JPH0558017B2 - - Google Patents

Info

Publication number
JPH0558017B2
JPH0558017B2 JP7956885A JP7956885A JPH0558017B2 JP H0558017 B2 JPH0558017 B2 JP H0558017B2 JP 7956885 A JP7956885 A JP 7956885A JP 7956885 A JP7956885 A JP 7956885A JP H0558017 B2 JPH0558017 B2 JP H0558017B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
glass
granulated
glass milled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7956885A
Other languages
Japanese (ja)
Other versions
JPS61236840A (en
Inventor
Koji Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP7956885A priority Critical patent/JPS61236840A/en
Publication of JPS61236840A publication Critical patent/JPS61236840A/en
Publication of JPH0558017B2 publication Critical patent/JPH0558017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、熱硬化性合成樹脂、又は熱可塑性
合成樹脂の強化材として使用する粒状化ガラスミ
ルドフアイバーに関する。 〔従来の技術〕 熱硬化性合成樹脂、又は熱可塑性合成樹脂の強
化材として使用されるガラス繊維に、ガラス繊維
を細切粉砕して得られる繊維長0.01〜0.05mmのガ
ラスパウダーがある。しかしこのガラスパウダー
を強化材とする成型品は、表面は極めて平滑であ
るが強度が充分でない。 一方、熱硬化性合成樹脂や熱可塑性合成樹脂の
強化材として、繊維長3mm程度のガラス繊維チヨ
ツプドストランドも広く使用されてきたが、成型
品の小型化、高級化に伴なつて、繊維長の短いガ
ラス繊維の使用が望まれるに至り、繊維長を短く
し所望の成型品強度を得るために、ガラス繊維の
フアイバー長を0.05〜1.0mm程度とし、且つアス
ペクト比、即ちフアイバー長とフアイバー径との
比を10〜50としたガラスミルドフアイバーを使用
する試みがなされている。 又、射出成型により熱可塑性合成樹脂をガラス
繊維で強化し、成型品を製造する場合、熱可塑性
合成樹脂のペレツトとガラス繊維とを押出成型機
で充分に混練して一旦ペレツト化したものを、更
に射出成型機に投入し目的の成型品を得るという
2工程方式が採用されている。 〔発明が解決しようとする問題点〕 熱硬化性合成樹脂、熱可塑性合成樹脂の強化材
として、フアイバー長0.05〜1.0mm、アスペクト
比10〜50のガラスミルドフアイバーは、繊維長が
短くかつ粗鬆であるために堆積状態のまま使用し
ようとすると、繊維同志が互いに交差、重なり合
つて塊状となり、ホツパーやシユートから一定量
づつ自動的に供給出来ず、そのため連続自動成型
への適用が困難であるばかりか、熱硬化性合成樹
脂、又は熱可塑性合成樹脂との混合、均一分散が
不充分となることが多かつた。又該ガラス繊維の
取扱に際して、ガラス繊維が飛散して歩留りの低
下を来したり、飛散による環境の悪化、工場設備
等への堆積等好ましくない現象が認められる。特
にチヨツプドストランドの形態を保持せしめたま
ま繊維長を更に短くすることは困難で、チヨツプ
ドストランドがフイラメントに分離する等、チヨ
ツプドストランドとフイラメントが混在した状態
となり、成型品の強度、外観に悪影響を及ぼす。 殊に前記ガラス繊維で強化した熱可塑性合成樹
脂の2工程方式による射出成型は、生産性の面か
らも1工程方式に簡略化することが望まれてい
る。 本発明はこれらの問題点を解決することを目的
としてなされたものである。 〔問題点を解決するための手段〕 本発明は繊維長0.05〜1.0mm、アスペクト比10
〜50に破砕、細断し、フアイバーに分離したガラ
スミルドフアイバーを微量の結合剤の存在下に接
着、粒状化した、嵩比重0.5〜0.8g/cm3、粒径
0.3〜4.0mmの粒状化ガラスミルドフアイバーとす
ることにより、熱硬化性合成樹脂、熱可塑性合成
樹脂の強化材として適当な粒状化ガラスミルドフ
アイバーを得ることができたものである。 ここに使用される結合剤は、繊維長0.05〜1.0
mm、アスペクト比10〜50のフアイバーに分離した
ガラスミルドフアイバーを粒状化する際に、フア
イバー同志その交点を仮接着して粒形を保つに必
要な最低限の微量とし、接着、結合されたガラス
ミルドフアイバーが強化しようとする熱硬化性合
成樹脂、熱可塑性合成樹脂中に混入される際、ホ
ツパー又はシユート内を転動しながら移動し、連
続して又は間歇的に一定量づつ供給され、然も前
記熱硬化性合成樹脂又は熱可塑性合成樹脂と混合
され、成型時における合成樹脂の流動に伴つて粒
状を失いフアイバー状態で均一に分布する如く形
成される。 即ち使用される結合剤としては、フアイバーに
分離したガラスミルドフアイバーを交差、平行状
態で接着して粒状とするためには水も使用可能で
あるが、フアイバー同志その交点を仮接着するた
めには、ポリ酢酸ビニル樹脂、ポリアクリルエス
テル系樹脂、ポリウレタン系樹脂等の熱可塑性樹
脂結合剤、或いはポリエステル系樹脂、エポキシ
系樹脂、フエノール系樹脂、メラミン系樹脂等の
熱硬化性樹脂結合剤が、エマルジヨン又は溶剤溶
液の形で使用され、ガラスミルドフアイバーに対
する該結合剤の付着量は0.4〜0.6重量%程度が適
当である。そして、何れの種類の結合剤を使用す
るかは粒状化ガラスミルドフアイバーの用途即ち
強化しようとする熱硬化性合成樹脂、熱可塑性合
成樹脂の種類、成型法を考慮して選択され、例え
ば強化しようとする熱硬化性合成樹脂が不飽和ポ
リエステル樹脂の場合、それと相溶性のあるポリ
エステル系樹脂結合剤を使用することにより、粒
状化ガラスミルドフアイバーに対する不飽和ポリ
エステル樹脂の含浸性を向上し、結合剤と合成樹
脂相互の相溶性により成型時における樹脂の流動
に伴つて粒状化ガラスミルドフアイバーは粒状を
失い成型品中にフアイバー状態で均一に分布する
のである。 又これら結合剤に対しては、アミノシラン、エ
ポキシシラン、メタクリルシラン等公知のガラス
繊維表面処理剤を併用すると、強化しようとする
熱硬化性合成樹脂、熱可塑性合成樹脂に対するガ
ラスミルドフアイバーとの結合力が向上するから
より好適である。 前記結合剤を付与されたガラスミルドフアイバ
ーは、粒状化装置により粒状化される。 繊維形態を有する材料の造粒技術には各種の方
法が公知であるが、本発明の粒状化ガラスミルド
フアイバーは、粒状化前の繊維長0.05〜1.0mm、
アスペクト比10〜50を保持するフアイバーから成
るものであるから、粒状化工程でフアイバーから
なる該ガラスミルドフアイバーが更に粉砕されな
いよう考慮する必要がある。 従つて本発明で粒状化に使用される装置は転動
形造粒機等が好ましく、本発明においては転動形
造粒機の一種である回転皿形造粒機を用いて造粒
を行つた。そして造粒条件を種々変更することに
より粒度分布を変えることができる。 このようにして得られた粒状化ガラスミルドフ
アイバーにつき、その粒状化物の粒径と嵩比重
が、合成樹脂の成型に及ぼす影響を検討したとこ
ろ、後述する実施例において明らかにするよう
に、嵩比重は粒径が大きくなるに従い徐々に大き
な値となつて現れるが、粒状化ガラスミルドフア
イバーの転動による移動性、合成樹脂中における
フアイバーへの分散性は粒径範囲が1.4〜2.4mmの
粒径を持つ粒状化ガラスミルドフアイバーを中心
に、これより大きい粒径であつても小さい粒径で
あつても低下することが知られ、これが粒状化ガ
ラスミルドフアイバーを、熱硬化性合成樹脂、又
は熱可塑性合成樹脂に混合した時に、部分的な混
練不足、未分散等の欠点を発生する原因となると
考えられる。従つて、合成樹脂成型時におけるミ
ルドフアイバーの流動性、合成樹脂中におけるフ
アイバーへの分散性を考慮すると、嵩比重は0.5
〜0.8g/cm3、粒径は0.3〜4.0mmの粒状化ガラス
ミルドフアイバーが最も好ましいことがわかつ
た。 今若し嵩比重が0.5〜0.8g/cm3を外れる場合
には、嵩比重が大きい場合も小さい場合も粒状化
ガラスミルドフアイバーはホツパー又はシユート
内でブリツジ現象を起し易くなり工程性に問題が
ある。 又粒径範囲が0.3〜4.0mm以外のものについて
は、フアイバーが絡まらないで交差、重なり合つ
ているので最初のフアイバーへの分離工程に戻し
再使用することができる。 〔実施例〕 直径が10μのガラス繊維フイラメントを、800
本引揃えたガラス繊維ストランドを、繊維長3mm
に切断し、切断されたチヨツプドストランドを遠
心粉砕機で0.05〜0.5mmの長さに切断破砕、細断
して、アスペクト比10〜50のフアイバーの状態に
分離したガラスミルドフアイバーを得た。 次に該処理を終えたガラスミルドフアイバー3
Kgを、高速回転羽根を有する撹拌装置に投入し、
1分間に5000回転の速度で撹拌しながら、エポキ
シシランを0.1重量%含む、固形分0.7重量%のポ
リ酢酸ビニルを結合剤とする結合剤溶液を、ガラ
スミルドフアイバー重量の70重量%に相当する量
だけ200g/分の速度で撒布した。次いで該ガラ
スミルドフアイバーを、回転皿形造粒機(商品名
マルメライザー、不二パウダル株式会社製)に
より粒状化を行い、125〜135℃の温度で約5時間
加熱乾燥して粒状化ガラスミルドフアイバーを得
た。該粒状化ガラスミルドフアイバーに対する結
合剤の付着量は0.5重量%であつた。得られた粒
状化ガラスミルドフアイバーを篩にかけて、第1
表に示す6つの粒径範囲のものに区分し、その粒
度分布、粒径、嵩比重及び移動性の関係を測定し
た。その結果を第2表に示す。尚嵩比重及び移動
性の測定は下記方法によつた。
[Industrial Application Field] The present invention relates to a granulated glass milled fiber used as a reinforcing material for thermosetting synthetic resins or thermoplastic synthetic resins. [Prior Art] Glass fibers used as reinforcing materials for thermosetting synthetic resins or thermoplastic synthetic resins include glass powder with a fiber length of 0.01 to 0.05 mm obtained by cutting and pulverizing glass fibers. However, although molded products using this glass powder as a reinforcing material have extremely smooth surfaces, they do not have sufficient strength. On the other hand, chopped glass fiber strands with a fiber length of about 3 mm have been widely used as reinforcing materials for thermosetting synthetic resins and thermoplastic synthetic resins, but as molded products become smaller and more sophisticated, The use of glass fibers with short fiber length has come to be desired, and in order to shorten the fiber length and obtain the desired strength of the molded product, the fiber length of the glass fiber is set to about 0.05 to 1.0 mm, and the aspect ratio, that is, the fiber length Attempts have been made to use glass milled fibers with a fiber diameter ratio of 10 to 50. In addition, when manufacturing a molded product by reinforcing thermoplastic synthetic resin with glass fiber by injection molding, pellets of thermoplastic synthetic resin and glass fiber are thoroughly kneaded in an extrusion molding machine and once pelletized, Furthermore, a two-step method is adopted in which the material is fed into an injection molding machine to obtain the desired molded product. [Problems to be Solved by the Invention] Glass milled fibers with a fiber length of 0.05 to 1.0 mm and an aspect ratio of 10 to 50 are used as reinforcing materials for thermosetting synthetic resins and thermoplastic synthetic resins. Therefore, if you try to use it as it is in a piled state, the fibers will cross and overlap each other and form a lump, making it impossible to automatically feed a fixed amount from a hopper or chute, making it difficult to apply it to continuous automatic molding. Moreover, mixing and uniform dispersion with the thermosetting synthetic resin or thermoplastic synthetic resin were often insufficient. In addition, when handling the glass fibers, undesirable phenomena such as glass fibers scattering, resulting in a decrease in yield, deterioration of the environment due to scattering, and accumulation on factory equipment, etc., are observed. In particular, it is difficult to further shorten the fiber length while retaining the chopped strand morphology, resulting in a state where chopped strands and filaments are mixed, such as the chopped strands separating into filaments. It has a negative effect on the strength and appearance of the product. In particular, it is desirable to simplify the two-step injection molding of thermoplastic synthetic resin reinforced with glass fibers to a one-step method from the viewpoint of productivity. The present invention has been made to solve these problems. [Means for solving the problems] The present invention has a fiber length of 0.05 to 1.0 mm and an aspect ratio of 10.
Glass milled fibers crushed and shredded into ~50 mm and separated into fibers are bonded and granulated in the presence of a trace amount of binder, bulk specific gravity 0.5~0.8 g/cm3, particle size
By making the granulated glass milled fiber 0.3 to 4.0 mm, it was possible to obtain a granulated glass milled fiber suitable as a reinforcing material for thermosetting synthetic resins and thermoplastic synthetic resins. The binder used here has a fiber length of 0.05 to 1.0
When glass milled fibers separated into fibers with a diameter of 10 mm and an aspect ratio of 10 to 50 are granulated, the intersection points of the fibers are temporarily bonded to the minimum amount necessary to maintain the granule shape, and the glass is bonded and bonded. When the milled fiber is mixed into the thermosetting synthetic resin or thermoplastic synthetic resin to be reinforced, it moves while rolling in a hopper or chute, and is supplied continuously or intermittently in a fixed amount. is mixed with the thermosetting synthetic resin or thermoplastic synthetic resin, and as the synthetic resin flows during molding, the particles lose their granularity and are uniformly distributed in the form of fibers. That is, water can be used as a bonding agent to bond separated glass milled fibers in a crosswise or parallel state to form granules, but water can be used to temporarily bond fibers together at their intersection points. , a thermoplastic resin binder such as polyvinyl acetate resin, polyacrylic ester resin, polyurethane resin, or a thermosetting resin binder such as polyester resin, epoxy resin, phenolic resin, melamine resin, etc. Alternatively, it is used in the form of a solvent solution, and the amount of the binder attached to the glass milled fiber is suitably about 0.4 to 0.6% by weight. The type of binder to be used is selected in consideration of the use of the granulated glass milled fiber, that is, the type of thermosetting synthetic resin or thermoplastic synthetic resin to be reinforced, and the molding method. When the thermosetting synthetic resin to be used is an unsaturated polyester resin, by using a polyester resin binder that is compatible with it, the impregnation of the unsaturated polyester resin into the granulated glass milled fiber is improved, and the binder Due to mutual compatibility between the resin and the synthetic resin, the granulated glass milled fibers lose their granularity as the resin flows during molding, and are uniformly distributed in the form of fibers in the molded product. In addition, when these binders are used in combination with known glass fiber surface treatment agents such as aminosilane, epoxysilane, and methacrylic silane, the bonding strength between the glass milled fiber and the thermosetting synthetic resin or thermoplastic synthetic resin to be strengthened can be improved. This is more preferable because it improves. The glass milled fiber provided with the binder is granulated by a granulating device. Various methods are known for granulating materials having a fiber form, but the granulated glass milled fiber of the present invention has a fiber length of 0.05 to 1.0 mm before granulation,
Since it is made of fibers having an aspect ratio of 10 to 50, it is necessary to take care to prevent the glass milled fibers from being further crushed during the granulation process. Therefore, the device used for granulation in the present invention is preferably a rolling type granulator, and in the present invention, granulation is performed using a rotating plate type granulator, which is a type of rolling type granulator. Ivy. The particle size distribution can be changed by variously changing the granulation conditions. Regarding the granulated glass milled fiber obtained in this way, we investigated the influence of the particle size and bulk specific gravity of the granulated product on the molding of synthetic resin, and found that the bulk specific gravity appears to gradually increase as the particle size increases, but the mobility of granulated glass milled fibers due to rolling and the dispersibility of fibers in synthetic resins are within the particle size range of 1.4 to 2.4 mm. It is known that granulated glass milled fibers with granulated glass milled fibers have a lower particle size than this, even if they have a larger or smaller particle size. This is thought to be the cause of defects such as partial insufficient kneading and non-dispersion when mixed with plastic synthetic resins. Therefore, considering the fluidity of the milled fiber during synthetic resin molding and the dispersibility of the fiber into the synthetic resin, the bulk specific gravity is 0.5.
Granulated glass milled fibers of ~0.8 g/cm3 and particle sizes of 0.3 to 4.0 mm were found to be most preferred. If the bulk specific gravity is outside the range of 0.5 to 0.8 g/cm3, whether the bulk specific gravity is large or small, the granulated glass milled fiber is likely to cause bridging in the hopper or chute, causing problems in process efficiency. be. In addition, for particles having a particle size outside the range of 0.3 to 4.0 mm, the fibers intersect and overlap without getting entangled, so they can be returned to the initial separation process into fibers and reused. [Example] A glass fiber filament with a diameter of 10 μm was
The assembled glass fiber strands are 3 mm in fiber length.
The chopped strands are cut, crushed, and shredded into lengths of 0.05 to 0.5 mm using a centrifugal crusher to obtain glass milled fibers separated into fibers with an aspect ratio of 10 to 50. Ta. Next, the glass milled fiber 3 that has undergone the treatment
Kg into a stirring device with high-speed rotating blades,
While stirring at a speed of 5000 revolutions per minute, a binder solution containing 0.1% by weight of epoxy silane and having a solid content of 0.7% by weight of polyvinyl acetate as a binder was added to a solution corresponding to 70% by weight of the glass milled fiber weight. The amount was applied at a rate of 200 g/min. Next, the glass milled fibers are granulated using a rotating plate granulator (trade name: Marmerizer, manufactured by Fuji Paudal Co., Ltd.), and heated and dried at a temperature of 125 to 135°C for about 5 hours to obtain granulated glass milled fibers. Got fiber. The amount of binder deposited on the granulated glass milled fiber was 0.5% by weight. The obtained granulated glass milled fiber was passed through a sieve and
The particles were classified into the six particle size ranges shown in the table, and the relationships among particle size distribution, particle size, bulk specific gravity, and mobility were measured. The results are shown in Table 2. The bulk specific gravity and mobility were measured by the following method.

【表】 ◎嵩比重:粒状化ガラスミルドフアイバー200g
を、100mlのメスシリンダーに投入し、その体
積を読みとりg/cm3で表わした。 ◎移動性:粒状化ガラスミルドフアイバー50g
を、幅75mm、深さ30mm、長さ200mm、傾斜角20
度の角型樋中に厚味を均一に載置し、振幅1.5
mm、振動数3000回/分の振動を与え、投入量の
半分、25gが樋から転動により移動落下するま
での時間で表わした。 又第2表に前記粒状化ガラスミルドフアイバー
の粒径と、成型品中におけるガラスミルドフアイ
バーの未分散数を示す。尚未分散数の測定は次の
方法によつた。
[Table] ◎Bulk specific gravity: Granulated glass milled fiber 200g
was poured into a 100 ml measuring cylinder, and the volume was read and expressed in g/cm3. ◎Mobility: Granulated glass milled fiber 50g
, width 75mm, depth 30mm, length 200mm, slope angle 20
Place the thickness evenly in a square gutter with an amplitude of 1.5
It is expressed as the time it takes for half of the input amount, 25g, to move and fall from the gutter by rolling when vibration was applied at a frequency of 3000 times/min. Table 2 also shows the particle size of the granulated glass milled fibers and the number of undispersed glass milled fibers in the molded product. The undispersed number was measured by the following method.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べた通り、本発明の粒状化ガラス
ミルドフアイバーは、繊維長0.05〜1.0mm、アス
ペクト比10〜50に破砕、細断し、フアイバーに分
離したガラスミルドフアイバーを、嵩比重0.5〜
0.8g/cm3、粒径0.3〜4.0mmの粒状としたために、
移動性が良好でホツパーやシユートから連続して
又は間歇的に、一定量づつ自動的に供給すること
が可能となつたばかりでなく、ガラスミルドフア
イバーはすべて交絡せずフアイバーに分離された
状態で粒状化されていること、使用された微量の
結合剤は熱硬化性合成樹脂、熱可塑性合成樹脂に
対する相溶性を有するので、合成樹脂との混練
性、合成樹脂中で粒状化ガラスミルドフアイバー
からミルドフアイバー状態への均一分散性にすぐ
れ、その結果成型された製品は表面平滑性に富
み、未分散ガラスミルドフアイバーのない、強度
その他の物理的性質等品質性能のすぐれた熱硬化
性合成樹脂成型品及び熱可塑性合成樹脂成型品を
得ることができ、特に熱可塑性合成樹脂ペレツト
と粒状化ガラス繊維を同時に射出成型機に直接投
入し、1工程方式による成型を実現することがで
きた。また粒状化ガラスミルドフアイバー中の
個々のフアイバーは絡むことがなく、単に交差、
重なり合つて、微量の結合剤により接着されてい
るために、不良品はミルドフアイバーに再生して
利用することが出来、ミルドフアイバーの製品へ
の歩留は極めて高く、経済的効果は極めて大き
い。
As described in detail above, the granulated glass milled fiber of the present invention is obtained by crushing and shredding the glass milled fiber into fibers with a fiber length of 0.05 to 1.0 mm and an aspect ratio of 10 to 50, and separating the glass milled fibers into fibers with a bulk specific gravity of 0.5 to 1.0 mm.
In order to make it into granules with a particle size of 0.8g/cm3 and a particle size of 0.3 to 4.0mm,
Not only does it have good mobility, making it possible to automatically feed a fixed amount continuously or intermittently from a hopper or chute, but glass milled fibers can be granulated without entanglement and are separated into fibers. The small amount of binder used has compatibility with thermosetting synthetic resins and thermoplastic synthetic resins, so it is easy to knead with synthetic resins, and it is possible to mix from granulated glass milled fibers to milled fibers in synthetic resins. As a result, the molded products have excellent surface smoothness, no undispersed glass milled fibers, and excellent quality performance such as strength and other physical properties. A thermoplastic synthetic resin molded product could be obtained, and in particular, thermoplastic synthetic resin pellets and granulated glass fibers could be directly fed into an injection molding machine at the same time, thereby realizing molding in a one-step method. In addition, the individual fibers in the granulated glass milled fibers do not intertwine, but simply intersect,
Since they are overlapped and bonded with a small amount of binder, defective products can be recycled and used as milled fibers, and the yield of milled fibers into products is extremely high, and the economic effect is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維長0.05〜1.0mm、アスペクト比10〜50に
破砕、細断し、フアイバーに分離したガラスミル
ドフアイバーを、微量の結合剤の存在下に接着、
粒状化した、嵩比重0.5〜0.8g/cm3、粒径0.3〜
4.0mmの粒状化ガラスミルドフアイバー。
1 Glass milled fibers are crushed and shredded into fibers with a fiber length of 0.05 to 1.0 mm and an aspect ratio of 10 to 50, separated into fibers, and bonded in the presence of a small amount of binder.
Granulated, bulk specific gravity 0.5~0.8g/cm3, particle size 0.3~
4.0mm granulated glass milled fiber.
JP7956885A 1985-04-15 1985-04-15 Granulated glass fiber Granted JPS61236840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7956885A JPS61236840A (en) 1985-04-15 1985-04-15 Granulated glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7956885A JPS61236840A (en) 1985-04-15 1985-04-15 Granulated glass fiber

Publications (2)

Publication Number Publication Date
JPS61236840A JPS61236840A (en) 1986-10-22
JPH0558017B2 true JPH0558017B2 (en) 1993-08-25

Family

ID=13693605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7956885A Granted JPS61236840A (en) 1985-04-15 1985-04-15 Granulated glass fiber

Country Status (1)

Country Link
JP (1) JPS61236840A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124732A (en) * 1988-10-31 1990-05-14 Nippon Glass Fiber Co Ltd Production of granular flaky glass

Also Published As

Publication number Publication date
JPS61236840A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US5087518A (en) Glass flake composite
TW445202B (en) Molded lump and its production method thereof
DE60206271T2 (en) METHOD AND DEVICE FOR PRODUCING FILLED THERMOPLASTIC POLYMERS
EP0804641A1 (en) Process for manufacturing carbon fiber pellets, pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
US5578535A (en) Reinforcing fiber pellets
CN112759250B (en) Glass fiber group and manufacturing method thereof, and glass fiber reinforced resin matrix composite material and manufacturing method thereof
JPH02124732A (en) Production of granular flaky glass
US3984603A (en) Fiber-reinforced thermoplastic pellets for preparing manufactured articles
JPH0558017B2 (en)
US4107250A (en) Process for making fiber-reinforced thermoplastic pellets
US3751011A (en) Mixing of particulate and fibrous materials
EP0011240B1 (en) Process for manufacturing polyolefin granulates containing fibrous additives and the use thereof for manufacturing moulded products
JP2805913B2 (en) Synthetic resin reinforcement
JP2000072499A (en) Production of aggregate for asphalt mixture
CN100408293C (en) Device for manufacturing wood imitation forming product
EP1256429B1 (en) Process for manufacturing granulated hydrophilic resin
CN110921661A (en) Preparation method of activated carbon product and activated carbon product
US4157326A (en) Preparation of glass concentrate capsules for reinforcement of thermoplastics
EP3478401A1 (en) Method for manufacturing of granular fillers using a granular nuclei, producing device and granulate obtained by this method
JP2783427B2 (en) Carbon fiber / thermoplastic compound
JP4402926B2 (en) Glass chopped strand and method for producing the same
WO1997047799A1 (en) Carbon fibers, process for the production of the same, and resin composition reinforced therewith
JPS6327207A (en) Manufacture of resin material mixed with fiber
JPH03162455A (en) Reinforcing material for synthetic resin
JP3598822B2 (en) Manufacturing method of phenolic resin molding material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term