブチ
ルスチレン、クロルスチレンなどのスチレン系モ
ノマー、アクリル酸ヒドロキシエチル、アクリル
酸ヒドロキシプロピル、メタクリル酸ヒドロキシ
エチル、メタクリル酸ヒドロキシプロピルなどの
ヒドロキシ基含有モノマー、N−メチロール(メ
タ)アクリルアミド、N−ブトキシメチル(メ
タ)アクリルアミドなどのN−置換(メタ)アク
リル系モノマー、アクリル酸グリシジル、メタク
リル酸グリシジルなどのエポキシ基含有モノマ
ー、並びにアクリロニトリルなどの1種又は2種
以上から選択することができる。一塩基性カルボ
ン酸モノマーの使用量は全モノマーに対して12な
いし70重量%が好ましく、12重量%より少ないと
水性媒体中における複合樹脂の分散安定性が悪く
なり、また、70重量%より多いと予備縮合物の反
応の際、反応系の温度が極端に高くなるので好ま
しくない。また、アクリル系樹脂の重量平均分子
量は3000ないし80000の範囲のものが好ましい。 本発明において複合樹脂組成物は、エポキシ樹
脂−レゾール樹脂の予備縮合物のエポキシ樹脂
100重量部に対してアクリル系樹脂10ないし90重
量部をエステル化触媒の存在下に60℃ないし130
℃で30分間ないし3時間反応させて得ることがで
きる。エステル化触媒としては、水酸化ナトリウ
ム、水酸化カリウムなどの無機塩類、トリメチル
アミン、トリエチルアミン、ブチルアミンなどの
アルミニウムアミン、2−ジメチルアミノエタノ
ール、ジエタノールマミン、トリエタノールアミ
ン、アミノメチルブロバノールなどの多価アミン
類、モルホリン、アンモニアなどである。 本発明において水性樹脂分散体の調製は、前記
複合樹脂組成物に最終組成物のPHが4ないし11と
なる量のアンモニアもしくはアミンを加え水性媒
体中に分散せしめればよいが、前の工程で高沸点
溶剤を使用した場合には、予め減圧下にてこれら
の溶剤を除去しておくことが好ましい。上記アミ
ンとしては例えば、トリメチルアミン、トリエチ
ルアミン、ブチルアミン等のアルキルアミン類、
2−ジメチルアミノエタノール、ジエタノールア
ミン、トリエタノールアミン、アミノメチルプロ
パノール等のアルコールアミン類、モルホリン等
が使用される。またエチレンジアミン、ジエチレ
ントリアミン等多価アミンも使用できる。 本発明において水性媒体とは少なくとも50重量
%以上、好ましくは80重量%以上、より好ましく
は90重量%が水である水と親水性有機溶剤との混
合物を意味し、親水性有機溶剤としてはメタノー
ル、エタノール、n−プロパノール、イソプロパ
ノール、n−ブタノール、sec−ブタノール、
tert−ブタノール、イソブタノール等のアルキル
アルコール類、メチルセロソルブ、エチルセロソ
ルブ、プロピルセロソルブ、ブチルセロソルブ、
メチルカルビトール、エチルカルビトール等のエ
ーテルアルコール類、メチルセロソルブアセテー
ト、エチルセロソルブアセテート等のエーテルエ
ステル類、その他ジオキサン、ジメチルホルムア
ミド、ダイアセトンアルコール等が使用される。 本発明に係わる水性樹脂分散体は、必要に応じ
て塗工性を改良するための界面活性剤、消泡剤な
どを添加して塗料として用いることができる。 適用される缶素材としては未処理鋼板、処理鋼
板、亜鉛鉄板、ブリキ板、クロムメツキ鋼板やク
ロム酸処理鋼板等のテインフリースチール、さら
にはニツケルメツキ鋼板、アルミメツキ鋼板、ア
ルミ板などの金属板が適しており、塗装方法とし
てはロールコーター塗装が好ましいが、スプレー
塗装、浸漬塗装、電着塗装なども可能である。ま
た焼付条件は、温度150℃〜230℃、時間としては
2〜30分の範囲から選ぶことができる。 以下、本発明を実施例により説明する。なお、
例中「部」、「%」はそれぞれ「重量部」、「重量
%」を示す。 (実施例) アクリル樹脂溶液の調製 スチレン 130部 アクリル酸エチル 130部 メタアクリル酸 140部 ブチルセロソルブ 588部 過酸化ベンゾイル 12部 上記組成を混合した後その3分の1を窒素ガス
置換した4ツ口フラスコに仕込み80〜90℃に加熱
し、この温度に保ちつつ残りの全量を2時間かけ
て徐々に滴下する。滴下終了後、更にその温度で
2時間反応を行つた後、冷却し、重量平均分子量
17200、固形分40%のカルボキシル基含有アクリ
ル樹脂溶液を得た。 レゾール樹脂(A)の調製 ビスフエノールA 126部 o−クレゾール 54部 37%ホルムアルデヒド水溶液 213部 25%アンモニア水 14.3部 上記組成を窒素ガス置換した4ツ口フラスコに
仕込み、95〜100℃に加熱、還流下に50分反応し
た後メチルイソブチルケトン(MIBK)30%、キ
シレン30%、ブチルセロソルブ40%の混合溶剤
350部に抽出、水洗後温度95〜110℃で約2時間加
熱し蒸発する水を分離した。さらにブチルセロソ
ルブ240部で希釈し重量平均分子量1830、固形分
27%のレゾール樹脂(A)溶液を得た。 レゾール樹脂(B)の調製 レゾール樹脂(A)溶液の調製の調製において組成
中o−クレゾールをp−クレゾールに変更し、そ
の他は同様にして重量平均分子量1290、固形分27
%のレゾール樹脂(B)溶液を得た。 レゾール樹脂(C)の調製 石炭酸 144部 37%ホルムアルデヒド水溶液 314部 25%アンモニア水 21.1部 上記組成をレゾール樹脂(A)溶液の調製と同様に
反応して重量平均分子量1570、固形分27.0%のレ
ゾール樹脂(C)溶液を得た。 レゾール樹脂(D)の調製 o−クレゾール 178部 37%ホルムアルデヒド水溶液 222部 25%アンモニア水 22.4部 上記組成をレゾール樹脂(A)溶液の調製と同様に
反応して重量平均分子量1320、固形分27%のレゾ
ール樹脂(D)溶液を得た。 レゾール樹脂(E)の調製 ビスフエノールA 126部 37%ホルムアルデヒド水溶液 213部 25%アンモニア水 24.3部 上記組成を窒素ガス置換した4ツ口フラスコに
仕込み65℃で180分反応させた後、さらにo−ク
レゾール54部を追加し、95℃〜100℃の還流下で
30分間反応を行い、それ以外はレゾール樹脂(A)の
調製と同様にして重量平均分子量1650、固形分27
%のレゾール樹脂(C)溶液を得た。 レゾール樹脂(F)の調製 レゾール樹脂(A)の調製と同様な組成を95℃〜
100℃で35分間反応した後、レゾール樹脂(A)溶液
と同じく水洗し、95〜110℃で約80分間加熱蒸発
する水を分離し、重量平均分子量690、固形分27
%のレゾール樹脂(F)溶液を得た。 上記の各レゾール樹脂の重量平均分子量の測定
は高速液体クロマトグラフイに依つて行つた。カ
ラムはシヨーデツクスGPCA−80M(昭和電工株
式会社製)を2本直列で使用し移動層はテトラヒ
ドロフランとした。試料はテトラヒドロフランで
希釈して固形分0.15%とし注入量100μ、移動相
流速1ml/分、検出器は示差屈折率計とした。 重量平均分子量は上記の得られたチヤートを微
少部分に区分し、下記の式により行つた。 ここで、 Hi:i区分の応答の大きさo 〓 Hi:全応答の合計 Mi:i区分の分子量 各i区分の分子量の決定に使用する検量線は東
洋曹達工業株式会社製標準ポリスチレン換算の値
である。 実施例 1 レゾール樹脂(A)溶液 150部 エピコート1009 100部 アクリル樹脂溶液 50部 25%アンモニア水 2.7部 上記組成中とを窒素ガス置換4ツ口フラス
コに仕込み90℃で3時間でを溶解後110℃に温
度を昇温し3時間予備縮合を行う。80℃に冷却し
た後とを追加し、その温度で30分間反応させ
冷却した。 レゾール樹脂(A)とエポキシ樹脂の予備縮合物と
アクリル樹脂の反応はGPCにより確認した。さ
らにイオン交換水を徐々に添加して固形分22%、
粘度405cpsの水性樹脂分散体とした。本実施例で
はエポキシ樹脂100部に対してレゾール樹脂分
40.5部を使用した。 実施例 2 実施例1のレゾール樹脂(A)溶液をレゾール樹脂
(B)溶液とし、その他は実施例1と同様に操作して
固形分22%、粘度391cpsの水性樹脂分散体を得
た。 実施例 3 実施例1のレゾール樹脂(A)溶液に変えてレゾー
ル樹脂(C)溶液105部、レゾール樹脂(D)溶液45部を
混合したレゾール樹脂溶液150部を使用して、そ
の他は実施例1と同様に操作して固形分22%、粘
度443cpsの水性樹脂分散体を得た。 実施例 4 実施例1のレゾール樹脂(A)溶液をレゾール樹脂
(E)溶液とした他は実施例1と同様にして固形分22
%、粘度443cpsの水性樹脂分散体を得た。 実施例 5 実施例1のレゾール樹脂(A)溶液150部を75部と
し、その他は実施例1と同様に操作して固形分22
%、粘度330cpcの水性樹脂分散体を得た。本実
施例ではエポキシ樹脂100部に対してレゾール樹
脂分20.3部である。 実施例 6 実施例1のアクリル樹脂溶液を50部から100部
に変更した他は、実施例1と同様に操作して固形
分22%、粘度482cpcの水性樹脂分散体を得た。 比較例 1 実施例1のレゾール樹脂(A)溶液をレゾール樹脂
(C)溶液とした他は実施例1と同様に操作して固形
分22%、粘度457cpsの水性樹脂分散体を得た。 比較例 2 実施例1のレゾール樹脂(A)溶液をレゾール樹脂
(B)溶液とした他は実施例1と同様に操作して固形
分22%、粘度393cpcの水性樹脂分散体を得た。 比較例 3 実施例1のレゾール樹脂(A)溶液をレゾール樹脂
(F)溶液とした他は実施例1と同様に操作して固形
分22%、粘度339cpc水性樹脂分散体を得た。 比較例 4 実施例1のレゾール樹脂(A)溶液150部を20部に
変更した他は実施例1と同様に操作して固形分22
%、粘度482cpcの水性樹脂分散体を得た。本例
ではエポキシ樹脂100部に対してレゾール樹脂分
は5.4部である。 各実施例および比較例で得られた水性樹脂分散
体を下塗り剤として使用し0.22mm厚のクロム処理
鋼板上に2.5〜3μの乾燥塗膜厚にローラー塗装を
行つた後、210℃で10分間焼付乾燥を行つた。こ
の塗装板の間に1,2−アミノラウリン酸ポリマ
ーをはさみ、200℃で10秒間熱プレス圧着し冷却
した後、接着巾5mmに切断して試料片とし、これ
を25℃の雰囲気温度下においてシヨツパー型抗張
力試験機でT字型剥離試験を行つた。またこの接
着試料を90℃の熱水中に浸漬し(熱水経時試験)、
冷却乾燥後25℃でT字型剥離試験を行つた。 さらに各例の水性樹脂分散体をブリキ板(0.23
mm厚、#50/50ET)にローラー塗装後200℃、10
分間焼付けを行い、4.5〜5の乾燥塗膜を有する
塗装板を得た。 上記塗装板から平2号缶を形成し、市販の鮭水
煮缶の内容物をこの平2号缶にリパツクし、117
℃、4時間のレトルト処理を行つた後、開缶し内
面の硫化黒変の度合を観察した。 次に特殊ハゼ折りデユポン試験機を用い、下部
に2つ折りした試料を置き、接触面が平らな重さ
1Kgの鉄の錘を高さ50cmから落下させた時に生じ
る折り曲げ部分の塗膜の亀裂が長さを測定し、亀
裂長さを 0〜10mm……○ 10〜20mm……△ 20mm以上……× で示した。 以上の試験結果を第1表に示す。 この結果によれば本発明による下塗り剤は未処
理においてもまた熱水経時後においても良好な接
着性を示している。それに対して比較例1では未
処理の場合の接着性が不十分であり、また、比較
例2と比較例3においては熱水経時後の接着性に
著しい低下を認めることができ、かつ本発明によ
る下塗り剤はその耐蝕性、加工性においても優れ
た缶内面塗料としての性能を有している。 〔発明の効果〕 本発明の接着缶用下塗り剤は、塗料溶剤中に占
める水の割合が90重量%あるいはそれ以上の水性
媒体中にあつても安定な樹脂分散体を得ることが
でき、しかも接着性に優れているレゾール樹脂を
使用しているので下地素材およびポリアミド系接
着剤に対して極めて高い接着性を有するものであ
る。
[Objective of the Invention] (Industrial Application Field) The present invention relates to a water-based adhesive can primer, and more specifically, it is applied to a can material, and in the side seam part, the primer coat is applied to a polyamide adhesive and to the can material. The invention relates to water-based primers that can be utilized to function as primers. (Prior Art) A so-called adhesive can is a general term for three-piece cans whose can bodies are seamed by adhesive. The reason behind the increasing importance of adhesive cans in metal containers in recent years is that instead of the traditional tin-plated tin, we are using stain-free steel such as chrome-plated steel sheets and chromic acid-treated steel sheets, as well as nickel-plated steel sheets, aluminium-plated steel sheets, and aluminum. Various can materials such as boards have been developed and supplied. In other words, unlike tinplate, these materials cannot be soldered, so when making a three-piece can body, the side seams must be joined by welding or adhesive, unlike conventional methods. When forming side seams with adhesive, a primer is usually applied to the can material such as stain-free steel and baked, and then hot melt bonding is performed using a polyamide adhesive. Therefore, the properties required of the undercoat are strong adhesion to the can material and adhesive, and at the same time, it is also required to have various physical properties such as corrosion resistance and processability as a can inner surface coating. From this point of view, epoxy-phenol solvent-based paints have conventionally been used as primer coats for adhesive cans. However, in recent years, with the problem of air pollution caused by organic solvents and growing social interest in saving petroleum resources, it has become necessary to stop using organic solvents in the coating and container industries.
Alternatively, active efforts are being made to shift to paints that contain as little organic solvent as possible. In particular, primer coats for adhesive cans are paints that are used in large quantities in the manufacture of adhesive cans, and have a large effect on the performance of adhesive cans. As the production volume of adhesive cans increases, the amount used also increases, which is why water-based cans are strongly desired. Up to now, epoxy resin-based water-based paints have been mainly studied as water-based can paints, and various methods have been proposed for dispersing epoxy resins in water. For example, methods using anionic and nonionic surfactants are known as methods for dispersing epoxy resins using surfactants, but they are inferior in storage stability, hygiene, chemical and mechanical performance. It is unsuitable as a paint for cans. As a solution to this problem, various self-emulsifying epoxy resins have been proposed in which epoxy resins are modified with acrylic resins and segments with emulsifying power are introduced into the molecules. Since such a self-emulsifying epoxy resin does not contain a surfactant in the coating film, a strong coating film itself can be obtained. Additionally, water-soluble amino resins and phenolic resins are added to these paints when a faster curing speed is required. However, when such prior art is used as an undercoat for adhesive cans, sufficient adhesion to the base can material and polyamide adhesive could not be obtained. (Problems to be Solved by the Invention) As a result of intensive studies in view of the above-mentioned circumstances, the present researchers have found that the performance of conventional epoxy-phenol solvent-based undercoating, that is, the performance of the base material and polyamide adhesive By maintaining strong adhesive strength, we have guaranteed the sealability of the can body, and succeeded in reducing or virtually eliminating organic solvents without impairing the function of the base material as a protective layer from the contents. It is something. [Structure of the Invention] (Means for Solving the Problems) That is, the present invention provides the following (a), (b), or (c) for 100 parts by weight of bisphenol type epoxy resin.
At least one resol resin selected from 10~
After precondensing 60 parts of the precondensate, a potentially self-emulsifying composite resin composition obtained by reacting the precondensate with a carboxyl group-containing acrylic resin in the presence of an esterification catalyst is prepared using amine or ammonia. The present invention relates to an aqueous adhesive can primer which is at least partially neutralized and dispersed in an aqueous catalyst. (a) A resol resin having a weight average molecular weight of 800 or more and less than 3,000, which is obtained by reacting a mixed phenol of trifunctional or higher functional phenol and difunctional phenol with formaldehyde in the presence of an alkali catalyst. (b) A resol resin in which a resol resin having a weight average molecular weight of 800 or more and less than 3,000 is obtained by reacting a trifunctional or higher functional phenol and a bifunctional phenol with formaldehyde in the presence of an alkali catalyst. (c) A weight average molecular weight of 800 obtained by reacting a bifunctional phenol in the presence of a resol resin obtained by reacting a trifunctional or higher functional phenol with formaldehyde in the presence of an alkali catalyst.
Resol resin with a rating of more than 3000 and less than 3000. As the trifunctional or higher functional phenol used in the resol resin of the present invention, all trifunctional or higher functional phenols conventionally used in the production of resol resins can be used, but examples of the trifunctional phenol include phenol (carbolic acid), m- Cresol, m-ethylphenol, 3,5-xylenol, m-methoxyphenol, etc. can be used;
As the functional phenol, bisphenol A, bisphenol B, bisphenol F, 1,1-bis(4-hydroxyphenyl)ethane, etc. can be used. Furthermore, all of the bifunctional phenols conventionally used in the production of resol resins can be used, such as o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2, 2 such as 3-xylenol, 2,5-xylenol, p-tert aminophenol, p-nonylphenol, p-phenylphenol, p-cyclohexylphenol, etc.
Most preferred is one or a combination of two or more functional phenols. In addition, the alkaline catalysts used for resol resin production include sodium hydroxide, potassium hydroxide,
Preferred are alkali catalysts such as magnesium hydroxide, basic metal salts, ammonia, hexamethylenetetramine, triethylamine, trimethylamine, pyridine, and the like. Phenol and alkali catalysts such as those mentioned above,
In addition, there are various conditions for producing resol resin using formaldehyde, but in particular, when using it as a component of a water-based adhesive can primer, the following conditions (a), (b), or (c) must be met. It is important that the product be manufactured in That is, (a) it is a resol resin obtained by reacting a mixed phenol of trifunctional or higher functional phenol and bifunctional phenol with formaldehyde in the presence of an alkali catalyst so that the weight average molecular weight becomes 800 or more and less than 3000; (b)3
A resol resin obtained by reacting a functional or higher functional phenol and a difunctional phenol individually with formaldehyde in the presence of an alkali catalyst and having a weight average molecular weight of 800 or more and less than 3000, (iii) a trifunctional resol resin; A resol resin obtained by reacting the above phenol and formaldehyde in the presence of an alkali catalyst and having a weight average molecular weight of 800 or more and less than 3,000, which is obtained by reacting a bifunctional phenol in the presence of the resol resin. In such resol resins (a), (b), or (c), it is preferable that the weight ratio of trifunctional or higher-functional phenol to bifunctional phenol is 50-95/50-5. In such a resol resin, trifunctional or higher functional phenols provide content resistance and corrosion resistance, and bifunctional phenols provide flexibility to the resin. Considering the structure of the resin, it is thought that the crosslinking density is adjusted by the trifunctional or higher functional phenol, and the average distance between the crosslinking points is adjusted by the difunctional phenol. and (a), (b) or (c) above.
According to each resol resin manufacturing method, polyfunctional phenols and bifunctional phenols can be connected randomly or in a block shape through methylene bonds. The resol resin obtained in this way has a good balance between processability and adhesion, especially when the weight average molecular weight is 800 or more and less than 3,000. In structures made of steel plates such as free steel) - Primer - Polyamide adhesive, sufficient adhesive strength is maintained not only in the initial adhesive strength but also even after processing strain and aging tests in hot water. A product with excellent properties as a primer can be obtained. Here, high performance liquid chromatography was used to measure the weight average molecular weight. Tetrahydrofuran was used as the solvent, and Shodex GPC A- was used as the column.
Two 80M (product name: manufactured by Showa Denko Co., Ltd.) connected together were used. Sample concentration 0.15%, injection volume
Measurement was carried out under the following conditions: 100μ, flow rate 1ml/min, and differential refractometer detector. Styrene monomer and standard polystyrene A-500, A-
1000, A-2500, A-5000, F-1, F-2, F
-4, F-10, F-20, F-40, and F-80 (manufactured by Toyo Soda Kogyo Co., Ltd.), and the weight average molecular weight was determined as a value in terms of polystyrene. The amount of resol resin in the composite resin composition needs to be 10 to 60 parts by weight based on 100 parts by weight of unmodified bisphenol type epoxy resin,
If the amount is less than 10 parts by weight, the curing properties of the coating film will be poor, and sufficient adhesive strength to the base material and polyamide adhesive will not be obtained. Moreover, if it exceeds 60 parts by weight, physical properties such as processability of the coating film will deteriorate. In the present invention, the bisphenol type epoxy resin used is a commercially available epoxy resin made by reacting bisphenols such as bisphenol A, bisphenol B, and bisphenol F with epichlorohydrin in the presence of an alkali catalyst. The product is Epicoat from Ciel Chemical Co., Ltd.
828, Epicote 1001, Epicote 1004, Epicote 1007, Epicote 1009, Epicote 1010, etc. It is also possible to use a modified epoxy resin in which the epoxy group or hydroxyl group of the bisphenol type epoxy resin is reacted with a vegetable oil fatty acid such as dehydrated castor oil fatty acid, soybean oil fatty acid, or coconut oil fatty acid, or a modifier such as bisphenol A. . The precondensation of the epoxy resin and resol resin is carried out in order to further increase the uniformity of the formed coating film. The precondensation reaction conditions are 90 to 130°C for 1 to 7 hours. In the present invention, the carboxyl group-containing acrylic resin is prepared by adding a monomer mixture consisting of monobasic carboxylic acid monomers such as acrylic acid and methacrylic acid and other copolymerizable monomers to a conventional resin such as azobisisobutyronitrile in an organic solution. It can be obtained by copolymerization using a radical polymerization initiator. The copolymerizable monomers include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate,
2-ethylhexyl acrylate, n-acrylate
Acrylic esters such as octyl, decyl acrylate, dodecyl acrylate, methyl methacrylate, propyl methacrylate, n-methacrylate
Methacrylic acid esters such as butyl, isobutyl methacrylate, n-amyl methacrylate, n-hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, dodecyl methacrylate, styrene,
Styrenic monomers such as vinyltoluene, 2-methylstyrene, t-butylstyrene, chlorstyrene, hydroxy group-containing monomers such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, N-methylol One or more of N-substituted (meth)acrylic monomers such as (meth)acrylamide and N-butoxymethyl (meth)acrylamide, epoxy group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, and acrylonitrile. You can choose. The amount of monobasic carboxylic acid monomer used is preferably 12 to 70% by weight based on the total monomers; if it is less than 12% by weight, the dispersion stability of the composite resin in an aqueous medium will deteriorate, and if it is more than 70% by weight. When the precondensate is reacted with the precondensate, the temperature of the reaction system becomes extremely high, which is not preferable. Further, the weight average molecular weight of the acrylic resin is preferably in the range of 3,000 to 80,000. In the present invention, the composite resin composition is an epoxy resin that is a precondensation product of an epoxy resin and a resol resin.
10 to 90 parts by weight of acrylic resin to 100 parts by weight in the presence of an esterification catalyst at 60°C to 130°C.
It can be obtained by reacting at ℃ for 30 minutes to 3 hours. Esterification catalysts include inorganic salts such as sodium hydroxide and potassium hydroxide, aluminum amines such as trimethylamine, triethylamine, and butylamine, and polyvalent amines such as 2-dimethylaminoethanol, diethanolamamine, triethanolamine, and aminomethylbrobanol. morpholine, ammonia, etc. In the present invention, the aqueous resin dispersion can be prepared by adding ammonia or amine in an amount such that the final composition has a pH of 4 to 11 and dispersing it in an aqueous medium. When high boiling point solvents are used, it is preferable to remove these solvents in advance under reduced pressure. Examples of the above amines include alkyl amines such as trimethylamine, triethylamine, and butylamine;
Alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine, and aminomethylpropanol, morpholine, and the like are used. Polyvalent amines such as ethylenediamine and diethylenetriamine can also be used. In the present invention, the aqueous medium refers to a mixture of water and a hydrophilic organic solvent in which at least 50% by weight or more, preferably 80% or more, more preferably 90% by weight is water, and methanol is used as the hydrophilic organic solvent. , ethanol, n-propanol, isopropanol, n-butanol, sec-butanol,
Alkyl alcohols such as tert-butanol and isobutanol, methyl cellosolve, ethyl cellosolve, propyl cellosolve, butyl cellosolve,
Ether alcohols such as methyl carbitol and ethyl carbitol, ether esters such as methyl cellosolve acetate and ethyl cellosolve acetate, and dioxane, dimethylformamide, diacetone alcohol, etc. are used. The aqueous resin dispersion according to the present invention can be used as a paint by adding a surfactant, an antifoaming agent, etc. to improve coating properties, if necessary. Suitable can materials include untreated steel sheets, treated steel sheets, galvanized iron sheets, tin plates, chrome-plated steel sheets, chromic acid-treated steel sheets, and other stain-free steels, as well as metal sheets such as nickel-plated steel sheets, aluminized steel sheets, and aluminum sheets. As a coating method, roll coater coating is preferred, but spray coating, dipping coating, electrodeposition coating, etc. are also possible. The baking conditions can be selected from the range of temperature 150°C to 230°C and time 2 to 30 minutes. The present invention will be explained below using examples. In addition,
In the examples, "parts" and "%" indicate "parts by weight" and "% by weight," respectively. (Example) Preparation of acrylic resin solution Styrene 130 parts Ethyl acrylate 130 parts Methacrylic acid 140 parts Butyl cellosolve 588 parts Benzoyl peroxide 12 parts A four-necked flask in which the above composition was mixed and one-third of the mixture was replaced with nitrogen gas. The mixture is heated to 80-90℃, and the remaining amount is gradually added dropwise over 2 hours while maintaining this temperature. After the dropwise addition was completed, the reaction was further carried out at that temperature for 2 hours, and then cooled to determine the weight average molecular weight.
17200, a carboxyl group-containing acrylic resin solution with a solid content of 40% was obtained. Preparation of resol resin (A) Bisphenol A 126 parts o-cresol 54 parts 37% formaldehyde aqueous solution 213 parts 25% aqueous ammonia 14.3 parts The above composition was charged into a four-necked flask purged with nitrogen gas, and heated to 95 to 100°C. After reacting for 50 minutes under reflux, a mixed solvent of 30% methyl isobutyl ketone (MIBK), 30% xylene, and 40% butyl cellosolve
Extracted to 350 parts, washed with water, heated at a temperature of 95 to 110°C for about 2 hours, and evaporated water was separated. Further diluted with 240 parts of butyl cellosolve, weight average molecular weight 1830, solid content
A 27% resol resin (A) solution was obtained. Preparation of resol resin (B) In the preparation of the resol resin (A) solution, o-cresol in the composition was changed to p-cresol, and the rest was the same except that the weight average molecular weight was 1290 and the solid content was 27.
% resol resin (B) solution was obtained. Preparation of resol resin (C) 144 parts of carbolic acid 314 parts of 37% formaldehyde aqueous solution 21.1 parts of 25% ammonia water A resin (C) solution was obtained. Preparation of resol resin (D) - Cresol 178 parts 37% formaldehyde aqueous solution 222 parts 25% aqueous ammonia 22.4 parts The above composition was reacted in the same manner as in the preparation of resol resin (A) solution to give a weight average molecular weight of 1320 and a solid content of 27%. A resol resin (D) solution was obtained. Preparation of resol resin (E) Bisphenol A 126 parts 37% formaldehyde aqueous solution 213 parts 25% aqueous ammonia 24.3 parts The above composition was charged into a four-neck flask purged with nitrogen gas, reacted at 65°C for 180 minutes, and then o Add 54 parts of cresol and under reflux at 95°C to 100°C.
The reaction was carried out for 30 minutes, and the rest was carried out in the same manner as in the preparation of resol resin (A), with a weight average molecular weight of 1650 and a solid content of 27.
% resol resin (C) solution was obtained. Preparation of resol resin (F) The same composition as in the preparation of resol resin (A) was prepared at 95°C.
After reacting at 100℃ for 35 minutes, it was washed with water in the same way as the resol resin (A) solution, and heated at 95 to 110℃ for about 80 minutes to separate the water that evaporated.The weight average molecular weight was 690, and the solid content was 27.
% resol resin (F) solution was obtained. The weight average molecular weight of each of the above resol resins was measured using high performance liquid chromatography. Two columns of Syodex GPCA-80M (manufactured by Showa Denko K.K.) were used in series, and the mobile phase was tetrahydrofuran. The sample was diluted with tetrahydrofuran to have a solid content of 0.15%, the injection volume was 100 μ, the mobile phase flow rate was 1 ml/min, and the detector was a differential refractometer. The weight average molecular weight was determined by dividing the obtained chart into minute portions and using the following formula. Here, Hi: magnitude of response of category i Hi: total of all responses Mi: molecular weight of category i The calibration curve used to determine the molecular weight of each category i is the standard polystyrene equivalent value manufactured by Toyo Soda Kogyo Co., Ltd. It is. Example 1 Resol resin (A) solution 150 parts Epikote 1009 100 parts Acrylic resin solution 50 parts 25% ammonia water 2.7 parts The above composition was placed in a 4-neck flask purged with nitrogen gas and dissolved at 90°C for 3 hours. The temperature was raised to .degree. C. and precondensation was carried out for 3 hours. After cooling to 80°C, the mixture was added to the mixture, reacted at that temperature for 30 minutes, and cooled. The reaction between the resol resin (A), the precondensate of the epoxy resin, and the acrylic resin was confirmed by GPC. Furthermore, ion-exchanged water was gradually added to increase the solid content to 22%.
It was made into an aqueous resin dispersion with a viscosity of 405 cps. In this example, the resol resin content was calculated based on 100 parts of epoxy resin.
40.5 parts were used. Example 2 The resol resin (A) solution of Example 1 was converted into a resol resin.
(B) Solution was used, and the other operations were the same as in Example 1 to obtain an aqueous resin dispersion having a solid content of 22% and a viscosity of 391 cps. Example 3 Instead of the resol resin (A) solution in Example 1, 150 parts of a resol resin solution was used, which was obtained by mixing 105 parts of a resol resin (C) solution and 45 parts of a resol resin (D) solution, and the rest was the same as in Example 3. An aqueous resin dispersion having a solid content of 22% and a viscosity of 443 cps was obtained in the same manner as in 1. Example 4 The resol resin (A) solution of Example 1 was converted into a resol resin.
(E) Solid content 22 in the same manner as in Example 1 except that it was made into a solution.
% and a viscosity of 443 cps was obtained. Example 5 150 parts of the resol resin (A) solution in Example 1 was changed to 75 parts, and the other operations were the same as in Example 1 to reduce the solid content to 22
%, an aqueous resin dispersion with a viscosity of 330 cpc was obtained. In this example, the resol resin content is 20.3 parts per 100 parts of epoxy resin. Example 6 An aqueous resin dispersion having a solid content of 22% and a viscosity of 482 cpc was obtained in the same manner as in Example 1, except that the acrylic resin solution in Example 1 was changed from 50 parts to 100 parts. Comparative Example 1 The resol resin (A) solution of Example 1 was used as a resol resin.
(C) An aqueous resin dispersion having a solid content of 22% and a viscosity of 457 cps was obtained in the same manner as in Example 1 except that it was used as a solution. Comparative Example 2 The resol resin (A) solution of Example 1 was used as a resol resin.
(B) An aqueous resin dispersion having a solid content of 22% and a viscosity of 393 cpc was obtained in the same manner as in Example 1 except that it was used as a solution. Comparative Example 3 The resol resin (A) solution of Example 1 was used as a resol resin.
(F) An aqueous resin dispersion with a solid content of 22% and a viscosity of 339 cpc was obtained in the same manner as in Example 1 except that it was used as a solution. Comparative Example 4 The same procedure as in Example 1 was performed except that 150 parts of the resol resin (A) solution in Example 1 was changed to 20 parts, and the solid content was 22
% and a viscosity of 482 cpc was obtained. In this example, the resol resin content is 5.4 parts with respect to 100 parts of epoxy resin. Using the aqueous resin dispersion obtained in each example and comparative example as an undercoat, roller coating was performed on a chromium-treated steel plate with a thickness of 0.22 mm to a dry film thickness of 2.5 to 3 μ, and then at 210°C for 10 minutes. Baking drying was performed. A 1,2-aminolauric acid polymer was sandwiched between the coated plates, heat-pressed at 200°C for 10 seconds, cooled, and then cut into a 5 mm adhesive width sample piece. A T-shaped peel test was conducted using a tensile strength testing machine. In addition, this adhesive sample was immersed in 90℃ hot water (hot water aging test).
After cooling and drying, a T-shaped peel test was conducted at 25°C. Furthermore, the aqueous resin dispersion of each example was added to a tin plate (0.23
mm thickness, #50/50ET) after roller coating at 200℃, 10
Baking was carried out for a minute to obtain a coated board with a dry coating of 4.5 to 5. A No. 2 can is formed from the above-mentioned painted board, and the contents of a commercially available boiled salmon can are repacked into this No. 2 can.
After performing retort treatment at ℃ for 4 hours, the can was opened and the degree of sulfide blackening on the inner surface was observed. Next, using a special folding Dupont testing machine, a sample folded in half was placed at the bottom, and a 1 kg iron weight with a flat contact surface was dropped from a height of 50 cm. The length was measured, and the crack length was indicated as 0 to 10 mm...○ 10 to 20 mm...Δ 20 mm or more...×. The above test results are shown in Table 1. According to the results, the undercoat according to the present invention exhibits good adhesion both in the untreated state and after aging in hot water. On the other hand, in Comparative Example 1, the adhesion was insufficient when untreated, and in Comparative Examples 2 and 3, a significant decrease in adhesion after aging in hot water was observed, and the present invention This primer has excellent corrosion resistance and processability as a paint for the inside of cans. [Effects of the Invention] The adhesive can primer of the present invention can provide a stable resin dispersion even in an aqueous medium in which the proportion of water in the paint solvent is 90% by weight or more. Since it uses a resol resin with excellent adhesive properties, it has extremely high adhesive properties to the base material and polyamide adhesive.

【表】 * フエノール樹脂混合後の測定値
[Table] * Measured values after mixing phenolic resin

Claims (1)

【特許請求の範囲】 1 ビスフエノール型エポキシ樹脂100重量部に
対して、下記(イ)、(ロ)もしくは(ハ)から選ばれる少な
くとも1種のレゾール樹脂10〜60部を予備的に縮
合した後、該予備縮合物にカルボキシル基含有ア
クリル系樹脂をエステル化触媒の存在下に反応せ
しめてなる潜在的に自己乳化性の複合樹脂組成物
をアミンもしくはアンモニアにて少なくとも部分
的に中和して水性媒体中に分散せしめてなる水性
の接着缶用下塗り剤。 (イ) 3官能以上のフエノールおよび2官能性フエ
ノールの混合フエノールとホルムアルデヒドと
をアルカリ触媒の存在下に反応せしめて得られ
る重量平均分子量800以上3000未満のレゾール
樹脂。 (ロ) 3官能以上のフエノールおよび2官能性フエ
ノールをそれぞれ個別にアルカリ触媒の存在下
にホルムアルデヒドと反応せしめて得られる重
量平均分子量800以上3000未満のレゾール樹脂
を混合したレゾール樹脂 (ハ) 3官能以上のフエノールとホルムアルデヒド
とをアルカリ触媒の存在下に反応せしめて得ら
れるレゾール樹脂の存在下に2官能性フエノー
ルを反応せしめて得られる重量平均分子量800
以上3000未満のレゾール樹脂。 2 レゾール樹脂(イ)、(ロ)もしくは(ハ)において、3
官能以上のフエノールと2官能性フエノールの配
合割合が重合比で50〜95/50〜5である特許請求
の範囲第1項記載の水性の接着缶用下塗り剤。
[Claims] 1 10 to 60 parts of at least one resol resin selected from the following (a), (b), or (c) is preliminarily condensed to 100 parts by weight of a bisphenol type epoxy resin. After that, a potentially self-emulsifying composite resin composition obtained by reacting the precondensate with a carboxyl group-containing acrylic resin in the presence of an esterification catalyst is at least partially neutralized with an amine or ammonia. A water-based primer for adhesive cans that is dispersed in an aqueous medium. (a) A resol resin having a weight average molecular weight of 800 or more and less than 3,000, which is obtained by reacting a mixed phenol of trifunctional or higher functional phenol and difunctional phenol with formaldehyde in the presence of an alkali catalyst. (b) A resol resin obtained by mixing a resol resin with a weight average molecular weight of 800 or more and less than 3,000 obtained by reacting trifunctional or higher phenols and difunctional phenols with formaldehyde in the presence of an alkali catalyst (c) Trifunctional phenols Weight average molecular weight 800 obtained by reacting a bifunctional phenol in the presence of a resol resin obtained by reacting the above phenol and formaldehyde in the presence of an alkali catalyst.
Resol resin with a rating of more than 3000 and less than 3000. 2 In resol resin (a), (b) or (c), 3
2. The water-based undercoat for adhesive cans according to claim 1, wherein the blending ratio of the functional or higher functional phenol to the difunctional phenol is 50-95/50-5 in a polymerization ratio.
JP4200186A 1986-02-28 1986-02-28 Water-based primer for can bonding Granted JPS62201971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4200186A JPS62201971A (en) 1986-02-28 1986-02-28 Water-based primer for can bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4200186A JPS62201971A (en) 1986-02-28 1986-02-28 Water-based primer for can bonding

Publications (2)

Publication Number Publication Date
JPS62201971A JPS62201971A (en) 1987-09-05
JPH0558469B2 true JPH0558469B2 (en) 1993-08-26

Family

ID=12623962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4200186A Granted JPS62201971A (en) 1986-02-28 1986-02-28 Water-based primer for can bonding

Country Status (1)

Country Link
JP (1) JPS62201971A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672217B2 (en) * 1987-05-07 1994-09-14 東洋製罐株式会社 Emulsion type water-based paint for can
JPS6487654A (en) * 1987-09-30 1989-03-31 Dainippon Ink & Chemicals Water-dispersible epoxyphenolic resin composition and production thereof
JPH0681817B2 (en) * 1988-02-26 1994-10-19 東洋製罐株式会社 Emulsified water-based paint
KR20020080034A (en) * 2001-04-10 2002-10-23 삼화페인트공업주식회사 Water Borne coating composition made from acryl modifide epoxy polymeric for Beverage containers

Also Published As

Publication number Publication date
JPS62201971A (en) 1987-09-05

Similar Documents

Publication Publication Date Title
JP2020500233A (en) Acrylic polymers and compositions containing such polymers
TW201738335A (en) Styrene-free copolymers and coating compositions containing such copolymers
TWI634167B (en) Container coating compositions
KR20190040196A (en) A latex coating composition having reduced flavor scalability properties
JP2823040B2 (en) Acrylic plastisol bonded structure
JP5506143B2 (en) Cap coating composition with good liner adhesion and cap coated with the coating composition
CN102089215B (en) Aluminum lid provided with coating film composed of aqueous coating material
JPH0558469B2 (en)
JPH0533253B2 (en)
JPH0558468B2 (en)
JP2780616B2 (en) Epoxy paint
JPS63108078A (en) Water-based undercoating agent for use in making bonded can
JPS60215015A (en) Aqueous resin dispersion
JPH06145593A (en) Water-base coating composition
JPH056566B2 (en)
JP2868611B2 (en) Aqueous paint composition
JPH0463107B2 (en)
JP2851526B2 (en) Aqueous resin dispersion
JP3228067B2 (en) Resol type phenolic resin and paint
JP3209609B2 (en) Aqueous coating composition
JPH01230678A (en) Water-based can lining paint
JPH0459330B2 (en)
JP3099637B2 (en) Aqueous resin dispersion and method for producing the aqueous resin dispersion
JP2707949B2 (en) Aqueous dispersion composition
JPH0512367B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees