JPH055838B2 - - Google Patents

Info

Publication number
JPH055838B2
JPH055838B2 JP4964587A JP4964587A JPH055838B2 JP H055838 B2 JPH055838 B2 JP H055838B2 JP 4964587 A JP4964587 A JP 4964587A JP 4964587 A JP4964587 A JP 4964587A JP H055838 B2 JPH055838 B2 JP H055838B2
Authority
JP
Japan
Prior art keywords
silicon
sugar hydroxyl
group
nucleoside
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4964587A
Other languages
Japanese (ja)
Other versions
JPS63215693A (en
Inventor
Kyotaka Furusawa
Tsukasa Sakai
Keishiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4964587A priority Critical patent/JPS63215693A/en
Publication of JPS63215693A publication Critical patent/JPS63215693A/en
Publication of JPH055838B2 publication Critical patent/JPH055838B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規なヌクレオシドケイ素誘導体の製
造法に関し、さらに詳しくいえば、デオキシリボ
ヌクレオシドの3′糖水酸基をケイ素化合物により
保護した誘導体の製造法に関するものである。ヌ
クレオシドは核酸類の基本骨格を構成する重要な
生体物質であつて、近年遺伝子工学の発展に伴
い、核酸類の化学合成における出発物質として盛
んに研究されており、またそれ自身も興味ある化
合物として医薬品分野において研究されている。
本発明により製造されるヌクレオシドケイ素誘導
体は3′糖水酸基がケイ素基により保護されており
核酸類の化学合成において重要な中間体として知
られる3′アセチル化ヌクレオシドに対応するもの
であるが、フツ化物イオンにより脱保護できるこ
とにより合成中間体として極めて有用である。こ
の発明の製造方法の産業上の利用分野としては、
有機化学工業及び生物化学工業に好適である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a novel nucleoside silicon derivative, and more specifically, to a method for producing a derivative in which the 3' sugar hydroxyl group of a deoxyribonucleoside is protected with a silicon compound. be. Nucleosides are important biological substances that constitute the basic skeleton of nucleic acids, and with the development of genetic engineering in recent years, they have been actively studied as starting materials in the chemical synthesis of nucleic acids, and they are also interesting compounds in their own right. It is being researched in the pharmaceutical field.
The nucleoside silicon derivatives produced by the present invention correspond to 3' acetylated nucleosides in which the 3' sugar hydroxyl group is protected by a silicon group and are known as important intermediates in the chemical synthesis of nucleic acids. It is extremely useful as a synthetic intermediate because it can be deprotected with ions. The industrial application field of the manufacturing method of this invention is as follows:
Suitable for organic chemical industry and biochemical industry.

従来の技術 従来、3′糖水酸基を保護したヌクレオシドケイ
素誘導体としては、tert−ブチルジメチルシリル
化ヌクレオシドが知られているが、このような
3′糖水酸基を保護した誘導体は、(1)5′糖水酸基を
あらかじめトリチル基のような保護基で保護した
後に、(2)3′糖水酸基にケイ素化合物を反応させて
ケイ素基を導入し、(3)この後5′糖水酸基の保護基
を脱離させることにより製造されており、多数の
煩雑な操作を必要とするという欠点を有してい
る。
Conventional technology Tert-butyldimethylsilylated nucleosides have been known as nucleoside silicon derivatives with protected 3' sugar hydroxyl groups;
Derivatives with a protected 3′ sugar hydroxyl group are obtained by (1) protecting the 5′ sugar hydroxyl group with a protecting group such as a trityl group in advance, and then (2) introducing a silicon group by reacting the 3′ sugar hydroxyl group with a silicon compound. , (3) are produced by subsequently removing the protecting group from the 5' sugar hydroxyl group, which has the disadvantage of requiring a large number of complicated operations.

発明が解決しようとする問題点 先の項で述べたように、従来の製造法では3′糖
水酸基を保護した化合物をヌクレオシドから合成
しようとすると反応性のたかい5′糖水酸基が共存
するために、あらかじめ5′糖水酸基に別の保護基
を導入しておくこと、また最後にこれを脱離させ
る必要があるなどの煩雑さがある。本発明はこの
ような煩雑な工程を経ることなく、デオキシリボ
ヌクレオシドより直ちに3′糖水酸基をケイ素基に
より保護した化合物を合成することを目的とした
ものである。
Problems to be Solved by the Invention As stated in the previous section, when attempting to synthesize a compound with a protected 3' sugar hydroxyl group from a nucleoside using conventional production methods, it is difficult to synthesize a compound with a protected 3' sugar hydroxyl group due to the coexistence of a highly reactive 5' sugar hydroxyl group. However, there are complications such as the need to introduce another protecting group to the 5' sugar hydroxyl group in advance and the need to remove it at the end. The object of the present invention is to immediately synthesize a compound in which the 3' sugar hydroxyl group is protected with a silicon group from a deoxyribonucleoside without going through such complicated steps.

問題を解決するための手段 本発明者はあらかじめ保護基を導入することな
く、デオキシリボヌクレオシドより直ちに3′糖水
酸基を保護した化合物を合成することを目的とし
て、鋭意研究を重ね、3′及び5′糖水酸基の間に環
状ケイ素化合物を合成することが可能であること
に着目し、その選択的な加水分解反応を見出し、
これに基づいて本発明を完成させるに至つた。
Means for Solving the Problem The present inventor has conducted extensive research with the aim of synthesizing a compound in which the 3' sugar hydroxyl group is immediately protected from the deoxyribonucleoside without introducing a protecting group in advance. Focusing on the fact that it is possible to synthesize cyclic silicon compounds between sugar hydroxyl groups, we discovered a selective hydrolysis reaction,
Based on this, the present invention has been completed.

本発明方法において用いるヌクレオシドは、未
保護の、又は保護された核酸塩基を含む前記一般
式で表わされる化合物であり、このようなものと
しては、例えばチミジン、デオキシシチジン、デ
オキシグアノシン、デオキシアデノシンなど及び
これらのN−ベンゾイルやN−イソブチリル置換
体などが好ましくあげられる。
The nucleoside used in the method of the present invention is a compound represented by the above general formula containing an unprotected or protected nucleobase, such as thymidine, deoxycytidine, deoxyguanosine, deoxyadenosine, etc. Preferred examples include N-benzoyl and N-isobutyryl substituted products.

本発明方法において用いるケイ素化合物は、前
記一般式でしめされる二官能性ケイ素ハロゲン化
物であつて、式中のR及びR′はそれぞれtert−ブ
チル基、イソプロピル基であり、Xとしては塩素
原子が好適である。このようなものとしては、ジ
−tert−ブチルジクロロシラン、テトライソプロ
ピルジクロロシランなどが好ましく用いられる。
The silicon compound used in the method of the present invention is a bifunctional silicon halide represented by the above general formula, in which R and R' are a tert-butyl group and an isopropyl group, respectively, and X is a chlorine atom. is suitable. As such, di-tert-butyldichlorosilane, tetraisopropyldichlorosilane, etc. are preferably used.

前記一般式で示される本発明のヌクレオシドケ
イ素誘導体は、酸類の銀塩の存在下、有機溶媒中
において、前記一般式で示されるケイ素ハロゲン
化物を反応させ、続いて酸性又はアルカリ性にお
いて加水分解させることによつて得られる。
The nucleoside silicon derivative of the present invention represented by the above general formula can be obtained by reacting a silicon halide represented by the above general formula in an organic solvent in the presence of a silver salt of an acid, and then hydrolyzing it in acidic or alkaline conditions. obtained by.

銀塩としては硝酸銀、過塩素酸銀、トリフルオ
ロスルホン酸銀及びトリフルオロ酢酸銀などが好
ましく用いられ、溶媒としてはピリジン、N,N
−ジメチルホルムアミドなどが好ましくもちいら
れる。
As silver salts, silver nitrate, silver perchlorate, silver trifluorosulfonate, silver trifluoroacetate, etc. are preferably used, and as solvents, pyridine, N,N
-Dimethylformamide and the like are preferably used.

反応終了後、目的とするヌクレオシドケイ素誘
導体は、カラムクロマトグラフイーにより単離さ
れる。
After the reaction is completed, the desired nucleoside silicon derivative is isolated by column chromatography.

発明の効果 本発明により従来少なくとも3工程以上を要し
ていた製造工程はほぼ1工程で済むようになり大
幅に短縮された。また本発明により製造されたヌ
クレオシド3′ケイ素化合物を用いて5′アセチル化
チミジンの合成を検討した結果、ケイ素基が保護
基として十分な性能を有することが確かめられ、
3′糖水酸基の保護基として他のケイ素基より簡便
に用いられることが明らかとなつた。
Effects of the Invention According to the present invention, the manufacturing process, which conventionally required at least three steps, can now be reduced to just one step, thereby significantly shortening the manufacturing process. Furthermore, as a result of examining the synthesis of 5' acetylated thymidine using the nucleoside 3' silicon compound produced according to the present invention, it was confirmed that the silicon group has sufficient performance as a protecting group.
It has become clear that it can be used more easily as a protecting group for 3' sugar hydroxyl groups than other silicon groups.

実施例 次に実施例によつて本発明をさらに詳細に説明
する。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples.

参考例 従来の製造法によつて3′ケイ素化ヌクレオシド
を合成する工程を3′ケイ素化チミジンを例として
示す。
Reference Example A process for synthesizing a 3'-silicinated nucleoside by a conventional production method will be shown using 3'-silicinated thymidine as an example.

(1) 無水条件下、チミジンをピリジンに溶解し、
1.1当量のジメトキシトリチルクロリドを加え
2時間反応させたのち溶媒を留去しベンゼン−
n−ヘキサンよりトリチル体を分離する。
(1) Dissolve thymidine in pyridine under anhydrous conditions,
After adding 1.1 equivalent of dimethoxytrityl chloride and reacting for 2 hours, the solvent was distilled off and benzene-trityl chloride was added.
Separate the trityl compound from n-hexane.

(2) トリチル体をジメチルホルムアミドに溶解し
触媒の共存下ジ−tert−ブチルジクロロシラン
などのケイ素化試薬と反応させる。必要に応じ
単離する。
(2) The trityl compound is dissolved in dimethylformamide and reacted with a siliconizing reagent such as di-tert-butyldichlorosilane in the presence of a catalyst. Isolate if necessary.

(3) 脱トリチル化反応のためにケイ素化体を80%
酢酸に溶解し脱離を薄層クロマトグラフイーに
より確認したのちカラムクロマトグラフイーに
かけて目的物を分離する。
(3) 80% siliconized product for detritylation reaction
Dissolve in acetic acid, confirm desorption using thin layer chromatography, and then apply column chromatography to separate the target product.

実施例 1 無水条件下、チミジン0.4mmolと硝酸銀0.88m
molをN,N−ジメチルホルムアミド2mlに溶解
し、反応器の空間は乾燥窒素で置換した。次いで
1.1倍モルのジ−tert−ブチルジクロロシランを加
え、室温で30分間反応させた後、200マイクロリ
ツトルの水を加えて一晩放置してシリカゲルを用
いたカラムクロマトグラフイーにより目的物120
mgを収率75%で単離した。
Example 1 Thymidine 0.4 mmol and silver nitrate 0.88 m under anhydrous conditions
mol was dissolved in 2 ml of N,N-dimethylformamide and the space of the reactor was purged with dry nitrogen. then
After adding 1.1 times the mole of di-tert-butyldichlorosilane and reacting at room temperature for 30 minutes, 200 microliters of water was added and left overnight.
mg was isolated in 75% yield.

このものの赤外吸収スペクトルには3500cm-1
近に糖水酸基とSiOHに基づく特性吸収があらわ
れ、さらに900cm-1付近にSiOH、2900cm-1付近に
tert−ブチル基に基づく吸収の出現が認められ、
参考例に従つて合成された化合物と各種のクロマ
トグラフイー上に挙動が一致し、その構造が確認
された。
In the infrared absorption spectrum of this product, characteristic absorption based on sugar hydroxyl groups and SiOH appears around 3500 cm -1 , SiOH around 900 cm -1 , and characteristic absorption around 2900 cm -1 .
The appearance of absorption based on tert-butyl group was observed,
The behavior matched that of the compound synthesized according to the reference example in various chromatography tests, and its structure was confirmed.

本例に見るように合成の工程はほぼ1段とな
り、従来法と比べて大幅に短縮化された。
As seen in this example, the synthesis process is approximately one step, which is significantly shorter than the conventional method.

実施例 2 実施例1におけるチミジンの代わりにデオキシ
アデノシンを用い加水分解を3時間とする以外
は、実施例1と全く同様にして処理したところ、
42%の収率で3′糖水酸基がケイ素化された目的物
が得られた。構造は参考例と同様にして合成され
た化合物と各種のクロマトグラフイー上の挙動が
一致することにより確認された。
Example 2 When treated in exactly the same manner as in Example 1 except that deoxyadenosine was used instead of thymidine in Example 1 and the hydrolysis was carried out for 3 hours,
The desired product in which the 3' sugar hydroxyl group was siliconized was obtained in a yield of 42%. The structure was confirmed by the consistency of various chromatographic behaviors with a compound synthesized in the same manner as the reference example.

実施例 3 実施例1におけるジ−tert−ブチルジクロロシ
ランの代わりにテトライソプロピルジクロロジシ
ロキサンを用い加水分解を5分とする以外は、実
施例1と全く同様にして処理したところ、73%の
収率で3′糖水酸基がケイ素化された目的物が得ら
れた。構造は参考例と同様にして合成された化合
物と各種のクロマトグラフイー上の挙動が一致す
ることにより確認された。
Example 3 The process was carried out in exactly the same manner as in Example 1, except that tetraisopropyldichlorodisiloxane was used instead of di-tert-butyldichlorosilane and the hydrolysis was carried out for 5 minutes, resulting in a yield of 73%. The target product was obtained in which the 3' sugar hydroxyl group was silicified at a high rate. The structure was confirmed by the consistency of various chromatographic behaviors with a compound synthesized in the same manner as the reference example.

実施例 4 実施例1における加水分解において水をメタノ
ール性1規定水酸化ナトリウムとする以外は、実
施例1と全く同様にして処理したところ、83%の
収率で3′糖水酸基がケイ素化された目的物が得ら
れた。各種のクロマトグラフイー上の挙動は実施
例1で得られた化合物と一致した。
Example 4 The same procedure as in Example 1 was carried out except that the water in the hydrolysis in Example 1 was replaced with methanolic 1N sodium hydroxide. As a result, the 3' sugar hydroxyl group was silicified with a yield of 83%. The desired object was obtained. Various chromatographic behaviors were consistent with the compound obtained in Example 1.

実施例 5 実施例4におけるチミジンの代わりにデオキシ
アデノシンを用い加水分解を行う以外は、実施例
4と全く同様にして処理したところ、82%の収率
で3′糖水酸基がケイ素化された目的物が得られ
た。各種のクロマトグラフイー上の挙動は実施例
2で得られた化合物と一致した。
Example 5 The process was carried out in exactly the same manner as in Example 4, except that deoxyadenosine was used instead of thymidine in Example 4, and the 3' sugar hydroxyl group was siliconized with a yield of 82%. I got something. Various chromatographic behaviors were consistent with the compound obtained in Example 2.

Claims (1)

【特許請求の範囲】 1 無機或いは有機の酸の銀塩の存在下、一般式 (式中のBは未保護の、又は保護された核酸塩基
である) で表わされるヌクレオシドに、一般式 R2SiX2 或いは XSiR′2OSiR′2X (式中のXはハロゲン原子、R及びR′はそれぞ
れtert−ブチル基及びイソプロピル基である) で表わされるケイ素ハロゲン化物を反応させ、
続いて加水分解することを特徴とする、 一般式 【式】或いは 【式】 (式中のBは未保護の、又は保護された核酸塩
基、R及びR′はそれぞれtert−ブチル基及びイソ
プロピル基である) で表わされるヌクレオシドケイ素誘導体の製造
法。
[Claims] 1. In the presence of an inorganic or organic acid silver salt, the general formula (wherein B is an unprotected or protected nucleobase) The nucleoside represented by the general formula R 2 SiX 2 or XSiR' 2 OSiR' 2 X (wherein X is a halogen atom, R and R′ is a tert-butyl group and an isopropyl group, respectively).
The general formula [Formula] or [Formula] (where B is an unprotected or protected nucleobase, R and R' are a tert-butyl group and an isopropyl group, respectively), which is characterized by subsequent hydrolysis. A method for producing a nucleoside silicon derivative represented by
JP4964587A 1987-03-04 1987-03-04 Production of nucleoside silicon derivative Granted JPS63215693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4964587A JPS63215693A (en) 1987-03-04 1987-03-04 Production of nucleoside silicon derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4964587A JPS63215693A (en) 1987-03-04 1987-03-04 Production of nucleoside silicon derivative

Publications (2)

Publication Number Publication Date
JPS63215693A JPS63215693A (en) 1988-09-08
JPH055838B2 true JPH055838B2 (en) 1993-01-25

Family

ID=12836943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4964587A Granted JPS63215693A (en) 1987-03-04 1987-03-04 Production of nucleoside silicon derivative

Country Status (1)

Country Link
JP (1) JPS63215693A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214134A (en) * 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge

Also Published As

Publication number Publication date
JPS63215693A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
JP5427902B2 (en) Photoresponsive artificial nucleotide with optical cross-linking ability
EP0035255B1 (en) Process for removing trityl blocking groups from 5'-o trityl nucleosides and oligonucleotides
JPH11501936A (en) Nucleic acid synthesis using photoremovable protecting groups
JPS62155289A (en) Production of 1, 6-dichloro-1, 6-dideoxy-beta-d- fructofranosyl-4-chloro-4-deoxy-alpha-galactop-yranoside
CN113248550B (en) Tri-arm mannose derivative and preparation method of combined double click chemistry thereof
JPH03502577A (en) Phosphoramidite reagent for chemical synthesis of modified DNA
WO2020158687A1 (en) Method of producing photoreactive nucleotide analog
JPH0797391A (en) Nucleoside derivative and its production
JP3771128B2 (en) Novel synthesis method of febrifugine and febrifugine compounds
JPH055838B2 (en)
JPS59502025A (en) Method for producing oligonucleoside phosphonates
JP4691101B2 (en) 1-α-halo-2,2-difluoro-2-deoxy-D-ribofuranose derivative and method for producing the same
EP0350292B1 (en) Process for preparing 2'-deoxy-beta-adenosine
CN114717280A (en) Synthesis method of monopilavir
JPS6052719B2 (en) Novel production method for 3',4'-dideoxykanamycin B
JPS5936914B2 (en) Cephalosporin analogs
JPH09165396A (en) Production of 1-beta-d-arabinofuranosylcytosine
JP7475056B2 (en) Method for producing photoresponsive nucleotide analogues
JP2666160B2 (en) 5-O-pyrimidyl-2,3-dideoxy-1-thiofuranoside derivative, method for producing the same and use
JPS60152495A (en) Preparation of protected nucleoside
JPH0569839B2 (en)
GB2096596A (en) 8-quinolinesulfonyl derivatives and their synthesis and use as coupling agents in nucleotide chemistry
US7456309B2 (en) Reusable universal polymer support for repetitive oligonucleotide synthesis
CN117700369A (en) Preparation method of 2- (2-chloropyrimidine-5-yl) acetic acid/ester
JPS6230998B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term