JPH0558016B2 - - Google Patents

Info

Publication number
JPH0558016B2
JPH0558016B2 JP59213173A JP21317384A JPH0558016B2 JP H0558016 B2 JPH0558016 B2 JP H0558016B2 JP 59213173 A JP59213173 A JP 59213173A JP 21317384 A JP21317384 A JP 21317384A JP H0558016 B2 JPH0558016 B2 JP H0558016B2
Authority
JP
Japan
Prior art keywords
phosphate
halogen
reaction
phenolic resin
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59213173A
Other languages
Japanese (ja)
Other versions
JPS6191227A (en
Inventor
Ken Nanaumi
Yukio Yoshimura
Yoshitoshi Kumakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59213173A priority Critical patent/JPS6191227A/en
Publication of JPS6191227A publication Critical patent/JPS6191227A/en
Publication of JPH0558016B2 publication Critical patent/JPH0558016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は難燃性紙−フエノール樹脂積層板(銅
張り積層板を含む)の製造法に関するものであ
る。 〔従来の技術〕 最近、絶縁材料に通信機および電子機器に使用
される積層板は加工設備の自動化、省エネルギー
の観点から、常温または若干それより高い温度で
打抜可能であることが要求されている。従つて通
常低温打抜可能積層板用樹脂には各種のアルキル
フエノールをフエノールと併用し乾性油等で可塑
化したフエノール樹脂が使われている。 しかしながら、絶縁材料に使用される積層板に
対して安全性重視の観点から難燃化の要求が強く
なつている。難燃化という観点からみれば打抜加
工性の改良のため使用する乾性油等の可塑剤は難
燃化をいつそう困難かつ複雑化している積層板の
難燃化にはフエノール樹脂に難燃剤を添加する方
法がとられている。難燃剤には難燃元素として
Sb,As,P,N等の周期律表第属元素および
ハロゲン、B,Pなどを含有する化合物が多く用
いられている。特に重要な元素には酸素の遮断、
有機物の炭化、炭化被覆の形成に効果を示すリン
と反応性の高いラジカルをトラツプするのに効果
があるハロゲンがある。しかもこれらは互いに相
乗効果を示すことから分子内にリン、ハロゲンを
含有する化合物が望まれている。 臭素系難燃剤には添加型と反応型があり、前者
にはデカブロモジフエニルエーテル、ペンタブロ
モトルエン、ペンタブロモジフエニルエーテル、
ヘキサブロモシクロドデカン、ペンタブロモモノ
クロルヘキサン、テトラブロモモノクロロシクロ
ヘキサン、2,2−ビス−〔4−(2,3−ジブロ
モプロポキン)−3,5−ジブロモフエニル〕−プ
ロパン、2,2−ビス−(3,5−ジブロモ−4
−ヒドロキシフエニル)プロパン、ペンタブロモ
フエノール、トリブロモフエノール、ジブロモフ
エノールなどがあり、後者にはテトラブロモ無水
フタル酸、ジブロモフエノール、またはトリブロ
モフエノールのグリシジルエーテル、2,2−ビ
ス−(3,5−ジブロモ−4−ヒドロキシフエニ
ル)−プロパンのジグリシジルエーテル等の臭素
化エポキシ樹脂、臭素化フエノール類のアリール
化物、クロルエンド酸、テトラクロロ無水フタル
酸などがある。 リン系難燃剤はほとんど添加型で含ハロゲン系
のものもある。例えばトリクレジルホスフエー
ト、クレジルジフエニルホスフエート、トリフエ
ニルホスフエート、ジフエニルオクチルホスフエ
ート、トリブチルホスフエート、キシレルジフエ
ニルホスフエートなどのリン酸エステル類および
トリス−(β−クロロエチル)ホスフエート、ト
リス(ジブロモプロピル)ホスフエート、トリス
−(ジクロロプロピル)ホスフエート、トリス−
(2,3−ジブロモプロピル)ホスフエート、ト
リス−(ブロモクロロプロピル)ホスフエートな
どの含ハロゲンリン酸エステル類およびトリフエ
ニルホスフアイトなどの亜リン酸エステル類があ
る。 添加型の臭素系難燃剤やリン系難燃剤は樹脂と
反応しないために滲出(ブリード)しやすく、積
層板あるいは銅張り積層板の耐トリクレン性、
UVインク密着性などの特性低下の原因となる。 反応型の臭素系難燃剤はエポキシ基やアリル基
(allyl基)を導入するのに多大の費用がかかる。
臭素化エポキシ樹脂はフエノール類と反応しやす
いため、フエノール樹脂ワニスの貯蔵安定性が悪
くなるとか、プリプレグの貯蔵安定性が悪くなる
という欠点を有している。アリル基を有する臭素
化合物をフエノール樹脂に用いる場合にはあらか
じめアリール基にフエノール類を酸性触媒の存在
下に付加させなければならないという合成上一工
程増えるという欠点がある。また臭素系難燃剤の
みで難燃性を満足させるためには多量の難燃剤を
使用しなければならず費用が高くなる。臭素系難
燃剤とリン系難燃剤には相乗効果があり両者を併
用することが、紙−フエノール積層板、銅張積層
板の難燃化には好ましい。しかしリン系難燃剤を
併用した場合には前記した欠点が出やすくなり、
使用するリン系難燃剤の使用量に限度がある。ま
た、含ハロゲン、リン酸エステル類は前述したよ
うに脂肪族基にハロゲンが結合したもので耐熱性
に乏しく、耐熱性の要求される紙−フエノール積
層板、銅張積層板には使用できない。 〔発明が解決しようとする問題点〕 本発明は難燃性、耐熱性に優れた紙−フエノー
ル樹脂積層板を提供しようとするものである。 〔問題点を解決するための手段〕 本発明はリン酸エステル類とハロゲン含有芳香
族グリコール類とハロゲン含有芳香族アルコール
類を反応させて得られる反応生成物を難燃剤とし
て配合したフエノール樹脂ワニスを所定量含浸付
着させた紙基材を加熱成形することを特徴とする
ものである。 リン酸エステル類1とハロゲン含有芳香族グリ
コール類2およびハロゲン含有アルコール類3と
のエステル交換反応を考えると、リン酸エステル
1の3個の反応点、ハロゲン含有芳香族グリコー
ル2は2個の反応点、ハロゲン含有芳香族アルコ
ール3は1個の反応点をもつため、1と2の配合
比によつて反応生成物の分子量を調節することが
可能であるし、1と3の配合比によつて反応生成
物のハロゲン含有量を調節することが可能である
ため好都合である。ハロゲン含有量を増すことに
よつて添加量を減らすことが可能であること、ま
た高分子量の化合物にすることから滲出しにくく
することが可能である。以上の理由から、前記し
たリン酸エステルのブリードしやすいという欠点
を解消することができる。また、含ハロゲンリン
酸エステル類の欠点であつた耐熱性も同時に改良
でき、しかも、リン原子と臭素原子が一定に割合
で、均一にフエノール樹脂に分布させることが可
能になり難燃性を効果的に向上させるのに効果が
ある。 本発明をさらに詳しく説明すると、リン酸エス
テル類とハロゲン含有芳香族グリコールおよびハ
ロゲン含有芳香族アルコール類は塩基性触媒の存
在下無溶媒もしくは溶媒中で加熱してエステル交
換反応を起こさせ難燃剤反応生成物を得る。リン
酸エステル類としては一般式〔〕で示されるよ
うな化合物が用いられる。 但し、R1,R2,R3はアルキル基アリール基を
示し互いに同じであつても異つてもよい。 本発明に使用できるリン酸エステル類〔〕に
はトリクレジルホスフエート(TCP)、クレジル
ジフエニルホスフエート(CDP)、トリフエニル
ホスフエート(TPP)、ジフエニルオクチルホス
フエート、トリブチルホスフエート、キシレルジ
フエニルホスフエート(XDP)トリス(−β−
クロロエチル)ホスフエート、トリス−(ジブロ
モプロピル)ホスフエート、トリス−(ジブロモ
プロピル)ホスフエート、トリス(ブロモクロロ
プロピル)ホスフエート、トリエチルホスフエー
ト、トリメチルホスフエート、トリエチルホスフ
エート、トリオクチルホスフエート、トリブトキ
シエチルホスフエート、トリラウリルホスフエー
ト、トリセシルホスフエート、トリステアリルホ
スフエート、トリオレインホスフエート、トリキ
シレニルホスフエートなどがある。 ハロゲン含有芳香族グリコール類としては一般
式〔〕に示されるような化合物が用いられる。 ただしZは
[Industrial Field of Application] The present invention relates to a method for producing flame-retardant paper-phenolic resin laminates (including copper-clad laminates). [Prior Art] Recently, in order to automate processing equipment and save energy, there has been a demand for laminates used as insulating materials for communication equipment and electronic equipment to be able to be punched at room temperature or slightly higher temperature. There is. Therefore, phenolic resins made by combining various alkyl phenols with phenols and plasticizing them with drying oils, etc., are usually used as resins for low-temperature punchable laminates. However, there is an increasing demand for flame retardant laminates used as insulating materials from the viewpoint of safety. From the perspective of flame retardancy, plasticizers such as drying oil used to improve punching workability are difficult and complicated to make flame retardant.Phenol resins and flame retardants are used to make laminates flame retardant. A method of adding . As a flame retardant element in flame retardants
Compounds containing group elements of the periodic table, such as Sb, As, P, and N, as well as halogens, B, and P, are often used. Particularly important elements include oxygen blocking,
There are phosphorus, which is effective in carbonizing organic matter and the formation of carbonized coatings, and halogen, which is effective in trapping highly reactive radicals. Moreover, since these compounds exhibit a synergistic effect with each other, compounds containing phosphorus and halogen in the molecule are desired. There are two types of brominated flame retardants: additive and reactive; the former include decabromodiphenyl ether, pentabromotoluene, pentabromodiphenyl ether,
Hexabromocyclododecane, pentabromomonochlorohexane, tetrabromomonochlorocyclohexane, 2,2-bis-[4-(2,3-dibromopropoquine)-3,5-dibromophenyl]-propane, 2,2-bis -(3,5-dibromo-4
-hydroxyphenyl)propane, pentabromophenol, tribromophenol, and dibromophenol, the latter including the glycidyl ether of tetrabromophthalic anhydride, dibromophenol, or tribromophenol, 2,2-bis-(3,5 Examples include brominated epoxy resins such as diglycidyl ether of -dibromo-4-hydroxyphenyl)-propane, arylated products of brominated phenols, chlorendo acid, and tetrachlorophthalic anhydride. Most phosphorus-based flame retardants are additive types, and some are halogen-containing types. For example, phosphoric acid esters such as tricresyl phosphate, cresyl diphenyl phosphate, triphenyl phosphate, diphenyl octyl phosphate, tributyl phosphate, xylyl diphenyl phosphate, and tris-(β-chloroethyl) phosphate. , tris (dibromopropyl) phosphate, tris-(dichloropropyl) phosphate, tris-
Examples include halogen-containing phosphate esters such as (2,3-dibromopropyl) phosphate and tris-(bromochloropropyl) phosphate, and phosphite esters such as triphenyl phosphite. Additive bromine-based flame retardants and phosphorus-based flame retardants do not react with resins, so they easily bleed out (bleed).
This causes a decline in properties such as UV ink adhesion. Reactive brominated flame retardants require a large amount of cost to introduce epoxy groups or allyl groups.
Since brominated epoxy resins tend to react with phenols, they have drawbacks such as poor storage stability of phenolic resin varnishes and poor storage stability of prepregs. When a bromine compound having an allyl group is used in a phenolic resin, there is a drawback that the phenol must be added to the aryl group in advance in the presence of an acidic catalyst, which adds one additional step to the synthesis. Furthermore, in order to achieve flame retardancy using only a brominated flame retardant, a large amount of flame retardant must be used, which increases costs. Brominated flame retardants and phosphorus flame retardants have a synergistic effect, and it is preferable to use both in combination for flame retardation of paper-phenol laminates and copper-clad laminates. However, when phosphorus-based flame retardants are used together, the above-mentioned drawbacks tend to occur.
There are limits to the amount of phosphorus-based flame retardants that can be used. Further, as mentioned above, halogen-containing and phosphoric acid esters have a halogen bonded to an aliphatic group and have poor heat resistance, so they cannot be used in paper-phenol laminates and copper-clad laminates that require heat resistance. [Problems to be Solved by the Invention] The present invention aims to provide a paper-phenol resin laminate having excellent flame retardancy and heat resistance. [Means for solving the problems] The present invention provides a phenolic resin varnish containing a reaction product obtained by reacting a phosphoric acid ester, a halogen-containing aromatic glycol, and a halogen-containing aromatic alcohol as a flame retardant. The method is characterized in that a paper base material impregnated with a predetermined amount is heated and formed. Considering the transesterification reaction between phosphoric acid ester 1 and halogen-containing aromatic glycol 2 and halogen-containing alcohol 3, there are three reaction points for phosphoric acid ester 1 and two reaction points for halogen-containing aromatic glycol 2. Point, since halogen-containing aromatic alcohol 3 has one reaction site, it is possible to adjust the molecular weight of the reaction product by changing the mixing ratio of 1 and 2, and it is possible to adjust the molecular weight of the reaction product by changing the mixing ratio of 1 and 3. This is advantageous because it is possible to control the halogen content of the reaction product. By increasing the halogen content, it is possible to reduce the amount added, and by using a high molecular weight compound, it is possible to prevent leaching. For the above reasons, the above-mentioned drawback that phosphoric acid esters tend to bleed can be overcome. In addition, the heat resistance, which was a drawback of halogen-containing phosphate esters, can be improved at the same time.Furthermore, it is possible to uniformly distribute phosphorus and bromine atoms in the phenolic resin at a constant ratio, which improves flame retardancy. It is effective in improving the To explain the present invention in more detail, phosphoric acid esters, halogen-containing aromatic glycols, and halogen-containing aromatic alcohols are heated in the presence of a basic catalyst without a solvent or in a solvent to cause a transesterification reaction, resulting in a flame retardant reaction. Get the product. As the phosphoric acid esters, compounds represented by the general formula [] are used. However, R 1 , R 2 and R 3 represent an alkyl group and an aryl group, and may be the same or different. Phosphate esters [] that can be used in the present invention include tricresyl phosphate (TCP), cresyl diphenyl phosphate (CDP), triphenyl phosphate (TPP), diphenyl octyl phosphate, tributyl phosphate, Xyleldiphenyl phosphate (XDP) tris(-β-
Chloroethyl) phosphate, tris-(dibromopropyl) phosphate, tris-(dibromopropyl) phosphate, tris(bromochloropropyl) phosphate, triethyl phosphate, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, tributoxyethyl phosphate , trilauryl phosphate, triceyl phosphate, tristearyl phosphate, triolein phosphate, tricylenyl phosphate, etc. As the halogen-containing aromatic glycols, compounds represented by the general formula [] are used. However, Z

【式】(m,n=0〜5)、[Formula] (m, n=0-5),

【式】−SO2−−O−,−S−の二価の結合 基を示す。 Yは−(O−CH2−CH2−)または
[Formula] -SO 2 -O-, -S- represents a divalent bonding group. Y is -(O- CH2 - CH2- ) or

【式】を示しp,q=1〜10を示 す。Xは臭素または塩素を示し、u,v=1〜4
を示す。 (m,n)(p,q)(u,v)は互いに同じで
あつても異つていてもよい。 ハロゲン含有芳香族グリコール類〔〕には、
2,2−ビス−(3,5−ジブロモ−4−β−ヒ
ドロキシエトキシフエニル)プロパン、ビス−
(3,5−ジブロモ−4−β−ヒドロキシエトキ
シフエニル)スルホン、ビス−(3,5−ジブロ
モ−4−β−ヒドロキシエトキシフエニル)メタ
ン、ビス−(3,5−ジブロモ−4−β−ヒドロ
キシエトキシフエニル)エーテル、2,2−ビス
−(3−ブロモ−4−β−ヒドロキシフエニル)
プロパン、ビス−(3−ブロモ−4−β−ヒドロ
キシエトキシフエニル)スルホン、ビス−(3−
ブロモ−4−β−ヒドロキシエトキシフエニル)
メタン、ビス−(3−ブロモ−4−β−ヒドロキ
シエトキシフエニル)エーテルなどがある。 ハロゲン含有芳香族アルコール類としては、一
般式〔〕,〔〕で示される化合物が用いられ
る。 但し、Rは水素またはアルキル基を示す。 Xは臭素または塩素を示し m+p=5,m′+p′=5を示す。Yは(−CH2
CH2−O)−または
[Formula] is shown and p, q = 1 to 10. X represents bromine or chlorine, u, v=1-4
shows. (m, n) (p, q) (u, v) may be the same or different. Halogen-containing aromatic glycols []
2,2-bis-(3,5-dibromo-4-β-hydroxyethoxyphenyl)propane, bis-
(3,5-dibromo-4-β-hydroxyethoxyphenyl)sulfone, bis-(3,5-dibromo-4-β-hydroxyethoxyphenyl)methane, bis-(3,5-dibromo-4-β) -hydroxyethoxyphenyl) ether, 2,2-bis-(3-bromo-4-β-hydroxyphenyl)
Propane, bis-(3-bromo-4-β-hydroxyethoxyphenyl)sulfone, bis-(3-
Bromo-4-β-hydroxyethoxyphenyl)
Examples include methane and bis-(3-bromo-4-β-hydroxyethoxyphenyl) ether. As the halogen-containing aromatic alcohols, compounds represented by the general formulas [] and [] are used. However, R represents hydrogen or an alkyl group. X represents bromine or chlorine, m+p=5, m'+p'=5. Y is (-CH 2
CH 2 −O)− or

〔実施例〕〔Example〕

以下実施例を示して具体的に説明する。 難燃剤合成例 1 攪拌機、温度計、冷却管を備えた2の三ツ口
フラスコに、2,2−ビス−(3,5−ジブロモ
−4−β−ヒドロキシエトキシフエニル)プロパ
ン632g(1モル)2,4,6−トリブロモフエ
ニル−β−ヒドロキシエチルエーテル375g(1
モル)、トリフエニルホスフエート652g(2モ
ル)無水炭酸カリウム14.1gを入れ150℃で10時
間反応を続けた。反応終了後170℃に昇温して減
圧下に副生成したフエノールを留去した。次いで
フラスコ内の反応生成物をバツトに注ぎ込んで冷
却し、粉砕して難燃剤とした。臭素含有量39.6
重量%(以下同じ)リン含有量4.4%。 難燃剤合成例 2 上記と同様のフラスコに2,4ジブロモフエニ
ル−β−ヒドロキシエチルエーテル444g(1.5モ
ル)、トリフエニルホスフエート652g(2モル)
無水炭酸カリウム5.5gを入れ150℃で7時間反応
させた。高速液体クロマトグラフイ(HLC)で
未反応のジブロム体がないことを確認した後、ビ
ス(3,5−ジブロモ−4−β−ヒドロキシエト
キシフエニル)スルホン392.4g(0.6モル)、無
水炭酸カリウム5.5gを更に添加して170℃で4時
間反応させた。反応終了後その温度を保ちながら
減圧下に副生成物のフエノールを留去した。フエ
ノールの留出が止まつたところでフラスコ内の反
応物をバツト内に注ぎ込んで冷却した後、粉砕し
て難燃剤とした。収量は臭素含有量34.5%リン
含有量4.9%。 難燃剤合成例 3 合成例1と同様のフラスコに2,2−ビス−
(3,5−ジブロモ−4−β−ヒドロキシエトキ
シフエニル)プロパン〔A〕126.4g(0.2モル)
とクレジルジフエニルホスフエート〔B〕680g
(2モル)、CsF4.0gを入れ130℃で3時間反応さ
せた。HLCで〔A〕が全て反応したことを確認
した後、反応物に更にトリエチレングリコール−
モノ−2,4,6−トリブロモフエニルエーテル
〔C〕926g(2モル)とCsF4.0gを添加して170
℃で5時間反応させた。それぞれの反応率は
〔A〕が100%〔B〕が100%、〔C〕が97%であつ
た。この反応混合物を難燃剤とした。反応終了
後そのまま次のフエノール樹脂の合成に用いた。
副生したフエノール樹脂を除外した反応生成物の
臭素含有量は35.9%、リン含有量4.1%。 フエノール樹脂の合成例1 (フエノール樹脂
) 攪拌機、冷却器、温度計を備えた5のフラス
コに桐油1000gm.p−クレゾール2000g、PTS1
gを入れ100℃で2時間反応させた。次いでパラ
ホルム833gメタノール250gアンモニア水120g
を入れ80℃で反応させた。160℃の熱板上でのゲ
ル化時間で反応を追跡しゲル化時間が3分になつ
た時点で減圧下に脱水濃縮した。反応液が透明に
なつたところで、反応を終了しトルエン250g、
メタノール250gを投入しワニスとした。樹脂分
70%ゲル化時間2分45秒であつた。 フエノール樹脂の合成例2 (フエノール樹脂
) 攪拌機、冷却器、温度計を備えた2のフラス
コに桐油250gm.p−クレゾール500gPTS0.25g
を入れ100℃で2時間反応させた。次いで難燃剤
合成例3で合成した難燃剤を320gパラホルム
243gをメタノール70gアンモニア水30gを入れ
80℃で反応させた。ゲル化時間が3分になつた時
点で減圧下に脱水濃縮した。反応液が透明になつ
たところで反応を終了し、トルエン130gメタノ
ール130gを投入してワニスとした。樹脂分69.5
%ゲル化時間2分40秒であつた。 前記の合成した難燃剤、フエノール樹脂を用い
て表1に示す配合で積層板用フエノール樹脂ワニ
スを調整した。そして、予め水溶性フエノール樹
脂を含浸したクラフト紙に表1のワニスを樹脂分
50%に調整してから含浸させ、乾燥してプリプレ
グを作成した。 該プリプレグを所定枚数重ねて片面に接着剤付
の銅箔を重ねて150℃100Kg/cm2の圧力で70分間加
圧して厚さ1.6mmの銅張積層板を作成した。 比較例としてテトラブロモビスフエノールAと
TPP単体をフエノール樹脂に添加してワニスを
作成し同じ様にプリプレグ、それから銅張積層板
を作成した。 銅張積層板はJIS−C−6481、UL−94記載の測
定法に準じて特性を測定した。その結果を表1に
示す。
The present invention will be specifically explained below with reference to examples. Flame retardant synthesis example 1 2,2-bis-(3,5-dibromo-4-β-hydroxyethoxyphenyl)propane 632 g (1 mol) was placed in a three-necked flask equipped with a stirrer, a thermometer, and a cooling tube. ,4,6-tribromophenyl-β-hydroxyethyl ether 375g (1
mol), 652 g (2 mol) of triphenyl phosphate, and 14.1 g of anhydrous potassium carbonate were added, and the reaction was continued at 150°C for 10 hours. After the reaction was completed, the temperature was raised to 170°C, and by-product phenol was distilled off under reduced pressure. Next, the reaction product in the flask was poured into a vat, cooled, and ground into a flame retardant. Bromine content 39.6
Weight% (same below) phosphorus content 4.4%. Flame retardant synthesis example 2 In a flask similar to the above, 444 g (1.5 mol) of 2,4 dibromophenyl-β-hydroxyethyl ether and 652 g (2 mol) of triphenyl phosphate were added.
5.5 g of anhydrous potassium carbonate was added and reacted at 150°C for 7 hours. After confirming that there was no unreacted dibrome compound by high performance liquid chromatography (HLC), 392.4 g (0.6 mol) of bis(3,5-dibromo-4-β-hydroxyethoxyphenyl) sulfone and anhydrous potassium carbonate were added. A further 5.5 g was added and the reaction was carried out at 170°C for 4 hours. After the reaction was completed, the by-product phenol was distilled off under reduced pressure while maintaining the temperature. When the distillation of phenol stopped, the reactant in the flask was poured into a vat, cooled, and pulverized to obtain a flame retardant. The yield is 34.5% bromine content and 4.9% phosphorus content. Flame retardant synthesis example 3 2,2-bis-
(3,5-dibromo-4-β-hydroxyethoxyphenyl)propane [A] 126.4g (0.2mol)
and cresyl diphenyl phosphate [B] 680g
(2 mol) and 4.0 g of CsF were added and reacted at 130°C for 3 hours. After confirming by HLC that [A] has completely reacted, add triethylene glycol to the reaction product.
170 by adding 926 g (2 moles) of mono-2,4,6-tribromophenyl ether [C] and 4.0 g of CsF.
The reaction was carried out at ℃ for 5 hours. The respective reaction rates were 100% for [A], 100% for [B], and 97% for [C]. This reaction mixture was used as a flame retardant. After the reaction was completed, it was used directly for the next synthesis of phenolic resin.
The bromine content of the reaction product excluding the by-product phenolic resin is 35.9% and the phosphorus content is 4.1%. Synthesis example of phenolic resin 1 (phenolic resin) Tung oil 1000g m.p-cresol 2000g, PTS1 in a 5 flask equipped with a stirrer, condenser, and thermometer.
g and reacted at 100°C for 2 hours. Next, paraform 833g methanol 250g ammonia water 120g
was added and reacted at 80°C. The reaction was monitored by the gelation time on a hot plate at 160°C, and when the gelation time reached 3 minutes, the mixture was dehydrated and concentrated under reduced pressure. When the reaction solution became transparent, the reaction was terminated and 250g of toluene was added.
250g of methanol was added to make a varnish. Resin content
The 70% gelation time was 2 minutes and 45 seconds. Synthesis Example 2 of Phenol Resin (Phenol Resin) Tung oil 250g m.p-cresol 500g PTS 0.25g in 2 flasks equipped with a stirrer, condenser, and thermometer
was added and reacted at 100°C for 2 hours. Next, add 320g of the flame retardant synthesized in Flame Retardant Synthesis Example 3 to paraform.
Add 243g to 70g of methanol and 30g of ammonia water.
The reaction was carried out at 80°C. When the gelation time reached 3 minutes, the mixture was dehydrated and concentrated under reduced pressure. The reaction was terminated when the reaction solution became transparent, and 130 g of toluene and 130 g of methanol were added to prepare a varnish. Resin content 69.5
The % gelation time was 2 minutes and 40 seconds. Using the synthesized flame retardant and phenolic resin, a phenolic resin varnish for laminates was prepared according to the formulation shown in Table 1. Then, apply the varnish shown in Table 1 to the kraft paper that has been pre-impregnated with water-soluble phenolic resin.
After adjusting to 50%, it was impregnated and dried to create a prepreg. A predetermined number of sheets of the prepreg were stacked, a copper foil coated with an adhesive was layered on one side, and pressure was applied at 150° C. and a pressure of 100 kg/cm 2 for 70 minutes to produce a copper-clad laminate with a thickness of 1.6 mm. As a comparative example, tetrabromobisphenol A and
A varnish was made by adding TPP alone to a phenolic resin, and a prepreg and a copper-clad laminate were also made in the same way. The characteristics of the copper-clad laminate were measured according to the measurement method described in JIS-C-6481 and UL-94. The results are shown in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明により耐熱性、難燃性に優れた紙−フエ
ノール樹脂積層板が得られた。
According to the present invention, a paper-phenol resin laminate having excellent heat resistance and flame retardancy was obtained.

Claims (1)

【特許請求の範囲】 1 リン酸エステル類とハロゲン含有芳香族グリ
コール類とハロゲン含有芳香族アルコール類を反
応させて得られる反応生成物を難燃剤として配合
したフエノール樹脂ワニスを所定量含浸付着させ
た紙基材を加熱成形することを特徴とする難燃性
紙−フエノール樹脂積層板の製造方法。 2 リン酸エステル類が芳香族環を有するリン酸
エステル類である特許請求の範囲第1項記載の難
燃性紙−フエノール樹脂積層板の製造方法。
[Scope of Claims] 1. A predetermined amount of phenolic resin varnish containing a reaction product obtained by reacting phosphoric acid esters, halogen-containing aromatic glycols, and halogen-containing aromatic alcohols as a flame retardant is impregnated and adhered. A method for producing a flame-retardant paper-phenolic resin laminate, which comprises thermoforming a paper base material. 2. The method for producing a flame-retardant paper-phenolic resin laminate according to claim 1, wherein the phosphoric esters are phosphoric esters having an aromatic ring.
JP59213173A 1984-10-11 1984-10-11 Production of flame-retarding paper-phenolic resin laminate Granted JPS6191227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213173A JPS6191227A (en) 1984-10-11 1984-10-11 Production of flame-retarding paper-phenolic resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213173A JPS6191227A (en) 1984-10-11 1984-10-11 Production of flame-retarding paper-phenolic resin laminate

Publications (2)

Publication Number Publication Date
JPS6191227A JPS6191227A (en) 1986-05-09
JPH0558016B2 true JPH0558016B2 (en) 1993-08-25

Family

ID=16634754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213173A Granted JPS6191227A (en) 1984-10-11 1984-10-11 Production of flame-retarding paper-phenolic resin laminate

Country Status (1)

Country Link
JP (1) JPS6191227A (en)

Also Published As

Publication number Publication date
JPS6191227A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US7541415B2 (en) Process for preparing diaryl alkylphosphonates and oligomeric/polymeric derivatives thereof
WO2006001445A1 (en) Flame-retardant epoxy resin composition
US9605109B1 (en) Phosphorous containing compounds and process for synthesis
EP0066171B1 (en) Fire retardant epoxy resins containing 3-hydroxypropyl-phosphine oxides
KR20120089450A (en) Hydroxyphenyl phosphine oxide mixtures and their use as flame retardants for epoxy resins
JP4837175B2 (en) Phosphorus-containing epoxy resin composition
CN102838841B (en) Epoxy resin composition and prepreg and copper clad laminate manufactured by using same
JPH0558016B2 (en)
WO2008143309A1 (en) Novel flame-retardant epoxy resin, epoxy resin composition essentially containing the epoxy resin, and cured product thereof
JP2661109B2 (en) Flame retardant phenolic resin composition
JPH0334770B2 (en)
US10233203B2 (en) Phosphazene compound, a prepreg and a composite metal laminate
JPH0513059B2 (en)
JPS61203113A (en) Production of flame retardant for phenolic resin
JPS60192732A (en) Production of laminated sheet
JPH0125499B2 (en)
JPH0374275B2 (en)
JP3148050B2 (en) Manufacturing method of flame retardant copper clad laminate
JPS639536B2 (en)
JPH0564966B2 (en)
JPH0125498B2 (en)
JPH0358378B2 (en)
JPS60212435A (en) Flame-retardant plasticizer
JPS6248733A (en) Production of flame-retardant laminate of paper and phenolic resin
JPS6185444A (en) Production of flame-retardant phenolic resin laminate