JPH0557002B2 - - Google Patents

Info

Publication number
JPH0557002B2
JPH0557002B2 JP57125479A JP12547982A JPH0557002B2 JP H0557002 B2 JPH0557002 B2 JP H0557002B2 JP 57125479 A JP57125479 A JP 57125479A JP 12547982 A JP12547982 A JP 12547982A JP H0557002 B2 JPH0557002 B2 JP H0557002B2
Authority
JP
Japan
Prior art keywords
perforated plate
pores
fluid
porosity
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57125479A
Other languages
Japanese (ja)
Other versions
JPS5916502A (en
Inventor
Hatsuki Onizuka
Hideo Fukuda
Shin Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12547982A priority Critical patent/JPS5916502A/en
Publication of JPS5916502A publication Critical patent/JPS5916502A/en
Publication of JPH0557002B2 publication Critical patent/JPH0557002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/6017Fluid distributors

Description

【発明の詳細な説明】 本発明は、充填塔における塔内流体の整流或は
分集用多孔板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a perforated plate for rectifying or separating fluid in a packed column.

充填塔においては、流体入口、出口に多孔板を
設け、その多孔板の間に充填物を充填し、この多
孔板に被処理流体の整流或は分集を行なわせてい
る。多孔板は又塔の中間に設けられる場合もあ
る。これらの多孔板のうち塔の中間又は下部に設
けられる多孔板は充填物を支持する役割も兼ねて
いる。従つて、これら多孔板は塔内充填物を支え
るに足る強度を有し、かつ分散又は集合する流体
の流れの不均一を起こさない構造のものでなけれ
ばならない。
In a packed tower, perforated plates are provided at a fluid inlet and an outlet, and a filler is filled between the perforated plates, and the perforated plates rectify or separate the fluid to be treated. A perforated plate may also be provided in the middle of the column. Among these perforated plates, the perforated plate provided in the middle or lower part of the column also serves to support the packing. Therefore, these perforated plates must have sufficient strength to support the column packing and must have a structure that does not cause non-uniformity in the flow of the dispersing or gathering fluid.

しかるに、従来の多孔板は、円柱状の孔を設け
たものであり、その開孔率(充填塔の横断面積に
対する多孔板の孔の全面積の割合)は、最高で
0.25であり、一般的には0.2前後であつた。この
ような形状及び開孔率の孔を有する従来の多孔板
では、その孔の近傍で流体の流れに不均一が生
じ、その為に充填塔の性能が変動し、コントロー
ルしにくいという問題が生じていた。勿論開孔率
を上げれば、流体の流れの不均一を減少できる筈
であるが、開孔率を上げれば、必然的に多孔板の
強度が減少する。その為に開孔率は0.25を限度と
していたものである。
However, conventional perforated plates have cylindrical pores, and their porosity (the ratio of the total area of the pores of the perforated plate to the cross-sectional area of the packed tower) is at most
It was 0.25, and generally around 0.2. With conventional perforated plates that have holes with such a shape and porosity, non-uniform fluid flow occurs near the holes, which causes the performance of the packed column to fluctuate and become difficult to control. was. Of course, if the porosity is increased, the non-uniformity of fluid flow can be reduced, but increasing the porosity inevitably reduces the strength of the perforated plate. For this reason, the open area ratio was limited to 0.25.

本発明者らは、多孔板の強度を殆んど減少する
ことなく、流体の流れの不均一を極端に減少せし
め得る多孔板を見いだし、本発明をなすに至つた
ものである。
The present inventors have discovered a perforated plate that can significantly reduce the non-uniformity of fluid flow without substantially reducing the strength of the perforated plate, and have accomplished the present invention.

即ち、本発明は、充填塔の流体整流又は分集用
多孔板において、孔の横断面積が充填剤の充填側
端面に向けて拡大され、充填側端面おいて最大と
なるような形状の多孔からなることを特徴とする
充填塔の流体整流又は分集用多孔板に関するもの
である。
That is, the present invention provides a perforated plate for fluid rectification or separation of a packed tower, which is composed of pores having a shape such that the cross-sectional area of the pores is expanded toward the end surface on the filling side of the filler and becomes maximum at the end surface on the filling side. The present invention relates to a perforated plate for fluid rectification or separation in a packed tower characterized by the following.

本発明の多孔板は、厚み方向に沿つて異なる断
面積を有する孔からなつている為、充填物支持の
為の強度は、ほぼ孔面積最小部の開孔率によつて
維持されるから丈夫である。又、孔の断面積が最
大となつている端面を充填物側に向けて設置する
ことにより充填物側に流出し、又は充填物側から
流入する流体の流れは、スムースな流れを享受で
きる為流れの不均一は最小限に止められる結果と
なる。
The perforated plate of the present invention is made up of pores with different cross-sectional areas along the thickness direction, so the strength for supporting the filling material is maintained by the porosity of the minimum pore area, so it is durable. It is. In addition, by installing the hole with the end face with the largest cross-sectional area facing the filling side, the fluid flowing out to the filling side or flowing in from the filling side can enjoy a smooth flow. The result is that flow non-uniformities are minimized.

多孔板の孔の断面積の変化は連続的でも不連続
的でもよいが、連続的に、更には連続的にかつ直
線的に変化させることにより、流体に与える乱れ
のより少ない加工し易い多孔板を提供し得る。
The cross-sectional area of the holes in the perforated plate may change either continuously or discontinuously, but by changing it continuously or even continuously and linearly, the perforated plate can be easily processed with less disturbance to the fluid. can be provided.

断面積の変化は多孔板の厚み方向全体に亘る場
合ばかりでなく、その一部において変化していて
もよい。
The cross-sectional area may change not only over the entire thickness of the perforated plate, but also over a portion thereof.

本発明の多孔板の好ましい態様は、多孔板の孔
の形状がその孔の回転対称軸が流体の流れと一致
するような円錐台形或は円錐台形を組み合わせた
もの、或は円錐台形と円柱形とを組み合わせたも
のであり、多孔板面の少なくとも一端面に円錐台
形の円形断面のうち面積が最大の面が位置するよ
うにした多孔板である。なお、多孔板の機械的強
度維持の為には、多孔板の孔でない部分が80%以
上存在する部分が厚みの20%以上存在することが
望ましい。
A preferred embodiment of the perforated plate of the present invention is a truncated conical shape, a combination of truncated conical shapes, or a truncated conical shape and a cylindrical shape, such that the rotational symmetry axis of the pores coincides with the fluid flow. This is a perforated plate in which the surface with the largest area of the truncated conical circular cross section is located on at least one end surface of the perforated plate surface. In order to maintain the mechanical strength of the perforated plate, it is desirable that the portion of the perforated plate in which 80% or more of the portions are not holes is 20% or more of the thickness.

又、上記特徴を有する孔が多孔板のすべての孔
に対応する必要はなく、多孔板の孔の中に上記特
徴を有する孔の他に円柱形の孔が含まれていても
差し支えない。その孔の存在の程度は、孔の断面
積が最大となつている端面において全開孔面積の
20%以下の範囲が良い。
Further, the holes having the above characteristics do not necessarily correspond to all the holes in the perforated plate, and the holes in the perforated plate may include cylindrical holes in addition to the holes having the above characteristics. The degree of existence of the hole is determined by the total open hole area at the end face where the cross-sectional area of the hole is maximum.
A range of 20% or less is good.

多孔板の孔の形状を上記のようにすることによ
り多孔板近傍の充填層における流体の乱れを非常
に小さくすることができ、しかも安価に製作でき
ることが分つた。
It has been found that by configuring the holes in the perforated plate as described above, the turbulence of the fluid in the packed bed near the perforated plate can be made very small, and it can be manufactured at low cost.

本発明の多孔板の使用に際して、充填塔内の充
填物を塔内に保持する為に、充填物の粒径より細
かいメツシユフイルター等を用いることがあり、
この場合フイルター等が多孔板の孔内に押し出さ
れることがある。又、フイルター等を併用した場
合、従来の多孔板と同様に構造が複雑になるとい
う問題がある。この問題の解決策として、多孔板
の孔内の充填物を通過させない細かな物質を充填
固定化することによりフイルター等を使用しても
多孔板内へのフイルター等の押出しもなく、更に
はフイルター等を使用しなくても充填物の保持が
可能となり、本発明の特徴を更に生かすことがで
きる。
When using the perforated plate of the present invention, a mesh filter or the like whose particle size is smaller than that of the packing may be used to retain the packing in the packed column.
In this case, filters and the like may be pushed out into the holes of the perforated plate. Further, when a filter or the like is used in combination, there is a problem that the structure becomes complicated like the conventional perforated plate. As a solution to this problem, by filling and fixing a fine substance that does not pass through the filling in the pores of the perforated plate, even if a filter is used, there is no need to extrude the filter into the perforated plate. It becomes possible to hold the filling material without using any of the above, and the features of the present invention can be further utilized.

上記の孔内に充填する充填剤は、本多孔板を設
置した充填塔に流す液種、運転条件、多孔板の材
質、塔内の充填物の粒径等により決定される。好
ましい孔への充填剤の例としては、鉄、ステンレ
ス、チタン、銅、ニツケル、黄銅、亜鉛、白金、
銀、金、ニオブ、タンタル、クロム等の金属又は
合金又は塩化ビニル、ポリプロピピレン、ポリス
チレン、テフロン等のプラスチツク類、又はガラ
ス、炭化ケイ素、酸化アルミナ、窒化ケイ素等の
セラミツク類の粉末、粒子、繊維等或はそれらの
焼結物、又はこれらを接着固化したものがある。
The filler to be filled into the above-mentioned pores is determined by the type of liquid to be flowed into the packed tower equipped with the perforated plate, the operating conditions, the material of the perforated plate, the particle size of the packing in the tower, etc. Examples of preferred pore fillers include iron, stainless steel, titanium, copper, nickel, brass, zinc, platinum,
Powders, particles, and fibers of metals or alloys such as silver, gold, niobium, tantalum, and chromium; plastics such as vinyl chloride, polypropylene, polystyrene, and Teflon; and ceramics such as glass, silicon carbide, alumina oxide, and silicon nitride. etc., sintered products thereof, or adhesively solidified products thereof.

本発明の好ましい多孔板は、孔の断面積が最大
となつている端面の開孔率(該端面における充填
塔内面積に対する全開孔面積の比)が0.6以上で
ある多孔板である。孔の断面積に変化をもたせて
いるので、端面の開孔孔率が高くてもそれ以外の
部分で小さな開孔率を有するから、十分な支持強
度を保持した上で端面の開孔率を0.6以上とする
ことは容易である。このような開孔率とすること
によつて充填物粒子の充填の空隙率よりかなり上
回つた開孔率を得ることができる結果、多孔板の
孔を流出入する流体の流れの乱れには一層消去さ
れることになる。開孔率を0.8以上にすることに
よりこの傾向は特に顕著になる。
A preferred perforated plate of the present invention is a perforated plate in which the porosity of the end face where the cross-sectional area of the pores is the largest (ratio of the total open pore area to the area inside the packed column at the end face) is 0.6 or more. Since the cross-sectional area of the holes is varied, even if the porosity of the end face is high, the porosity of the other parts is small, so the porosity of the end face can be adjusted while maintaining sufficient support strength. It is easy to set it to 0.6 or more. By setting such a porosity, it is possible to obtain a porosity that is considerably higher than the porosity of the filling particles. It will be erased even more. This tendency becomes particularly noticeable when the porosity is set to 0.8 or more.

本発明の多孔板は流体の乱れが分離効率に特に
大きく影響するクロマトグラフイーによる分離装
置に用いた場合に有効である。特に内径10cm以上
の分離装置を用いる場合には、強度の点から従来
は開孔率を0.2前後より大きくすることができず、
その為流体の乱れが起こり、分離工効率が低かつ
たが、本発明の多孔板は強度を維持したまま開孔
率を上げることができる為好ましい。
The perforated plate of the present invention is effective when used in a chromatographic separation device in which fluid turbulence has a particularly large effect on separation efficiency. In particular, when using a separation device with an inner diameter of 10 cm or more, conventionally it has been impossible to increase the porosity larger than about 0.2 from the viewpoint of strength.
As a result, fluid turbulence occurred and the separation efficiency was low, but the perforated plate of the present invention is preferable because it can increase the porosity while maintaining strength.

更に内径50cm以上の分離装置に用いる場合に
は、従来は、上記欠点の他に流体の流れを均一に
する為に非常に数多くの孔を多孔板全体に亘つて
設ける必要があつた。本発明の多孔板の場合には
孔の数を1/2〜1/10程度に減らすことができ、し
かも強度を保ちつつ開孔率を大きくすることがで
き特に有効である。
Furthermore, when used in a separation device with an inner diameter of 50 cm or more, conventionally, in addition to the above-mentioned drawbacks, it was necessary to provide a large number of holes throughout the perforated plate in order to make the flow of fluid uniform. In the case of the perforated plate of the present invention, the number of holes can be reduced to about 1/2 to 1/10, and the porosity can be increased while maintaining strength, which is particularly effective.

以下に図面の実施例を示して本発明を説明す
る。
The present invention will be described below with reference to embodiments of the drawings.

第1図は、本発明の多孔板の1例を示す縦断面
図である。この場合充填物は上側となるように設
置する。
FIG. 1 is a longitudinal cross-sectional view showing one example of the perforated plate of the present invention. In this case, the filling should be placed on the upper side.

第2図は、本発明の多孔板の他の例を示す縦断
面図である。最大面積端面は上下両端面となつて
いるので、この多孔板は、充填層の上部にも下部
にも中間部にも用いることができる。
FIG. 2 is a longitudinal sectional view showing another example of the perforated plate of the present invention. Since the maximum area end faces are both the upper and lower end faces, this porous plate can be used in the upper part, the lower part, and the middle part of the packed bed.

第3図は、第1,2図の多孔板を上から見た時
の平面図を示す。2重円の外側円が最大面積、内
側円が最小面積部を示す。。又、第3図のような
孔の配置はいわゆる千鳥型で最も開孔率を大きく
でき、非開孔部の形状を均一化できる配置であ
る。第3図のA−A′線における断面が第1,2
図の断面である。
FIG. 3 shows a plan view of the perforated plate shown in FIGS. 1 and 2, viewed from above. The outer circle of the double circle indicates the maximum area, and the inner circle indicates the minimum area. . Further, the arrangement of the holes as shown in FIG. 3 is a so-called staggered arrangement, which allows for the highest aperture ratio and makes the shape of the non-perforated portions uniform. The cross sections taken along line A-A' in Figure 3 are the first and second sections.
This is a cross section of the figure.

第4図は、充填塔の1例を示す切欠断面図であ
る。1は流体入口をもつた流体分集装置、2は多
孔板、3はフイルター、4はフイルター、5は多
孔板、6は流体出口をもつた流体分集装置であ
る。
FIG. 4 is a cutaway sectional view showing an example of a packed column. Reference numeral 1 denotes a fluid collector having a fluid inlet, 2 a perforated plate, 3 a filter, 4 a filter, 5 a perforated plate, and 6 a fluid collector having a fluid outlet.

このような充填塔を用いる場合、例えば柔かい
フイルター4が充填剤によつて多孔板5の孔の中
に押し込まれる場合も起こるので、このような場
合は孔の中に、支障を起こさない材質、粒径の細
かな物質を充填して用いることもできる。
When using such a packed tower, for example, the soft filter 4 may be forced into the pores of the perforated plate 5 by the filler, so in such a case, the pores should be filled with a material that does not cause any trouble. It can also be used by filling a substance with a fine particle size.

次に実施例及び比較例を示して本発明を説明す
る。例中、流れの均一性を示す指標として、非対
称係数FTを用いた。この係数FTは、次のような
ものである。
Next, the present invention will be explained by showing examples and comparative examples. In the example, the asymmetry coefficient F T was used as an indicator of flow uniformity. This coefficient F T is as follows.

充填塔内に1N塩酸を一定流量で流しながら、
塔入口直前に設けた液注入口より、10%食塩水を
一定微少量注入し、排出する液を分取した後、
Na濃度を原子吸光分析装置を用いて測定し、横
軸に10%食塩水を注入してからの排出液量を、縦
軸に排出液のNa濃度をプロツトしてパルス波形
を得、その形状を調べる。多孔板近傍の充填層内
において、流体の乱れが大きく生じる場合には、
部分的に流れの遅い部分が生じる為に、出口での
パルス波形は、より大きなテーリングを生じる傾
向を示す。従つて、このテーリングの差を表わす
尺度としてパルスの非対称係数を用いた。
While flowing 1N hydrochloric acid at a constant flow rate into the packed column,
After injecting a small amount of 10% saline solution through the liquid injection port installed just before the tower entrance and collecting the liquid to be discharged,
The Na concentration was measured using an atomic absorption spectrometer, and the horizontal axis plotted the amount of liquid drained after injecting 10% saline, and the vertical axis plotted the Na concentration of the drained liquid to obtain a pulse waveform, and its shape Find out. If large turbulence of fluid occurs in the packed bed near the perforated plate,
The pulse waveform at the exit tends to exhibit greater tailing due to the presence of slow flow sections. Therefore, the pulse asymmetry coefficient was used as a measure of the difference in tailing.

パルスの非対称係数FTとは、パルスのピーク
高さの1/10におけるピーク位置より前のパルスの
幅WFに対する、ピーク位置から後のパルスの幅
(WR)の比である。
The pulse asymmetry coefficient F T is the ratio of the width of the pulse after the peak position (W R ) to the width W F of the pulse before the peak position at 1/10 of the peak height of the pulse.

FT=WR/WF このFT値が1より大きければ大きい程テーリ
ングの度合が激しいこと、即ち、流れの不均一性
の大きいことを示す。
F T =W R /W F The larger the F T value is than 1, the more severe the tailing is, that is, the greater the non-uniformity of the flow.

次に実施例を示す。 Next, examples will be shown.

実施例 1 第4図に示すような内径100mmφ、長さ300mmで
塔の液入口、出口に液分集装置を設けた充填塔を
用意し、液入口の液分集装置の直下と液出口の液
分集装置の直上に以下のような多孔板を設置し、
更に多孔板の充填物に接する側の面にフイルター
を設置した。ここで設置した多孔板は、第1図の
多孔板でL=10mm、フイルターに接する側の面の
r1=10mmφ、lp=11mm、開孔率0.61、その反対側
の面のr2=r3=64mmφ、開孔率0.25でフイルター
側の孔の形状を円錐台形とした構造を有する。充
填物はスチレンジビニルベンゼン共重合物をクロ
メチル化した後にトリメチルアミンで四級アンモ
ニウム化した陰イオン交換樹脂のCl型でつて
0.25g乾燥樹脂/CC湿潤樹脂、架橋度6%、粒径
100〜2000メツシユの樹脂であつて、高さ26.2cm
まで均一に充填した後、1N塩酸水溶液を800ml/
minの速度で流し、コンデイシヨニングした。つ
づいて同じ速度で1N塩酸水溶液を流しながら、
塔入口直前に設けた液注入口より10%NaCl液0.2
mlを瞬間的に注入し、塔出口から流出する液を5
mlのフラクシヨンに分取した。
Example 1 A packed column with an inner diameter of 100 mmφ and a length of 300 mm as shown in Fig. 4 and equipped with a liquid separating device at the liquid inlet and outlet of the column was prepared, and the liquid separating device was installed directly below the liquid separating device at the liquid inlet and at the liquid outlet. Install a perforated plate like the one below directly above the device.
Furthermore, a filter was installed on the side of the perforated plate that was in contact with the filling material. The perforated plate installed here is the perforated plate shown in Figure 1, L = 10 mm, and the side facing the filter is
It has a structure in which r 1 = 10 mm φ, l p = 11 mm, pore size 0.61, r 2 = r 3 = 64 mm φ on the opposite side, pore size 0.25, and the hole on the filter side has a truncated conical shape. The filling material is a Cl type anion exchange resin made by chloromethylating styrene divinylbenzene copolymer and then converting it into quaternary ammonium with trimethylamine.
0.25g dry resin/CC wet resin, degree of crosslinking 6%, particle size
100~2000 mesh resin, height 26.2cm
After filling evenly, add 800ml/1N hydrochloric acid aqueous solution.
Conditioning was performed by flowing at a speed of min. Next, while flowing 1N hydrochloric acid aqueous solution at the same speed,
Inject 0.2 of 10% NaCl solution from the liquid inlet installed just before the tower entrance.
ml is injected instantaneously, and the liquid flowing out from the tower outlet is
It was fractionated into ml fractions.

次に、各フラクシヨンNa濃度を原子吸光分析
装置を用いて測定し、横軸に流出液量、縦軸に
Na濃度をプロツトしパルス波形を得た。この時
のパルスの非対称係数はFT=1.273であつた。
Next, the Na concentration of each fraction was measured using an atomic absorption spectrometer.
The Na concentration was plotted and a pulse waveform was obtained. The pulse asymmetry coefficient at this time was F T =1.273.

実施例 2 実施例1と同様の装置を用い、以下のような多
孔板を液入口及び出口に実施例1と同様な配置に
設置する。この場合、フイルターは設置しない。
Example 2 Using the same apparatus as in Example 1, the following perforated plates were installed at the liquid inlet and outlet in the same arrangement as in Example 1. In this case, no filter will be installed.

多孔板は、実施例1の多孔板と構造的には等し
い多孔板であり、その孔の中に平均粒径80μのガ
ラスビーズを充填し、更に孔中のガラスビードが
孔外に流出しないように孔の大きさ300メツシユ
の金網を設置したものである。
The perforated plate is structurally the same as the perforated plate of Example 1, and its pores are filled with glass beads having an average particle size of 80 μm, and furthermore, the holes are filled with glass beads to prevent the glass beads in the pores from flowing out of the pores. A wire mesh with a hole size of 300 mesh was installed in the hole.

実施例1の場合と同じ樹脂を26.2cmまで充填し
実施例1と同様の方法でパルス波形を得た。この
時のパルスの非対称係数はFT=1.135であつた。
The same resin as in Example 1 was filled up to 26.2 cm, and a pulse waveform was obtained in the same manner as in Example 1. The pulse asymmetry coefficient at this time was F T =1.135.

実施例 3 実施例1と同様の装置で塔内径500mmφ、高さ
1mの塔を用い、以下のような多孔板を液入口及
び出口に実施例1と同様な配置に設置する。
Example 3 A tower with an inner diameter of 500 mmφ and a height of 1 m was used in the same apparatus as in Example 1, and the following perforated plates were installed at the liquid inlet and outlet in the same arrangement as in Example 1.

多孔板は第1図における多孔板と孔の形状が同
様なものでL=10mm、フイルター側の面のr1=11
mmφ、lp=11mm、開孔率0.74、その反対側の面の
r2=r3=6.4mmφ、開孔率0.25でフイルター側の孔
の形状を円錐台形とした構造を有するものであ
る。
The perforated plate has the same hole shape as the perforated plate in Figure 1, L = 10 mm, and r 1 = 11 on the filter side surface.
mmφ, l p = 11 mm, hole area ratio 0.74, and the opposite side
It has a structure in which r 2 = r 3 = 6.4 mmφ, an aperture ratio of 0.25, and the shape of the hole on the filter side is a truncated cone.

実施例1の場合と同じ樹脂を高さ96.2cmまで充
填し、実施例1と同様の方法でパルス波形を得
た。この時のパルスの非対称係数はFT=1.203で
あつた。
The same resin as in Example 1 was filled to a height of 96.2 cm, and a pulse waveform was obtained in the same manner as in Example 1. The pulse asymmetry coefficient at this time was F T =1.203.

実施例 4 実施例1と同様の装置を用い、以下のような多
孔板を援入口及び出口に実施例1と同様な配置に
設置する。ここで設置した多孔板は第2図におけ
る多孔板であり、L=10mm、両端面の孔径r1=r3
=10mmφ、lp=11mm、開孔率0.61で円錐台形の形
状の孔とし、r2=4mmφ、lp=11mm、開孔率0.10
とした構造を有する多孔板である。
Example 4 Using the same apparatus as in Example 1, the following perforated plates were installed at the inlet and outlet in the same arrangement as in Example 1. The perforated plate installed here is the perforated plate shown in Fig. 2, L = 10 mm, hole diameter on both end surfaces r 1 = r 3
= 10 mmφ, l p = 11 mm, pore size 0.61, and a truncated conical hole, r 2 = 4 mmφ, l p = 11 mm, pore size 0.10
It is a perforated plate with a structure of

実施例1の場合と同じ樹脂を高さ26.2cmまで充
填し実施例1と同様の方法でパルス波形を得た。
この時のパルスの非対称係数はFT=1.186であつ
た。
The same resin as in Example 1 was filled to a height of 26.2 cm, and a pulse waveform was obtained in the same manner as in Example 1.
The pulse asymmetry coefficient at this time was F T =1.186.

比較例 実施例1と同様の装置を用い、以下のような多
孔板を液入口及び出口に実施例1と同様な配置に
設置する。
Comparative Example Using the same apparatus as in Example 1, the following perforated plates were installed at the liquid inlet and outlet in the same arrangement as in Example 1.

多孔板は、従来使われている円柱形の孔を有す
るもので第2図の記号でL=10mm、r1=r2=r3
6.4mmφ、開孔率0.25の構造を有する。
The perforated plate has conventionally used cylindrical holes, and the symbols in Figure 2 are L = 10 mm, r 1 = r 2 = r 3 =
It has a structure with a diameter of 6.4 mm and an open area ratio of 0.25.

実施例1の場合と同じ樹脂を、高さ26.2cmまで
充填し、実施例1と同様の方法でパルス波形を得
た。この時のパルスの非対称係数はFT=1.458で
あつた。
The same resin as in Example 1 was filled to a height of 26.2 cm, and a pulse waveform was obtained in the same manner as in Example 1. The pulse asymmetry coefficient at this time was F T =1.458.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明の多孔板の例を示す
縦断面図、第3図は第1,2図の平面図、第4図
は多孔板を用いた充填塔の1例を示す切欠断面図
である。
Figures 1 and 2 are longitudinal cross-sectional views showing examples of perforated plates of the present invention, Figure 3 is plan views of Figures 1 and 2, and Figure 4 is an example of a packed column using perforated plates. FIG.

Claims (1)

【特許請求の範囲】 1 充填塔の流体整流又は分集用多孔板におい
て、孔の横断面積が充填剤の充填側端面に向けて
拡大され、充填側端面において最大となるような
形状の多孔からなることを特徴とする充填塔の流
体整流又は分集用多孔板。 2 多孔板の開孔率が、充填剤の充填側端面にお
いては0.6以上である特許請求の範囲第1項記載
の多孔板。 3 多孔板の孔内に充填剤が充填されてなる特許
請求の範囲第1項又は第2項記載の多孔板。
[Scope of Claims] 1. A perforated plate for fluid rectification or separation of a packed tower, consisting of pores with a shape such that the cross-sectional area of the pores expands toward the filling side end surface of the filler and becomes maximum at the filling side end surface. A perforated plate for fluid rectification or separation in a packed tower, characterized in that: 2. The perforated plate according to claim 1, wherein the perforated plate has a porosity of 0.6 or more on the end face on the filling side of the filler. 3. The perforated plate according to claim 1 or 2, wherein the pores of the perforated plate are filled with a filler.
JP12547982A 1982-07-19 1982-07-19 Perforated plate for regulating or partially collecting fluid in packed column Granted JPS5916502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12547982A JPS5916502A (en) 1982-07-19 1982-07-19 Perforated plate for regulating or partially collecting fluid in packed column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12547982A JPS5916502A (en) 1982-07-19 1982-07-19 Perforated plate for regulating or partially collecting fluid in packed column

Publications (2)

Publication Number Publication Date
JPS5916502A JPS5916502A (en) 1984-01-27
JPH0557002B2 true JPH0557002B2 (en) 1993-08-23

Family

ID=14911104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12547982A Granted JPS5916502A (en) 1982-07-19 1982-07-19 Perforated plate for regulating or partially collecting fluid in packed column

Country Status (1)

Country Link
JP (1) JPS5916502A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2603990B1 (en) * 1986-09-15 1988-12-16 Plastimarne IDENTIFICATION AND CHARACTERIZATION ANALYSIS DETECTION DEVICE BY FILTRATION AND IMMUNOFILTRATION
JPH03194465A (en) * 1989-12-22 1991-08-26 Nippon Sharyo Seizo Kaisha Ltd Liquid guide plate for column of liquid chromatograph
JP4856514B2 (en) * 2006-10-20 2012-01-18 株式会社日立製作所 Exhalation component collector, exhalation component collection device, exhalation component collector manufacturing method, exhalation component analysis device, and exhalation component analysis method
DE102008039947A1 (en) * 2008-08-27 2010-03-04 Bayer Materialscience Ag Method for dividing fluid streams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135665A (en) * 1978-04-12 1979-10-22 Nitsupou Kagaku Kk Rectifier for packing column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135665A (en) * 1978-04-12 1979-10-22 Nitsupou Kagaku Kk Rectifier for packing column

Also Published As

Publication number Publication date
JPS5916502A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US4399032A (en) Chromatographic column terminator element and assembly
US4086070A (en) Fiber bed separator and method for separation of aerosols from gases without re-entrainment
US3195730A (en) Filtering assembly
US4268290A (en) Air filters
US4469597A (en) Chromatographic column terminator assembly
US4053290A (en) Fiber bed separator
US4022593A (en) Mist elimination
US4560477A (en) Separator for filter cartridges
US5783119A (en) Liquid distributor for columns
US20040140252A1 (en) Scalable liquid distribution system for large scale chromatography columns
US4293414A (en) Slotted sheet filter element
US4267039A (en) Fluid filtration method and apparatus
US4035302A (en) Apparatus for separating oil and water
JPH0557002B2 (en)
US3542198A (en) Filter unit for fibrous and similar materials
US4269707A (en) Apparatus and method
US2720314A (en) Filter with air bump backwash means
US7051758B2 (en) Scalable inlet liquid distribution system for large scale chromatography columns
JP2004525384A5 (en)
US4699716A (en) Variable-thickness sector for a rotary disc-type filter
JPH0493765A (en) Dispersing system of liquid of packed tower
JPH1076251A (en) Filter
JP3138994B2 (en) Water purification equipment
JPS6151930B2 (en)
JP3694704B2 (en) Filter for filtration