JPH0558208B2 - - Google Patents

Info

Publication number
JPH0558208B2
JPH0558208B2 JP1830284A JP1830284A JPH0558208B2 JP H0558208 B2 JPH0558208 B2 JP H0558208B2 JP 1830284 A JP1830284 A JP 1830284A JP 1830284 A JP1830284 A JP 1830284A JP H0558208 B2 JPH0558208 B2 JP H0558208B2
Authority
JP
Japan
Prior art keywords
focusing electrode
electrode
stacked
cylindrical parts
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1830284A
Other languages
Japanese (ja)
Other versions
JPS60163335A (en
Inventor
Yukihiro Izumida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1830284A priority Critical patent/JPS60163335A/en
Publication of JPS60163335A publication Critical patent/JPS60163335A/en
Publication of JPH0558208B2 publication Critical patent/JPH0558208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/18Assembling together the component parts of the discharge tube
    • H01J2209/185Machines therefor, e.g. electron gun assembling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はカラー受像管用電子銃電極構体の組立
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of assembling an electron gun electrode assembly for a color picture tube.

〔発明の背景〕[Background of the invention]

カラー受像管用電子銃電極構体は、その組立精
度がフオーカス特性に大きく影響するため、一様
なフオーカス特性の製品を得るためには電極構体
の組立精度の向上を図る必要がある。
The assembly precision of the electron gun electrode assembly for color picture tubes greatly affects the focus characteristics, so it is necessary to improve the assembly precision of the electrode assembly in order to obtain a product with uniform focus characteristics.

第1図は従来のバイポテンシヤル集束方式のイ
ンライン形電子銃の一例を示し、(a)は電極長辺側
中央断面図、(b)は電極短辺側中央断面図である。
同図において、1A,1B,1Cは頂面からそれ
ぞれ電子ビームA,B,Cを放射するカソード、
2は電子ビームA〜Cを制御する制御電極、3は
電子ビームA〜Cを加速させる加速電極、4は電
子ビームA〜Cを集束させる集束電極で、下部集
束電極5と上部集束電極6はあらかじめ結合して
形成されている。7は陽極、8はコンバーゼンス
電極である。
FIG. 1 shows an example of a conventional bipotential focusing type in-line electron gun, in which (a) is a central sectional view on the long side of the electrode, and (b) is a central sectional view on the short side of the electrode.
In the figure, 1A, 1B, and 1C are cathodes that emit electron beams A, B, and C from their top surfaces, respectively;
2 is a control electrode that controls the electron beams A to C; 3 is an acceleration electrode that accelerates the electron beams A to C; 4 is a focusing electrode that focuses the electron beams A to C; a lower focusing electrode 5 and an upper focusing electrode 6 are They are pre-bonded and formed. 7 is an anode, and 8 is a convergence electrode.

前記制御電極2、加速電極3及び下部集束電極
5にはそれぞれ電子ビーム通過孔2A〜2C、3
A〜3C及び5A〜5Cが設けられ、前記上部集
束電極6と陽極7にはそれぞれの底面に対向して
設けられた3個の絞り孔6A〜6Cと7A〜7C
とで3本の電子ビームA〜Cに対応する3個の主
レンズを形成している。
Electron beam passing holes 2A to 2C, 3 are provided in the control electrode 2, acceleration electrode 3, and lower focusing electrode 5, respectively.
A to 3C and 5A to 5C are provided, and the upper focusing electrode 6 and anode 7 have three aperture holes 6A to 6C and 7A to 7C provided opposite to each other on their bottom surfaces.
and form three main lenses corresponding to the three electron beams A to C.

電子銃の一般的な動作電圧は、制御電極2に
0V、加速電極3に700V、集束電極4に約7KV、
陽極7に25KVが印加される。
The general operating voltage of the electron gun is the voltage applied to the control electrode 2.
0V, 700V to acceleration electrode 3, about 7KV to focusing electrode 4,
25KV is applied to the anode 7.

このように構成された電子銃において、3ケの
カソード1A〜1Cに与える信号電位によつてそ
れぞれの電子ビーム量が制御された3本の電子ビ
ームA,B,Cは加速電極3と下部集束電極5と
の対向した各孔間で形成されるプリフオーカスレ
ンズで若干の集束作用を受けた後、上部集束電極
6と陽極7とで形成されるそれぞれの主レンズに
よつて図示しない受像管の螢光面で結像するよう
に集束作用を受ける。同時に両側の電子ビーム
A,Cは陽極7の電子ビーム通過孔7A,7Cを
上部集束電極6の電子ビーム通過孔6A,6Cに
対して外側に微小偏心させる公知の手段によつて
角度θの傾斜を与え、3本の電子ビームA,B,
Cを一点にコンバーゼンスさせる。
In the electron gun configured in this way, the three electron beams A, B, and C, each of which has an electron beam amount controlled by the signal potential applied to the three cathodes 1A to 1C, are focused by the accelerating electrode 3 and the lower part. After receiving a slight focusing effect from the prefocus lenses formed between the holes facing the electrode 5, the picture tube (not shown) is moved by the main lenses formed by the upper focusing electrode 6 and the anode 7. It receives a focusing action so that it forms an image on the fluorescent surface of. At the same time, the electron beams A and C on both sides are tilted at an angle θ by a known means of slightly eccentrically eccentricizing the electron beam passing holes 7A and 7C of the anode 7 outward with respect to the electron beam passing holes 6A and 6C of the upper focusing electrode 6. and three electron beams A, B,
Let C converge to one point.

第2図は第1図のP−P線断面を示す集束電極
4の上面図である。電子銃は各部品2〜7を絶縁
支持するマルチフオームガラス9を上下に配置
し、図示しない円筒状のネツク管に収容されるた
め、集束電極4の上部集束電極6の筒状部6aは
3ケの孔6A〜6Cの配列方向を長径とする長円
形となり、フランジ部6bの接合部をマルチフオ
ームガラス9に挿入して支持している。なお、下
部集束電極5も図示しないが、同様に形成されて
いる。
FIG. 2 is a top view of the focusing electrode 4 showing a cross section taken along the line PP in FIG. The electron gun has multiform glasses 9 disposed above and below that insulate and support the parts 2 to 7, and is housed in a cylindrical neck tube (not shown), so the cylindrical portion 6a of the upper focusing electrode 6 of the focusing electrode 4 is It has an oval shape with its major axis extending in the direction in which the holes 6A to 6C are arranged, and the joint portion of the flange portion 6b is inserted into and supported by the multiform glass 9. Note that the lower focusing electrode 5 is also formed in the same manner, although not shown.

前記集束電極4は下部集束電極5と上部集束電
極6を予め第3図に示すように組立治具を用いて
組立て使用される。同図は集束電極4の組立治具
の短径方向の中央断面を示し、基板10に植立さ
れた少なくとも2本の芯金11に、上部集束電極
6の孔6A〜6C及び下部集束電極5の孔5A〜
5C(6A,6C及び5A,5Cは図示せず)を
嵌合させ、基板12で挾持し、相互に押付けられ
たフランジ部6b及び5bの複数ケ所を抵抗溶接
点13で接合して組立られる。
The focusing electrode 4 is used by assembling a lower focusing electrode 5 and an upper focusing electrode 6 in advance using an assembly jig as shown in FIG. This figure shows a central cross section in the short axis direction of the assembly jig for the focusing electrode 4, and shows holes 6A to 6C of the upper focusing electrode 6 and the lower focusing electrode 5 in at least two core metals 11 planted on the substrate 10. hole 5A~
5C (6A, 6C and 5A, 5C are not shown) are fitted together, sandwiched between substrates 12, and a plurality of flange portions 6b and 5b pressed against each other are joined at resistance welding points 13 to be assembled.

ところで、下部集束電極5と上部集束電極6
は、それぞれ厚さが約0.3mmのステンレス鋼板を
プレス絞り加工して製作するが、筒状部5a,6
aの短径方向は長径方向と比べて上下面の平行度
の相対誤差が大きくなる。そこで、第3図に示す
ような組立方法では、集束電極4には下部集束電
極5及び上部集束電極6の平行度誤差がそのまま
残り、例えば第1図bに示すように下部集束電極
5の底面が傾斜する。
By the way, the lower focusing electrode 5 and the upper focusing electrode 6
are manufactured by press-drawing a stainless steel plate with a thickness of about 0.3 mm, respectively.
The relative error in the parallelism of the upper and lower surfaces is larger in the minor axis direction of a than in the major axis direction. Therefore, in the assembly method shown in FIG. 3, the parallelism errors of the lower focusing electrode 5 and the upper focusing electrode 6 remain in the focusing electrode 4, and for example, as shown in FIG. is inclined.

このように、下部集束電極5の底面が傾斜する
と、カソード1Bから放出された電子ビームBは
加速電極3と下部集束電極5のビーム通過孔3B
及び5Bで形成されるプリフオーカスレンズで若
干集束されると共に、間隔の狭い上側即ち受像管
螢光面の上側に携行され、上部集束電極6と陽極
7のビーム通過孔6B及び7Bで形成される主レ
ンズの上側に偏心して入射し、集束される。
In this way, when the bottom surface of the lower focusing electrode 5 is tilted, the electron beam B emitted from the cathode 1B passes through the acceleration electrode 3 and the beam passing hole 3B of the lower focusing electrode 5.
The beam is slightly focused by a prefocus lens formed by the upper focusing electrode 6 and the beam passing hole 7B of the anode 7, and is carried to the narrowly spaced upper side, that is, above the fluorescent surface of the picture tube. The beam enters eccentrically above the main lens and is focused.

第4図は螢光面中心のビームスポツトを示し、
電子ビームが主レンズの中心に入射した場合は、
同図aに示すように電子ビーム密度の高いコア2
0と密度の低いハロー21は同心円状に出るが、
第1図bに示すように電子ビームが主レンズに偏
心して入射した場合は、主レンズの球面収差によ
つて端に近い部分程大きく屈折されるため、第4
図bに示すようにコア20とハロー21とが偏心
する。
Figure 4 shows the beam spot at the center of the fluorescent surface.
If the electron beam is incident on the center of the main lens,
As shown in figure a, core 2 with high electron beam density
0 and the low density halo 21 appear concentrically,
As shown in Figure 1b, when an electron beam is eccentrically incident on the main lens, the spherical aberration of the main lens causes it to be refracted more toward the edges, so the fourth
As shown in FIG. b, the core 20 and the halo 21 are eccentric.

インラインカラー受像管は図示しない偏向コイ
ルの磁界分布を水平方向にピンクツシヨン、垂直
方向にバレル状として螢光面の全域で3本の電子
ビームを一致させるコンバーゼンス方式をとつて
いるので、電子ビームを水平方向に走査した水平
輝線は第5図のようになる。
In-line color picture tubes use a convergence method in which the magnetic field distribution of a deflection coil (not shown) is pink in the horizontal direction and barrel-shaped in the vertical direction, making the three electron beams coincident over the entire fluorescent surface. The horizontal bright line scanned in the direction is as shown in FIG.

第5図aは第4図aのようにコア20に対して
ハロー21の偏心がない状態のビームスポツトを
偏向走査した場合を示し、螢光面22の中央では
電子ビーム密度の高い輝度20Bの上下に比較的
幅の狭いハロー部分21Bが対称的に現われる。
上側の水平輝線20Aではハロー21Aが下側に
強調され、下側の水平輝線20Cでは逆方向にハ
ロー21Cが上側となる。ハロー21(21A〜
21C)は画像の解像度、すなわちフオーカス特
性を低下させるものであるが、中央で同心的な場
合は問題とならない程度である。
FIG. 5a shows the case where the beam spot is deflected and scanned with no eccentricity of the halo 21 with respect to the core 20 as shown in FIG. A comparatively narrow halo portion 21B appears symmetrically above and below.
In the upper horizontal bright line 20A, the halo 21A is emphasized on the lower side, and in the lower horizontal bright line 20C, the halo 21C is on the upper side in the opposite direction. Hello 21 (21A~
21C) reduces the resolution of the image, that is, the focus characteristic, but this is not a problem if the images are concentric at the center.

しかし、第4図bに示すようにコア20に対し
てハロー21が片寄つた状態のビームスポツトを
偏向走査した場合は、第5図bに示すように螢光
面22の下側の輝線20Cの周りのハロー21C
は消滅する方向となるが、下側に向う中央のハロ
ー21B及び上側のハロー21Aが強調されて、
この部分の画像が著しく低下するという重大な欠
点があつた。
However, when the beam spot with the halo 21 biased toward the core 20 is deflected and scanned as shown in FIG. 4b, the bright line 20C on the lower side of the fluorescent surface 22 as shown in FIG. Halo around 21C
is in the direction of disappearing, but the downward center halo 21B and the upper halo 21A are emphasized,
A serious drawback was that the image quality in this area was significantly degraded.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、組立精度を向上させ、フオー
カス特性品位の変動を防止することができるカラ
ー受像管用電子銃構体の組立方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for assembling an electron gun assembly for a color picture tube, which can improve assembly accuracy and prevent fluctuations in focus characteristic quality.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、同一長
さに精密加工された複数のスペーサを挾持する2
枚の平行基板間に、少なくとも2個の筒状部品を
それぞれの孔を芯金に挿通し同軸的に積重ね、か
つ前記筒状部品の積重ね部分に0.05〜0.5mmの間
隔部が生ずるよう前記筒状部品を互いに離反する
方向に弾性的に付勢して前記筒状部品の両端面を
それぞれ前記平行基板に密着させて前記積重ね部
分をレーザで溶接接合することを特徴とする。
In order to achieve the above object, the present invention provides two spacers that sandwich a plurality of spacers precisely machined to have the same length.
At least two cylindrical parts are stacked coaxially between two parallel substrates by inserting their respective holes into the core metal, and the cylindrical parts are stacked so that a gap of 0.05 to 0.5 mm is created in the stacked part of the cylindrical parts. The method is characterized in that the stacked parts are welded together using a laser by elastically urging the cylindrical parts in directions away from each other so that both end surfaces of the cylindrical parts are brought into close contact with the parallel substrates, respectively.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図により説明す
る。集束電極40は従来と同様に下部集束電極5
0と上部集束電極60とからなり、それぞれ3ケ
の電子ビーム通過孔50A〜50C及び60A〜
60Cが設けられている。図に中央の電子ビーム
通過孔50B及び60Bのみ図示されている。下
基板70には前記電子ビーム通過孔50A〜50
C及び60A〜60Cに挿入される少なくとも2
本の芯金71がスプリング72で上下動可能に配
設されている。上基板73には複数のピン74が
スプリング75で上下動可能に配設されている。
前記下及び上基板70,73間には複数のスペー
サ76が配設されており、これらスペーサ76は
各部品50,60の長さの和より約0.3mm長く、
それぞれのスペーサ76の長さの差が0.01mm以下
になるように精密加工されている。なお下部集束
電極50のフランジ部50bはピン74と係合し
ないように径小に形成されている。
An embodiment of the present invention will be described below with reference to FIG. The focusing electrode 40 is the lower focusing electrode 5 as in the conventional case.
0 and an upper focusing electrode 60, each having three electron beam passing holes 50A to 50C and 60A to
60C is provided. In the figure, only the central electron beam passing holes 50B and 60B are shown. The lower substrate 70 has the electron beam passing holes 50A to 50.
C and at least 2 inserted into 60A-60C
A book core bar 71 is arranged to be movable up and down with a spring 72. A plurality of pins 74 are arranged on the upper substrate 73 so as to be movable up and down by springs 75.
A plurality of spacers 76 are arranged between the lower and upper substrates 70 and 73, and these spacers 76 are approximately 0.3 mm longer than the sum of the lengths of each component 50 and 60.
Precision processing is performed so that the difference in length between the spacers 76 is 0.01 mm or less. Note that the flange portion 50b of the lower focusing electrode 50 is formed to have a small diameter so as not to engage with the pin 74.

そこで、上下面に若干の平行度誤差を持つ下部
集束電極50及び上部集束電極60はそれぞれの
孔50A〜50C及び60A〜60Cを芯金71
に挿入し、上基板73をスペーサ76に密着させ
て押付ける。これにより、得部集束電極50はス
プリング72の付勢力によつて芯金71の段付き
部で押されて底面が上基板73に押付けられ、上
部集束電極60はスプリング75の付勢力を受け
た複数のピン74によつてフランジ部60bが押
されて頂面が下基板70の上面に密着する。下基
板70及び上基板73は複数のスペーサ76によ
つて高い平行度となるため、これらに密着した下
部集束電極50の底面と上部集束電極60の頂面
は平行精度が出た状態で保持される。
Therefore, the lower focusing electrode 50 and the upper focusing electrode 60, which have a slight parallelism error on the upper and lower surfaces, connect the respective holes 50A to 50C and 60A to 60C to the core metal 71.
and press the upper substrate 73 in close contact with the spacer 76. As a result, the bottom focusing electrode 50 is pushed by the stepped portion of the core metal 71 by the biasing force of the spring 72 and its bottom surface is pressed against the upper substrate 73, and the upper focusing electrode 60 receives the biasing force of the spring 75. The flange portion 60b is pushed by the plurality of pins 74 so that the top surface is brought into close contact with the upper surface of the lower substrate 70. Since the lower substrate 70 and the upper substrate 73 have a high degree of parallelism due to the plurality of spacers 76, the bottom surface of the lower focusing electrode 50 and the top surface of the upper focusing electrode 60, which are in close contact with them, are held in a state of parallelism. Ru.

このように保持された状態で矢印77の方向か
らレーザ光を照射してフランジ部50bと60b
を側面から複数ケ所を溶接して接合する。レーザ
光による溶接は機械的な応力を必要としないた
め、設定時の平行度及び孔の同軸度が保たれた高
精度の部品組立が可能である。
While held in this manner, a laser beam is irradiated from the direction of arrow 77 to separate the flange portions 50b and 60b.
are joined by welding in multiple places from the side. Since laser beam welding does not require mechanical stress, it is possible to assemble parts with high precision while maintaining parallelism and coaxiality of holes during setting.

前記の如く、スペーサ76は各部品50,60
の長さの和よりも約0.3mm長く設定されているた
め、各部品に約0.05mmの平行度誤差及び長さの誤
差がそれぞれ0.05mmあつても、フランジ部50b
と60bの間隔部は0.1〜0.5mmとなる。したがつ
て、下基板70と上部集束電極60の頂面及び上
基板73と下部集束電極50の底面の密着性が阻
害されることはない。フランジ部50b,60b
の間隔部が大き過ぎると、レーザ溶接による接合
精度が低下するため、間隔部は0.05〜0.5mmにす
ることが好ましい。
As mentioned above, the spacer 76 is connected to each component 50, 60.
Because it is set approximately 0.3 mm longer than the sum of the lengths, even if each part has a parallelism error of approximately 0.05 mm and a length error of 0.05 mm,
The interval between and 60b is 0.1 to 0.5 mm. Therefore, the adhesion between the lower substrate 70 and the top surface of the upper focusing electrode 60 and between the upper substrate 73 and the bottom surface of the lower focusing electrode 50 is not impaired. Flange parts 50b, 60b
If the gap is too large, the joining accuracy by laser welding will decrease, so it is preferable that the gap is 0.05 to 0.5 mm.

第7図はこのような方法で組立られた集束電極
40を示し、78はレーザによる複数の溶接点で
ある。
FIG. 7 shows the focusing electrode 40 assembled in this manner, with reference numeral 78 indicating a plurality of laser welding points.

このように上下面の平行度及び同軸度等の精度
を改良した集束電極40を電子銃に使用した場合
は、第1図bに示すようなプリフオーカスレンズ
での電子ビームの偏向がなくなり、電子ビームは
主レンズの中心に入射するため、ハローの片寄り
がない。従つて、螢光面全面でフオーカス性能の
改良されたカラー受像管を得ることができる。
When the focusing electrode 40 with improved accuracy such as the parallelism and coaxiality of the upper and lower surfaces is used in an electron gun, the deflection of the electron beam by the prefocus lens as shown in FIG. 1b is eliminated. Since the electron beam is incident on the center of the main lens, there is no misalignment of the halo. Therefore, it is possible to obtain a color picture tube with improved focus performance over the entire fluorescent surface.

第8図は本発明の他の実施例で、下部集束電極
51と上部集束電極61間には2ケの中間カツプ
80,81が配置され、この中間カツプ80,8
1を溶接接合する場合を示す。下基板90には下
部集束電極51、上部集束電極61及び中間カツ
プ80,81にそれぞれ設けられた孔51A〜5
1C、61A〜61C及び80A〜80C、81
A〜81C(図には51B,61B,80B,8
1Bのみ図示)に挿入される少なくとも2本の芯
金91が植立されている。上基板92には芯金9
1の先端が挿入される穴が形成されている。スペ
ーサ93は前記実施例と同様に、各部品51,6
1,80,81の長さの和より約0.3mm長く、そ
れぞれのスペーサ93の長さの差が0.01mm以下に
なるように精密加工されている。また中間カツプ
80,81のフランジ部80b,81b間には複
数の弾性体94が配設されている。
FIG. 8 shows another embodiment of the present invention, in which two intermediate cups 80, 81 are arranged between the lower focusing electrode 51 and the upper focusing electrode 61.
1 is welded and joined. The lower substrate 90 has holes 51A to 5 provided in the lower focusing electrode 51, the upper focusing electrode 61, and the intermediate cups 80 and 81, respectively.
1C, 61A-61C and 80A-80C, 81
A to 81C (51B, 61B, 80B, 8 in the figure)
At least two core metals 91 are installed to be inserted into the core (only 1B is shown). The upper substrate 92 has a core metal 9
A hole is formed into which the tip of No. 1 is inserted. The spacer 93 is connected to each component 51, 6 as in the previous embodiment.
It is approximately 0.3 mm longer than the sum of the lengths of 1, 80, and 81, and is precisely machined so that the difference in length between each spacer 93 is 0.01 mm or less. Further, a plurality of elastic bodies 94 are arranged between the flange portions 80b and 81b of the intermediate cups 80 and 81.

そこで、芯金91に順次上部集束電極61、中
間カツプ81,80及び下部集束電極51を挿入
し、中間カツプ80,81間に弾性体94を配設
し、上基板92をスペーサ93に密着させて押付
ける。そして、まず、下部集束電極51のフラン
ジ51bと中間カツプ80のフランジ80b、上
部集束電極61のフランジ61bと中間カツプ8
1のフランジ81bを夫々複数の抵抗溶接点97
で接合する。さらに矢印95の方向からレーザ光
を照射して中間カツプ80,81のフランジ部8
0b,81bの間隔部を側面から複数ケ所溶接し
て接合する。
Therefore, the upper focusing electrode 61, intermediate cups 81, 80, and lower focusing electrode 51 are sequentially inserted into the core bar 91, the elastic body 94 is arranged between the intermediate cups 80, 81, and the upper substrate 92 is brought into close contact with the spacer 93. and press it. First, the flange 51b of the lower focusing electrode 51 and the flange 80b of the intermediate cup 80, and the flange 61b of the upper focusing electrode 61 and the intermediate cup 80 are connected.
1 flange 81b is connected to a plurality of resistance welding points 97, respectively.
Join with. Furthermore, the flange portions 8 of the intermediate cups 80 and 81 are irradiated with a laser beam from the direction of the arrow 95.
The spaced parts 0b and 81b are joined by welding at multiple locations from the side.

このように、中間カツプ80,81は離反する
方向に弾性体94で付勢されているので、下部集
束電極51の底面は上基板92に密着し、上部集
束電極基板61の頂面は下基板90に密着し、両
者51,61は平行度がでた状態で中間カツプ8
0,81が接合される。
In this way, since the intermediate cups 80 and 81 are urged away from each other by the elastic body 94, the bottom surface of the lower focusing electrode 51 is in close contact with the upper substrate 92, and the top surface of the upper focusing electrode substrate 61 is in close contact with the lower substrate. 90, and both 51 and 61 are parallel, and the middle cup 8
0,81 are joined.

第9図はこのような方法で組立られた集束電極
41で、96はレーザ光による溶接点を示す。
FIG. 9 shows the focusing electrode 41 assembled by such a method, and 96 indicates a welding point using a laser beam.

なお、上記各実施例はバイポテンシヤル集束方
式電子銃用の集束電極の組立方法について説明し
たが、複数の電極部品から形成される多段集束電
子銃の電極構体にも同様に適用できる。また集束
電極の穴は3ケの場合について説明したが、1ケ
以上あれば同様に適用できる。
Although each of the above embodiments describes a method for assembling a focusing electrode for a bipotential focusing electron gun, the present invention can be similarly applied to an electrode structure of a multi-stage focusing electron gun formed from a plurality of electrode parts. Further, although the case where the focusing electrode has three holes has been described, the same applies if there is one or more holes.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな如く、本発明によれ
ば、各部品の平行度誤差と関係なく両端面の平行
精度及び両端面に設けられた電子ビーム通過孔の
同軸精度が確保されるので、より高精度の電子銃
を得ることができ、フオーカス品質の変動が少な
いカラー受像管を生産できる。
As is clear from the above description, according to the present invention, the parallel accuracy of both end surfaces and the coaxial accuracy of the electron beam passing holes provided on both end surfaces are ensured regardless of the parallelism error of each component, so that higher A highly accurate electron gun can be obtained, and a color picture tube with less variation in focus quality can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のインライン形電子銃を示し、a
は水平方向断面図、bは垂直方向断面図、第2図
は第1図aのP−P線断面で示す集束電極の上面
図、第3図は従来の集束電極の組立方法を示す要
部断面図、第4図a,bは螢光面に現われるビー
ムスポツトの形状図、第5図a,bは第4図に示
すビームスポツトを螢光面上に走査させた水平輝
線の状態図、第6図は本発明の組立方法の一実施
例を示す要部断面図、第7図は第6図の方法によ
つて得られた集束電極の斜視図、第8図は本発明
の組立方法の他の実施例を示す要部断面図、第9
図は第8図の方法によつて得られた集束電極の斜
視図である。 50,51……下部集束電極、50B,51B
……電子ビーム通過孔、50b,51b……フラ
ンジ部、60,61……上部集束電極、60B,
61B……電子ビーム通過孔、60b,61b…
…フランジ部、70……下基板、71……芯金、
72……スプリング、73……上基板、74……
ピン、75……スプリング、76……スペーサ、
77……レーザ光照射方向、80,81……中間
カツプ、80B,81B……孔、80b,81b
……フランジ部、90……下基板、91……芯
金、92……上基板、93……スペーサ、94…
…弾性体、95……レーザ光照射方向。
Figure 1 shows a conventional in-line electron gun, a
1 is a horizontal sectional view, b is a vertical sectional view, FIG. 2 is a top view of the focusing electrode taken along the line P-P in FIG. 4A and 4B are diagrams of the shape of the beam spot appearing on the fluorescent surface, and FIGS. 5A and 5B are state diagrams of horizontal bright lines obtained by scanning the beam spot shown in FIG. 4 on the fluorescent surface. FIG. 6 is a sectional view of essential parts showing an embodiment of the assembly method of the present invention, FIG. 7 is a perspective view of a focusing electrode obtained by the method of FIG. 6, and FIG. 8 is an assembly method of the present invention. 9th cross-sectional view of main parts showing another embodiment of
The figure is a perspective view of a focusing electrode obtained by the method of FIG. 8. 50, 51...Lower focusing electrode, 50B, 51B
...Electron beam passing hole, 50b, 51b...Flange portion, 60, 61...Top focusing electrode, 60B,
61B...Electron beam passage hole, 60b, 61b...
...Flange part, 70 ... Lower board, 71 ... Core metal,
72...Spring, 73...Upper board, 74...
Pin, 75...spring, 76...spacer,
77... Laser beam irradiation direction, 80, 81... Intermediate cup, 80B, 81B... Hole, 80b, 81b
...Flange portion, 90...Lower board, 91...Core metal, 92...Upper board, 93...Spacer, 94...
...Elastic body, 95... Laser beam irradiation direction.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2個の筒状部品を積重ねて接合
し、両端面にそれぞれ設けられた少なくとも1個
の孔が対向電極との間で電子レンズを形成するカ
ラー受像管用電子銃電極構体の組立方法におい
て、同一長さに精密加工された複数のスペーサを
挾持する2枚の平行基板間に、少なくとも2個の
筒状部品をそれぞれの孔を芯金に挿通し同軸的に
積重ね、かつ前記筒状部品の積重ね部分に0.05〜
0.5mmの間隔部が生ずるよう前記筒状部品を互い
に離反する方向に弾性的に付勢して前記筒状部品
の両端面をそれぞれ前記平行基板に密着させて前
記積重ね部分をレーザで溶接接合することを特徴
とするカラー受像管用電子銃電極構体の組立方
法。
1. A method for assembling an electron gun electrode assembly for a color picture tube, in which at least two cylindrical parts are stacked and joined together, and at least one hole provided on each end face forms an electron lens with a counter electrode, At least two cylindrical parts are stacked coaxially between two parallel substrates that sandwich a plurality of spacers precision-machined to the same length, and the cylindrical parts are stacked coaxially through their respective holes inserted into the core metal. 0.05~ for the stacked part
The cylindrical parts are elastically urged in directions away from each other so as to create a gap of 0.5 mm, both end surfaces of the cylindrical parts are brought into close contact with the parallel substrates, and the stacked parts are welded together using a laser. A method for assembling an electron gun electrode structure for a color picture tube, characterized in that:
JP1830284A 1984-02-06 1984-02-06 Assembling of electron gun electrode structure for color picture tube Granted JPS60163335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1830284A JPS60163335A (en) 1984-02-06 1984-02-06 Assembling of electron gun electrode structure for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1830284A JPS60163335A (en) 1984-02-06 1984-02-06 Assembling of electron gun electrode structure for color picture tube

Publications (2)

Publication Number Publication Date
JPS60163335A JPS60163335A (en) 1985-08-26
JPH0558208B2 true JPH0558208B2 (en) 1993-08-26

Family

ID=11967813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1830284A Granted JPS60163335A (en) 1984-02-06 1984-02-06 Assembling of electron gun electrode structure for color picture tube

Country Status (1)

Country Link
JP (1) JPS60163335A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685467B2 (en) * 1987-12-25 1997-12-03 株式会社日立製作所 Electron gun electrode assembly for color picture tube
KR100247822B1 (en) * 1997-10-24 2000-03-15 손욱 Method for manufacturing electrodes of electron gun
KR20010094676A (en) * 2000-04-01 2001-11-01 민병종 electron gun assembling apparatus and its assembling method for a color cathode ray tube

Also Published As

Publication number Publication date
JPS60163335A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
JPH0427656B2 (en)
US5146133A (en) Electron gun for color cathode ray tube
JPH0558208B2 (en)
KR910007829B1 (en) Electron gun of ccrt
JP2685467B2 (en) Electron gun electrode assembly for color picture tube
JPH01236554A (en) Color image receiving tube
JPH0630217B2 (en) Method for manufacturing electron gun electrode assembly for color picture tube
US4631443A (en) Multibeam electron gun having a formed transition member
JPH0212740A (en) Electron gun for color cathode-ray tube
JP3034878B2 (en) Electron gun for color picture tube
KR100190313B1 (en) Color picture tube and in-line electron gun
JP3109746B2 (en) Color picture tube equipment
JPH0452586B2 (en)
KR930008122Y1 (en) In-line type electron gun for cathode-ray tube
JPH0158620B2 (en)
JP3348869B2 (en) Color cathode ray tube
JPS63168932A (en) Assembling method for electron gun for in-line type color cathode-ray tube
KR100829734B1 (en) Electrodes and color cathode ray tube utilizing the same
JPS6313241A (en) Inline type electron gun electrode structure for color picture tube
JP3053825B2 (en) Color cathode ray tube
JP2685823B2 (en) Color picture tube equipment
KR100258718B1 (en) Electron gun for cathode ray tube
JPH09223471A (en) Electron gun for cathode ray tube
KR920004555B1 (en) Assembling method and apparatus electrode in electron gun for crt
KR100384673B1 (en) Color Cathode Ray Tube Having In-line Type Electron Gun

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term