JPH0558423B2 - - Google Patents

Info

Publication number
JPH0558423B2
JPH0558423B2 JP60104777A JP10477785A JPH0558423B2 JP H0558423 B2 JPH0558423 B2 JP H0558423B2 JP 60104777 A JP60104777 A JP 60104777A JP 10477785 A JP10477785 A JP 10477785A JP H0558423 B2 JPH0558423 B2 JP H0558423B2
Authority
JP
Japan
Prior art keywords
mmol
reaction
acrylonitrile
isobutylene
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60104777A
Other languages
Japanese (ja)
Other versions
JPS61263954A (en
Inventor
Hirosuke Wada
Yasuyuki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60104777A priority Critical patent/JPS61263954A/en
Publication of JPS61263954A publication Critical patent/JPS61263954A/en
Publication of JPH0558423B2 publication Critical patent/JPH0558423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は不飽和ニトリル化合物の製造法に関す
るものである。詳しくは、本発明は触媒の存在下
にアクリロニトリルと一般式() (式中、R1はメチル基または3−シアノ−プロ
ピル基を表わす) で示されるイソブチレンまたはその誘導体とを反
応させて、一般式() (式中、R1は前記定義に同じ) で示される不飽和ニトリル化合物を製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing unsaturated nitrile compounds. Specifically, the present invention deals with acrylonitrile and the general formula () in the presence of a catalyst. (wherein, R 1 represents a methyl group or 3-cyano-propyl group) is reacted with isobutylene or a derivative thereof represented by the general formula () (In the formula, R 1 is the same as defined above.) The present invention relates to a method for producing an unsaturated nitrile compound represented by the following formula.

〔従来の技術〕[Conventional technology]

一般式()で示される不飽和ニトリル化合物
は、各種の有機合成反応の中間体として有用であ
り、殊にジニトリル化合物は繊維グレードのポリ
アミドを製造するための重要な中間体である。
Unsaturated nitrile compounds represented by the general formula () are useful as intermediates in various organic synthesis reactions, and dinitrile compounds in particular are important intermediates for producing fiber-grade polyamides.

従来、一般式()で示される不飽和ニトリル
化合物がアクリロニトリルと一般式()で示さ
れるイソブチレンあるいはその誘導体との反応に
より合成し得ることに関しては公知である。
It is conventionally known that an unsaturated nitrile compound represented by the general formula () can be synthesized by reacting acrylonitrile with isobutylene represented by the general formula () or a derivative thereof.

米国特許2641607には215〜330℃の高温、25−
1025atmの高圧条件で、該反応が進行することが
記述されている。米国特許3898268には、該反応
を触媒量のホウ酸類の存在下に実施する方法が記
述されている。さらに、米国特許3996262には、
周期律表VA族の有機誘導体促進剤の共存下に実
施する方法が記述されている。
U.S. Patent No. 2,641,607 describes a high temperature of 215-330℃
It is described that the reaction proceeds under high pressure conditions of 1025 atm. US Pat. No. 3,898,268 describes a method in which the reaction is carried out in the presence of catalytic amounts of boric acids. Additionally, U.S. Patent No. 3,996,262 states:
A process is described which is carried out in the presence of an organic derivative promoter from group V A of the periodic table.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の諸法においては、反応速
度が十分でない故に高温の条件を採用する必要性
があり、またそれ故に圧力的にも苛酷な条件を採
用することが要請されてきた。
However, in the above-mentioned methods, since the reaction rate is not sufficient, it is necessary to use high temperature conditions, and therefore, it has been required to use severe pressure conditions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、該反応を緩和な反応条件下でも
十分に高い反応速度で実施することによつて、工
業プロセス的に有利に不飽和ニトリル化合物を製
造する方法について研究した結果、特定のルイス
酸触媒の存在下にアクリロニトリルとイソブチレ
ンまたはその誘導体とを反応させることによつ
て、その目的が達成されるという新規な事実を見
出し、本発明に到達したものである。
The present inventors conducted research on a method for producing unsaturated nitrile compounds advantageously in an industrial process by carrying out the reaction at a sufficiently high reaction rate even under mild reaction conditions. The present invention was achieved based on the novel fact that the object can be achieved by reacting acrylonitrile with isobutylene or a derivative thereof in the presence of an acid catalyst.

以下に、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明方法においてアクリロニトリルは通常の
工業純度のものが使用される。
In the method of the present invention, acrylonitrile of ordinary industrial purity is used.

一般式()で示されるイソブチレンまたはそ
の誘導体は、具体的には、イソブチレンおよび5
−メチル−5−ヘキセノニトリルである。イソブ
チレンとしてはそれ自身単独でもよく、また1−
ブテンおよび/あるいは2−ブテン等の炭化水素
との混合物の形でも使用可能である。さらにま
た、窒素、ヘリウム、アルゴン、炭素ガス等の該
反応に害を及ぼさない希釈体の共存も可能であ
る。5−メチル−5−ヘキセノニトリルは、本発
明方法のアクリロニトリルとイソブチレンとの反
応で、1次生成物として合成される。
Isobutylene or its derivative represented by the general formula () specifically includes isobutylene and 5
-Methyl-5-hexenonitrile. Isobutylene itself may be used alone, or 1-
It can also be used in the form of a mixture with hydrocarbons such as butene and/or 2-butene. Furthermore, it is also possible to coexist with diluents such as nitrogen, helium, argon, carbon gas, etc. that do not harm the reaction. 5-Methyl-5-hexenonitrile is synthesized as the primary product in the reaction of acrylonitrile and isobutylene in the process of the invention.

5−メチル−5−ヘキセノニトリルはそれ自身
単独でも、その原料であるイソブチレンとの混合
物の形態でも、あるいはまたそれとアクリロニト
リルの2次反応生成物である5−メチレンノナン
ジニトリルとの混合物の形態でも、いずれも、使
用可能である。該反応に害を及ぼさない希釈体も
適宜併用され得る。
5-Methyl-5-hexenonitrile can be used alone, in the form of a mixture with its raw material isobutylene, or in the form of a mixture with 5-methylenenonanedinitrile, which is a secondary reaction product of acrylonitrile. Both can be used. Diluents that do not harm the reaction may also be used in combination as appropriate.

本発明方法による反応は、特定のルイス酸触媒
の存在下にて、行なわれる。本発明方法における
ルイス酸の尺度としては、S.J.Bnyan、P.G.
Huggett、K.Wada、J.A.Daniels and J.R.
Jennings、Coond.Chem.Rev.、44、149(1982)
に記載される△νCN値を採用する(式(1)) △νCN=νCN(CH2=CH−CN・MLo)−νCN
(CH2=CH−CN)……(1) (ここに、νCN(CH2=CH−CN)はアクリロニ
トリルの赤外線吸収スペクトルにおけるC≡N結
合の伸縮振動数、νCN(CH2=CH−CN・MLo
はアクリロニトリルとルイス酸MLoとの錯合体
の赤外線吸収スペクトルにおけるC≡N結合の伸
縮振動数、cm-1単位) 本発明者らが研究した結果、このように定義さ
れたルイス酸の尺度と触媒反応速度との間には良
い相関関係があり、強いルイス酸、即ち△νCN
値の大きな触媒を使用すると反応速度が大きくな
る事実が見出された。本発明方法における反応を
工業的に実施することを考慮すると、十分な反応
速度を実現する力を持つた「強い」ルイス酸は、
式(1)の表現に従うと、△νCN値が45cm-1以上の
ものである。
The reaction according to the method of the present invention is carried out in the presence of a specific Lewis acid catalyst. As a measure of Lewis acid in the method of the present invention, SJBnyan, PG
Huggett, K. Wada, J.A.Daniels and J.R.
Jennings, Coond.Chem.Rev., 44 , 149 (1982)
Adopt the △ν CN value described in (Equation (1)) △ν CN = ν CN (CH 2 = CH−CN・ML o )−ν CN
(CH 2 = CH-CN)...(1) (Here, ν CN (CH 2 = CH-CN) is the stretching frequency of the C≡N bond in the infrared absorption spectrum of acrylonitrile, and ν CN ( CH 2 = CH−CN・ML o )
is the stretching frequency of the C≡N bond in the infrared absorption spectrum of the complex of acrylonitrile and the Lewis acid ML o , in cm -1 ) As a result of the research conducted by the present inventors, the scale of the Lewis acid defined in this way and There is a good correlation between the catalytic reaction rate and strong Lewis acids, i.e. △ν CN
It was found that the reaction rate increases when a catalyst with a large value is used. Considering that the reaction in the method of the present invention is carried out industrially, a "strong" Lewis acid that has the power to realize a sufficient reaction rate is
According to expression (1), the △ν CN value is 45 cm -1 or more.

本発明で用いる強いルイス酸とは、周期律表
ABBおよび族の金属ハロゲン化合
物から選ばれるものである。具体的には、MgF2
(△νCN54cm-1)等のA族化合物、ScF3(同55cm
-1)等のB族化合物、TiF3(同58cm-1)、
TiCl4ZrF4(同58cm-1)、ZrCl4(同57cm-1)等のB
族化合物、NbF5(同55cm-1)等のVB族化合物、
CrF3(同55cm-1)等のB族化合物、MnF2(同53
cm-1)等のB族化合物、FeF3(同51cm-1)、CoF2
(同52cm-1)、CoF3(同50cm-1)等の族化合物、
ZnI2(同51cm-1)、ZnCl2(同51cm-1)、ZnF2(同51cm
-1)、CdF2(同48-1)等のB族化合物、AlCl3(同
61cm-1)、Et2AlCl(同55cm-1)AlF3(同53cm-1)等
A化合物、SnF2(同51cm-1)等のA族化合物、
SbF3(同50cm-1)等のVA族化合物が挙げられる。
The strong Lewis acids used in the present invention are those in the periodic table.
It is selected from metal halogen compounds of groups A to A , B to B , and groups. Specifically, MgF2
(△ν CN 54cm -1 ), ScF 3 (N 55cm -1 )
B group compounds such as -1 ), TiF 3 (58 cm -1 ),
B of TiCl 4 ZrF 4 (58 cm -1 ), ZrCl 4 (57 cm -1 ), etc.
group compounds, V B group compounds such as NbF 5 (55cm -1 ),
Group B compounds such as CrF 3 (55 cm -1 ), MnF 2 (53
B group compounds such as cm -1 ), FeF 3 (51 cm -1 ), CoF 2
(52 cm -1 ), CoF 3 (50 cm -1 ), etc.
ZnI 2 (51 cm -1 ), ZnCl 2 (51 cm -1 ), ZnF 2 (51 cm
-1 ), B group compounds such as CdF 2 (48 -1 ), AlCl 3 (48 -1),
61cm -1 ), A compounds such as Et 2 AlCl (55cm -1 ), AlF 3 (53cm -1 ), Group A compounds such as SnF 2 (51cm -1 ),
Examples include V A group compounds such as SbF 3 (50 cm -1 ).

ルイス酸の使用量は、アクリロニトリルの使用
量1モルに対して、0.0001〜5モル、好ましくは
0.001〜1モルの範囲である。
The amount of Lewis acid used is 0.0001 to 5 mol, preferably 0.0001 to 5 mol, per 1 mol of acrylonitrile.
It is in the range of 0.001 to 1 mole.

本発明方法を実施するにあたり、反応溶媒はと
くに使用しなくても支障はないが、操作を円滑に
行うために場合により適当な不活性溶媒を使用す
ることができる。
In carrying out the method of the present invention, there is no problem even if no reaction solvent is used, but an appropriate inert solvent may be used in order to perform the operation smoothly.

このような溶媒としては例えば、ジエチルエー
テル、アニソール、テトラヒドロフラン、エチレ
ングリコールジメチルエーテル、ジオキサン等の
エーテル類、アセトン、メチルエチルケトン、ア
セトフエノン等のケトン類、メタノール、エタノ
ール、n−ブタノール、ベンジルアルコール、フ
エノール、エチレングリコール、ジエチレングリ
コール等のアルコール類、ギ酸、酢酸、プロピオ
ン酸、トルイル酸等のカルボン酸類、酢酸メチ
ル、酢酸n−ブチル、安息香酸ベンジル等のエス
テル類、ベンゼン、トルエン、エチルベンゼン、
テトラリン等の芳香族炭化水素、n−ヘキサン、
n−オクタン、シクロヘキサン等の脂肪族炭化水
素、ジクロロメタン、トリクロロエタン、クロロ
ベンゼン等のハロゲン化炭化水素、ニトロメタ
ン、ニトロベンゼン等のニトロ化合物、N,N−
ジメチルホルムアミド、N,N−ジメチルアセト
アミド、N−メチルピロリドン等のカルボン酸ア
ミド、ヘキサメチル燐酸トリアミド、N,N,
N′,N′−テトラエチルスルフアミド等のその他
のアミド類、N,N′−ジメチルイミダゾリドン、
N,N,N,N−テトラメチル尿素等の尿素類、
ジメチルスルホン、テトラメチレンスルホン等の
スルホン類、ジメチルスルホキシド、ジフエニル
スルホキシド等のスルホキシド類、γ−ブチロラ
クトン、ε−カプロラクトン等のラクトン類、テ
トラグライム、18−クラウン−6等のポリエーテ
ル類、アセトニトリル、ベンゾニトリル等のニト
リル類、ジメチルカーボネート、エチレンカーボ
ネート等の炭酸エステル類等である。
Examples of such solvents include ethers such as diethyl ether, anisole, tetrahydrofuran, ethylene glycol dimethyl ether, and dioxane, ketones such as acetone, methyl ethyl ketone, and acetophenone, methanol, ethanol, n-butanol, benzyl alcohol, phenol, and ethylene glycol. , alcohols such as diethylene glycol, carboxylic acids such as formic acid, acetic acid, propionic acid, toluic acid, esters such as methyl acetate, n-butyl acetate, benzyl benzoate, benzene, toluene, ethylbenzene,
Aromatic hydrocarbons such as tetralin, n-hexane,
Aliphatic hydrocarbons such as n-octane and cyclohexane, halogenated hydrocarbons such as dichloromethane, trichloroethane and chlorobenzene, nitro compounds such as nitromethane and nitrobenzene, N,N-
Dimethylformamide, N,N-dimethylacetamide, carboxylic acid amide such as N-methylpyrrolidone, hexamethylphosphoric acid triamide, N,N,
Other amides such as N',N'-tetraethylsulfamide, N,N'-dimethylimidazolidone,
Ureas such as N,N,N,N-tetramethylurea,
Sulfones such as dimethyl sulfone and tetramethylene sulfone, sulfoxides such as dimethyl sulfoxide and diphenyl sulfoxide, lactones such as γ-butyrolactone and ε-caprolactone, polyethers such as tetraglyme and 18-crown-6, acetonitrile, These include nitriles such as benzonitrile, carbonate esters such as dimethyl carbonate, and ethylene carbonate.

本発明方法の反応を実施するにあたり、反応は
回分方式あるいは連続方式のいずれでも実施可能
である。反応温度は50〜350℃好ましくは100〜
250℃の範囲から選択される。反応圧力について
は限定的ではなく、反応基質、溶媒、希釈剤およ
び反応温度等の選択条件によつて決められる。
In carrying out the reaction of the method of the present invention, the reaction can be carried out either batchwise or continuously. Reaction temperature is 50~350℃, preferably 100~
Selected from the range of 250℃. The reaction pressure is not limited and is determined by selection conditions such as the reaction substrate, solvent, diluent, and reaction temperature.

反応生成液からは、蒸留、抽出等の通常の分離
精製手段により、目的生成物と反応原料および触
媒成分とが分離される。
The desired product, reaction raw material, and catalyst component are separated from the reaction product liquid by ordinary separation and purification means such as distillation and extraction.

〔実施例〕〔Example〕

以下に、実施例により、本発明方法をさらに具
体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に限定されるものではない。
EXAMPLES Below, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例 1 耐圧300Kg/cm2、内容積35mlのハステロイC276
製オートクレーブにアクリロニトリル25mmol、
イソブチレン118mmol、4塩化チタン1.25mmol
およびベンゼン10mlを充填し、180℃で3hrsの反
応を実施した。反応終了後、生成液をガスクロマ
トグラフイーで分析した結果、5−メチル−5−
ヘキセノニトリル1.25mmolが生成しているのが
確認された。
Example 1 Hastelloy C276 with pressure resistance of 300Kg/cm 2 and internal volume of 35ml
25 mmol of acrylonitrile in a manufactured autoclave.
Isobutylene 118 mmol, titanium tetrachloride 1.25 mmol
and 10 ml of benzene, and the reaction was carried out at 180°C for 3 hours. After the reaction was completed, the product solution was analyzed by gas chromatography, and it was found that 5-methyl-5-
It was confirmed that 1.25 mmol of hexenonitrile was produced.

実施例 2 アクリロニトリル50mmol、イソブチレン234
mmol、4塩化チタン2.5mmolおよびベンゼン10
mlを使用して、180℃で6hrsの反応を実施例1と
同様に実施した結果、5−メチル−5−ヘキセノ
ニトリル5.10mmolの生成が確認された。
Example 2 Acrylonitrile 50 mmol, isobutylene 234
mmol, titanium tetrachloride 2.5 mmol and benzene 10
As a result of carrying out the reaction for 6 hours at 180° C. in the same manner as in Example 1 using 5.10 mmol of 5-methyl-5-hexenonitrile, it was confirmed that 5.10 mmol of 5-methyl-5-hexenonitrile was produced.

比較例 1 アクリロニトリル25mmol、イソブチレン87m
mol、ベンゼン10mlをオートクレーブに充填し
て、触媒を使用することなく、180℃で3hrsの反
応を実施例1と同様に実施した結果、5−メチル
−5−ヘキセノニトリルの生成量は0.00mmolで
あつた。
Comparative example 1 Acrylonitrile 25mmol, isobutylene 87m
The autoclave was charged with 10 ml of benzene and the reaction was carried out at 180°C for 3 hours in the same manner as in Example 1 without using a catalyst. As a result, the amount of 5-methyl-5-hexenonitrile produced was 0.00 mmol. Ta.

実施例 3 アクリロニトリル50mmol、イソブチレン219
mmol、ジエチル−アルミニウムクロリド2.5m
mol、およびベンゼン16mlを使用して、180℃で
3hrsの反応を実施例1と同様に実施した結果、5
−メチル−5−ヘキセノニトリル3.50mmolおよ
び5−メチレンノナンジニトリル0.13mmolの生
成が確認された。
Example 3 Acrylonitrile 50 mmol, isobutylene 219
mmol, diethyl-aluminum chloride 2.5m
mol, and at 180 °C using 16 ml of benzene.
As a result of carrying out the reaction for 3 hours in the same manner as in Example 1, 5
The production of 3.50 mmol of -methyl-5-hexenonitrile and 0.13 mmol of 5-methylenenonanedinitrile was confirmed.

実施例 4 アクリロニトリル50mmol、イソブチレン255
mmol、ジエチルアルミニウムクロリド2.5m
mol、およびベンゼン16mlを使用して、200℃で
5hrsの反応を実施例1と同様に実施した結果、5
−メチル−5−ヘキセノニトリル10.0mmolおよ
び5−メチレンノナンジニトリル0.3mmolの生
成が確認された。
Example 4 Acrylonitrile 50 mmol, isobutylene 255
mmol, diethylaluminum chloride 2.5m
mol, and at 200 °C using 16 ml of benzene.
As a result of carrying out the reaction for 5 hours in the same manner as in Example 1, 5
The production of 10.0 mmol of -methyl-5-hexenonitrile and 0.3 mmol of 5-methylenenonanedinitrile was confirmed.

実施例 5 アクリロニトリル50mmol、イソブチレン216
mmol、ジエチルアルミニウムクロリド2.5m
mol、およびベンゼン16mlを使用して、250℃で
3hrsの反応を実施例1と同様に実施した結果、5
−メチル−5−ヘキセノニトリル7.40mmolおよ
び5−メチレンノナンジニトリル0.28mmolの生
成が確認された。
Example 5 Acrylonitrile 50 mmol, isobutylene 216
mmol, diethylaluminum chloride 2.5m
mol, and at 250 °C using 16 ml of benzene.
As a result of carrying out the reaction for 3 hours in the same manner as in Example 1, 5
The production of 7.40 mmol of -methyl-5-hexenonitrile and 0.28 mmol of 5-methylenenonanedinitrile was confirmed.

実施例 6 アクリロニトリル50mmol、イソブチレン219
mmol、ジエチルアルミニウムクロリド2.5m
mol、およびベンゼン16mlを使用して、200℃で
12hrsの反応を実施例1と同様に実施した結果、
5−メチル−5−ヘキセノニトリル12.6mmolお
よび5−メチレンノナンジニトリル0.45mmolの
生成が確認された。
Example 6 Acrylonitrile 50 mmol, isobutylene 219
mmol, diethylaluminum chloride 2.5m
mol, and at 200 °C using 16 ml of benzene.
As a result of carrying out the reaction for 12 hours in the same manner as in Example 1,
Production of 12.6 mmol of 5-methyl-5-hexenonitrile and 0.45 mmol of 5-methylenenonanedinitrile was confirmed.

実施例 7 アクリロニトリル50mmol、イソブチレン210
mmol、ジエチルアルミニウムクロリド5.0m
mol、およびn−ヘキサン10mlを使用して、200
℃で3hrsの反応を実施例1と同様に実施した結
果、5−メチル−5−ヘキセノニトリル9.10m
molおよび5−メチレンノナンジニトリル0.23m
molの生成が確認された。
Example 7 Acrylonitrile 50 mmol, isobutylene 210
mmol, diethylaluminum chloride 5.0m
mol, and using 10 ml of n-hexane, 200
As a result of carrying out the reaction at ℃ for 3 hours in the same manner as in Example 1, 9.10 m of 5-methyl-5-hexenonitrile was obtained.
mol and 5-methylenenonanedinitrile 0.23m
The production of mol was confirmed.

実施例 8 アクリロニトリル50mmol、イソブチレン230
mmol、ジエチルアルミニウムクロリド2.5m
mol、およびアセトニトリル16mlを使用して、
200℃で3hrsの反応を実施例1と同様に実施した
結果、5−メチル−5−ヘキセノニトリル2.50m
molの生成が確認された。
Example 8 Acrylonitrile 50 mmol, isobutylene 230
mmol, diethylaluminum chloride 2.5m
mol, and using 16 ml of acetonitrile,
As a result of carrying out the reaction at 200°C for 3 hours in the same manner as in Example 1, 2.50 m of 5-methyl-5-hexenonitrile was obtained.
The production of mol was confirmed.

実施例 9 アクリロニトリル50mmol、イソブチレン225
mmol、ジエチルアルミニウムクロリド5.0m
mol、四塩化チタン5.0mmolおよびベンゼン16ml
を使用して、180℃で3hrsの反応を実施例1と同
様に実施した結果、5−メチレル−5−ヘキセノ
ニトリル11.7mmolおよび5−メチレンノナンジ
ニトリル0.38mmolの生成が確認された。
Example 9 Acrylonitrile 50 mmol, isobutylene 225
mmol, diethylaluminum chloride 5.0m
mol, titanium tetrachloride 5.0 mmol and benzene 16 ml
The reaction was carried out at 180° C. for 3 hours in the same manner as in Example 1, and as a result, it was confirmed that 11.7 mmol of 5-methylel-5-hexenonitrile and 0.38 mmol of 5-methylenenonane dinitrile were produced.

実施例 10 アクリロニトリル50mmol、イソブチレン228
mmol、フツ化亜鉛5.0mmol、およびベンゼン10
mlを使用して200℃で3hrsの反応を実施例1と同
様に実施した結果、5−メチル−5−ヘキセノニ
トリル2.90mmolの生成が確認された。
Example 10 Acrylonitrile 50 mmol, isobutylene 228
mmol, zinc fluoride 5.0 mmol, and benzene 10
As a result of carrying out the reaction for 3 hours at 200° C. in the same manner as in Example 1, it was confirmed that 2.90 mmol of 5-methyl-5-hexenonitrile was produced.

実施例 11 アクリロニトリル50mmol、イソブチレン212
mmol、ヨウ化亜鉛5.0mmol、およびベンゼン10
mlを使用して、200℃で3hrsの反応を実施例1と
同様に実施した結果、5−メチル−5−ヘキセノ
ニトリル4.8mmolおよび5−メチレンノナンジ
ニトリル0.23mmolの生成が確認された。
Example 11 Acrylonitrile 50 mmol, isobutylene 212
mmol, zinc iodide 5.0 mmol, and benzene 10
As a result of carrying out the reaction for 3 hours at 200° C. in the same manner as in Example 1, it was confirmed that 4.8 mmol of 5-methyl-5-hexenonitrile and 0.23 mmol of 5-methylenenonane dinitrile were produced.

実施例 12 アクリロニトリル50mmol、イソブチレン221
mmol、塩化亜鉛5.0mmol、およびベンゼン10ml
を使用して、200℃で16hrsの反応を実施例1と同
様に実施した結果、5−メチル−5−ヘキセノニ
トリル8.20mmolおよび5−メチレンノナンジニ
トリル0.43mmolの生成が確認された。
Example 12 Acrylonitrile 50 mmol, isobutylene 221
mmol, zinc chloride 5.0 mmol, and benzene 10 ml
The reaction was carried out at 200°C for 16 hours in the same manner as in Example 1, and as a result, it was confirmed that 8.20 mmol of 5-methyl-5-hexenonitrile and 0.43 mmol of 5-methylenenonane dinitrile were produced.

実施例 13 アクリロニトリル50mmol、イソブチレン214
mmol、四塩化ジルコニウム5.0mmolおよびベン
ゼン10mlを使用して、200℃で3hrsの反応を実施
例1と同様に実施した結果、5−メチル−5−ヘ
キセノニトリル1.0mmolの生成が確認された。
Example 13 Acrylonitrile 50 mmol, isobutylene 214
The reaction was carried out in the same manner as in Example 1 at 200° C. for 3 hours using 5.0 mmol of zirconium tetrachloride and 10 ml of benzene, and as a result, the production of 1.0 mmol of 5-methyl-5-hexenonitrile was confirmed.

比較例 2 アクリロニトリル50mmol、イソブチレン23m
mol、ホウ酸(ΔνC=N値、11cm-1)5mmol、及び
ベンゼン10mlを使用して200℃で3Hrsの反応を実
施例1と同様に実施した結果、5−メチル−5−
ヘキセノニトリルの生成は0.01mmolであつた。
Comparative example 2 Acrylonitrile 50mmol, isobutylene 23m
mol, boric acid (Δν C=N value, 11cm -1 ), 5 mmol, and 10 ml of benzene, the reaction was carried out at 200°C for 3 hours in the same manner as in Example 1. As a result, 5-methyl-5-
The amount of hexenonitrile produced was 0.01 mmol.

〔発明の効果〕 本発明によれば、アクリロニトリルと一般式
()で示されるイソブチレンあるいはその誘導
体との反応系に新規な触媒である特定のルイス酸
を共存させることにより、反応温度および圧力条
件を大巾に緩和することが可能であり、その意義
は大きい。
[Effects of the Invention] According to the present invention, the reaction temperature and pressure conditions can be adjusted by coexisting a specific Lewis acid, which is a novel catalyst, in the reaction system of acrylonitrile and isobutylene or its derivative represented by the general formula (). It is possible to alleviate the situation to a large extent, and this is of great significance.

Claims (1)

【特許請求の範囲】 1 周期律表AABBおよび族の金
属ハロゲン化合物から選ばれたルイス酸触媒の存
在下に、アクリロニトリルと一般式() (式中、R1はメチル基または3−シアノ−プロ
ピル基を表わす) で示されるイソブチレンまたはその誘導体とを反
応させることを特徴とする一般式() (式中、R1は前記定義に同じ) で示される不飽和ニトリル化合物の製造法。
[Claims] 1. In the presence of a Lewis acid catalyst selected from metal halogen compounds of groups A to A , B to B of the periodic table, acrylonitrile and a compound of the general formula () (wherein, R 1 represents a methyl group or 3-cyano-propyl group) (In the formula, R 1 is the same as defined above.) A method for producing an unsaturated nitrile compound represented by the following.
JP60104777A 1985-05-16 1985-05-16 Production of unsaturated nitrile compound Granted JPS61263954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60104777A JPS61263954A (en) 1985-05-16 1985-05-16 Production of unsaturated nitrile compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60104777A JPS61263954A (en) 1985-05-16 1985-05-16 Production of unsaturated nitrile compound

Publications (2)

Publication Number Publication Date
JPS61263954A JPS61263954A (en) 1986-11-21
JPH0558423B2 true JPH0558423B2 (en) 1993-08-26

Family

ID=14389906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60104777A Granted JPS61263954A (en) 1985-05-16 1985-05-16 Production of unsaturated nitrile compound

Country Status (1)

Country Link
JP (1) JPS61263954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123436B1 (en) * 2021-05-24 2022-08-23 株式会社豊製作所 powder sprayer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948030B2 (en) * 2006-04-27 2012-06-06 国立大学法人 名古屋工業大学 Method for producing fluorine-containing alcohol derivative
KR101323189B1 (en) * 2011-08-10 2013-10-30 주식회사 한서켐 A process for preparing allyl cyanide of high purity by using Lewis acid catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898268A (en) * 1973-07-26 1975-08-05 Phillips Petroleum Co Preparation of unsaturated nitriles using a boron oxide promoter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898268A (en) * 1973-07-26 1975-08-05 Phillips Petroleum Co Preparation of unsaturated nitriles using a boron oxide promoter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123436B1 (en) * 2021-05-24 2022-08-23 株式会社豊製作所 powder sprayer

Also Published As

Publication number Publication date
JPS61263954A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
JP2512312B2 (en) Process for producing fluorohalogenated ether starting from fluorooxy compound and halogenated olefin
JP3085722B2 (en) Method for producing alkylene carbonate
US6444841B2 (en) Hydroquinone diester derivatives and the method for producing the same
JPH0558423B2 (en)
EP0949226B1 (en) Process for the preparation of acetylene derivatives
US5072024A (en) Synthesis of N-substituted amides by condensation of nitriles with certain organic hydroxyl compounds
JPS61267538A (en) Production of 2-alkyl-6-acylnaphthalene
JP2859422B2 (en) Method for producing perfluoro (2-methoxypropionic acid) fluoride
JPS63192731A (en) Manufacture of beta-allyl alcohol
JP3053447B2 (en) Method for producing salicylic acid derivative
JPS61155350A (en) Production of fatty acid chloride and aromatic acid chloride
JPH0120144B2 (en)
US6271387B1 (en) Process for producing 1,3-oxazolidine derivatives
WO2001044163A1 (en) Process for producing fluorinated alkylamine compound
KR960001909B1 (en) Preparation of 2 methyl-6-acylnaphthalene
JP3068900B2 (en) Method for producing epoxy group-containing compound
JPH0352851A (en) Production of n,n,n',n'-tetraacetylethylenediamine
JP3742995B2 (en) Process for producing aromatic sulfonyl isocyanate
US5202465A (en) Preparation of 2-methylenepropane-1,3-diol dicarboxylates
US4408058A (en) Preparation of ortho-sulfobenzoic acid anhydride by catalyzed thermolysis
EP0353707B1 (en) Process for preparing beta-acyloxypropionaldehyde
JPS6319507B2 (en)
JP2002293772A (en) Method for producing n-form-(thio)urea
JPS6323833A (en) Manufacture of carboxylic acid halide
JPH0228585B2 (en) FURUOROARUKANOORUNOSEIHO

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term