JPH0556930A - Non-contact type ophthalmic pressure gage - Google Patents

Non-contact type ophthalmic pressure gage

Info

Publication number
JPH0556930A
JPH0556930A JP3223136A JP22313691A JPH0556930A JP H0556930 A JPH0556930 A JP H0556930A JP 3223136 A JP3223136 A JP 3223136A JP 22313691 A JP22313691 A JP 22313691A JP H0556930 A JPH0556930 A JP H0556930A
Authority
JP
Japan
Prior art keywords
reflected light
light quantity
light amount
cornea
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3223136A
Other languages
Japanese (ja)
Other versions
JP3073279B2 (en
Inventor
Koji Nishio
西尾幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP03223136A priority Critical patent/JP3073279B2/en
Publication of JPH0556930A publication Critical patent/JPH0556930A/en
Application granted granted Critical
Publication of JP3073279B2 publication Critical patent/JP3073279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid unstability of a measurement caused by intrusion of the eyelashes, etc., by integrating a reflected light quantity level between reflected light quantity corresponding points which become the same reflected light quantity level in the increase side and the decrease side of the light quantity of a light quantity variation curve. CONSTITUTION:From a nozzle 9, an air current is emitted to the cornea C of an eye E to be examined. As a result, the cornea C is deformed. Subsequently, a reflected light quantity variation curve D which follows deformation of the cornea is obtained by an alignment projection optical system 2 and a photodetecting optical system 5. A pressure sensor 15a detects successively pressure in the nozzle 9. An arithmetic circuit 46 derives positions of reflected light quantity corresponding points X, Y which becomes the same reflected light quantity level in the increase side and the decrease side of the reflected light quantity variation curve D, respectively, calculates a reflected light quantity corresponding centroid point Z by calculating the reflected light quantity level of the light quantity variation curve D between each reflected light quantity corresponding point thereof X, Y, and calculates an ophthalmic pressure value, based on a pressure value of the pressure sensor 15a in the reflected light quantity corresponding centroid point Z. In such a way, unstability of a measurement caused by the eyelashes, etc., can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は被検眼の角膜に気流を吹
き付けて角膜を変形させることにより眼圧の測定を行う
非接触式眼圧計の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-contact tonometer for measuring intraocular pressure by blowing an air stream onto the cornea of an eye to be examined to deform the cornea.

【0002】[0002]

【従来の技術】従来から、非接触式眼圧計には、被検眼
の角膜に気流を吹き付けることにより角膜を変形させる
ための気流吹き付け手段と、その角膜に光束を投影して
角膜変形に伴う反射光束の光量変化を検出することによ
り角膜の変形を検出する角膜変形検出光学系と、気流吹
き付け手段に設けられてこの気流吹き付け手段内の圧力
を逐次検出する圧力検出手段とを備えたものが知られて
いる。
2. Description of the Related Art Conventionally, in a non-contact tonometer, an air flow blowing means for deforming the cornea of an eye to be inspected by blowing an air flow, and a light beam projected on the cornea to reflect the corneal deformation. A known one is provided with a corneal deformation detection optical system that detects the deformation of the cornea by detecting a change in the amount of light flux, and a pressure detection unit that is provided in the air flow blowing unit and that sequentially detects the pressure in the air flow blowing unit. Has been.

【0003】この従来の非接触式眼圧計は、その気流吹
き付け手段の一部を構成するロータリソレノイドを作動
させてピストンを駆動すると、その気流吹き付け手段の
ノズルから気流が角膜に向けて放出される。
In this conventional non-contact tonometer, when a rotary solenoid which constitutes a part of the air flow blowing means is operated to drive a piston, the air flow is discharged from the nozzle of the air flow blowing means toward the cornea. ..

【0004】その角膜は気流の圧力の変化に伴って図8
に示すように変形される。図8において、符号Cは角膜
を示している。角膜Cは気流の放出開始直後はほとんど
変形されない(期間t1を参照)。放出開始から所定の
時間が経過して気流の放出圧力が増加すると、角膜Cが
実線で示すように変形され(期間t2参照)、気流の放
出圧力が更に増加すると角膜Cは偏平C′に圧平される
(時刻t0参照)。更に、気流の放出圧力が増加する
と、角膜Cが凹む(期間t3、t4参照)。
The cornea of the cornea is changed as shown in FIG.
It is transformed as shown in. In FIG. 8, symbol C indicates the cornea. The cornea C is hardly deformed immediately after the start of air flow emission (see the period t1). When a predetermined time elapses from the start of the discharge and the discharge pressure of the airflow increases, the cornea C is deformed as shown by the solid line (see period t2), and when the discharge pressure of the airflow further increases, the cornea C is flattened to a flat surface C '. It is leveled (see time t0). Further, when the discharge pressure of the airflow increases, the cornea C is depressed (see periods t3 and t4).

【0005】角膜Cからの反射光束の光量は、その角膜
Cが凸から偏平に向かって変形するに伴って増加し、偏
平状態において理論的に最大となり、偏平状態から凹に
変形するに伴って減少する。従って、符号Dで示すよう
な光量変化曲線を描くことになる。
The amount of light reflected from the cornea C increases as the cornea C deforms from convex to flat, and theoretically reaches the maximum in the flat state, and changes from flat to concave. Decrease. Therefore, a light amount change curve as indicated by the symbol D is drawn.

【0006】一方、圧力検出手段の検出圧力は時間の経
過に伴って図9に示すように圧力変化曲線Pを描く。角
膜Cが偏平状態のときの気流吹き付け手段内の圧力値と
被検眼の眼圧値との間には相関関係があるので、光量変
化曲線Dがピーク値D′を示すときの圧力変化曲線Pの
圧力値P0を求め、演算回路を用いてこの圧力値P0か
ら眼圧値IOPが測定される。
On the other hand, the pressure detected by the pressure detecting means draws a pressure change curve P as shown in FIG. 9 over time. Since there is a correlation between the pressure value in the air flow blowing means and the intraocular pressure value of the eye to be inspected when the cornea C is in the flat state, the pressure change curve P when the light quantity change curve D shows the peak value D ′. The pressure value P0 is obtained, and the intraocular pressure value IOP is measured from this pressure value P0 using the arithmetic circuit.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、必ずし
も角膜Cが偏平状態のときに光量変化曲線Dがピーク値
を示すとは限らない。例えば、角膜Cが偏平状態に至る
直前に角膜変形検出光学系の投影反射光路に被検眼のま
つ毛等が偶然に混入したような場合には、角膜Cの偏平
状態を含めてその前後の期間t5で反射光束の光量が減
少し、図10に示すような光量変化曲線Dが得られるこ
とになる。
However, when the cornea C is in the flat state, the light amount change curve D does not always show the peak value. For example, when the eyelashes or the like of the eye to be inspected accidentally enter the projection reflection optical path of the corneal deformation detection optical system immediately before the cornea C reaches the flat state, the period t5 before and after the flat state of the cornea C is included. Thus, the light quantity of the reflected light flux decreases, and a light quantity change curve D as shown in FIG. 10 is obtained.

【0008】この場合には、二つのピーク値D1′、D
2′が角膜Cの偏平状態の前後で得られ、このピーク値
D1′、D2′に基づき眼圧値が得られるため、測定に
安定性(信頼性も含む)を欠くことになる。
In this case, two peak values D1 ', D
2'is obtained before and after the flattened state of the cornea C, and the intraocular pressure value is obtained based on the peak values D1 'and D2', so that the measurement lacks stability (including reliability).

【0009】また、涙、角膜の弾性、気流の不均一性等
によって図11、図12に示すような光量変化曲線Dが
得られることもある。図11は光量が緩やかに増加減少
する場合を示しており、この場合にはピーク位置を特定
し難いこととなる。また、図12はピークに細かな乱れ
が生じた場合を示しており、この場合にもピーク位置を
特定し難い。
Further, a light amount change curve D as shown in FIGS. 11 and 12 may be obtained due to tears, elasticity of the cornea, non-uniformity of air flow, and the like. FIG. 11 shows a case where the light amount gradually increases and decreases, and in this case, it becomes difficult to specify the peak position. Further, FIG. 12 shows a case where a fine disturbance occurs in the peak, and in this case also, it is difficult to specify the peak position.

【0010】従って、角膜Cのピーク位置の検出に基づ
き眼圧の測定を行う従来の非接触式眼圧計では、測定に
安定性を欠く不具合がある。
Therefore, the conventional non-contact tonometer, which measures the intraocular pressure based on the detection of the peak position of the cornea C, has a problem that the measurement is not stable.

【0011】そこで、本発明の目的は、角膜に吹き付け
られる気流の不均一性、涙、角膜の弾性、まつ毛の等の
混入に起因する測定の不安定性を回避することのできる
非接触式眼圧計を提供することにある。
Therefore, an object of the present invention is to provide a non-contact tonometer capable of avoiding instability of measurement due to nonuniformity of airflow blown to the cornea, tears, elasticity of the cornea, mixing of eyelashes and the like. To provide.

【0012】[0012]

【課題を解決するための手段】本発明に係わる非接触式
眼圧計は、上記課題を解決するため、被検眼の角膜に気
流を吹き付けて角膜を変形させる気流吹き付け手段と、
前記角膜に光束を投影して角膜変形に伴う反射光束の光
量変化曲線を検出して該角膜の変形を検出する角膜変形
検出光学系と、前記気流吹き付け手段に設けられて該気
流吹き付け手段内の圧力を逐次検出する圧力検出手段
と、前記光量変化曲線の光量増加側と減少側とにおいて
同一反射光量レベルとなる反射光量対応点の位置をそれ
ぞれ求めると共にこの各反射光量対応点の間の前記光量
変化曲線の反射光量レベルを積算することにより眼圧値
を測定するための反射光量対応重心点を演算しかつ該反
射光量対応重心点における前記圧力検出手段の圧力値に
基づき前記眼圧値を演算する演算回路とを備えている。
In order to solve the above-mentioned problems, a non-contact tonometer according to the present invention includes an air flow blowing means for blowing an air flow on the cornea of an eye to be examined to deform the cornea.
A corneal deformation detecting optical system for projecting a light flux onto the cornea to detect a light amount change curve of a reflected light flux associated with corneal deformation to detect deformation of the cornea; and an air flow blowing means provided in the air flow blowing means. The pressure detecting means for sequentially detecting the pressure and the positions of the reflected light amount corresponding points having the same reflected light amount level on the light amount increasing side and the light amount changing side of the light amount change curve are obtained, and the light amount between the respective reflected light amount corresponding points is obtained. A barycentric point corresponding to the reflected light amount for measuring the intraocular pressure value is calculated by integrating the reflected light amount level of the change curve, and the intraocular pressure value is calculated based on the pressure value of the pressure detecting means at the barycentric point corresponding to the reflected light amount. And an arithmetic circuit for performing the operation.

【0013】[0013]

【作用】本発明に係わる非接触式眼圧計によれば、気流
吹き付け手段は気流を被検眼の角膜に向けて放出する。
これにより角膜が変形される。角膜変形検出光学系によ
りその角膜変形に伴う反射光量変化曲線が得られる。圧
力検出手段は気流吹き付け手段内の圧力を逐次検出す
る。
According to the non-contact tonometer according to the present invention, the air flow blowing means discharges the air flow toward the cornea of the eye to be examined.
This deforms the cornea. The corneal deformation detection optical system can obtain a reflected light amount change curve associated with the corneal deformation. The pressure detecting means sequentially detects the pressure in the air flow blowing means.

【0014】演算回路は反射光量変化曲線の増加側と減
少側とにおいて同一反射光量レベルとなる反射光量対応
点の位置をそれぞれ求め、この各反射光量対応点の間の
光量変化曲線の反射光量レベルを積算することにより反
射光量対応重心点を演算し、この反射光量対応重心点に
おける圧力検出手段の圧力値に基づき眼圧値を演算す
る。
The arithmetic circuit obtains the positions of the corresponding points of the reflected light quantity having the same reflected light quantity level on the increasing side and the decreasing side of the reflected light quantity change curve, and the reflected light quantity level of the light quantity change curve between the respective reflected light quantity change points. Is calculated to calculate the barycentric point corresponding to the reflected light amount, and the intraocular pressure value is calculated based on the pressure value of the pressure detecting means at the barycentric point corresponding to the reflected light amount.

【0015】[0015]

【実施例】図1において、1は被検眼Eの前眼部を観察
する観察光学系、2、3は投影光束を被検眼Eの角膜C
に向けて投影するアライメント投影光学系、4、5はそ
の投影光束の各膜Cによる反射光束を受光する受光光学
系である。観察光学系1は対物レンズ6、ハーフミラー
7、CCDカメラ8を有する。対物レンズ6の光軸は、
ノズル9の軸線Mと同軸である。ノズル9は角膜Cに向
けて気流を放出する気流吹き付け手段の一部を構成して
いる。被検眼Eは発光ダイオード10によって照明さ
れ、対物レンズ6によりCCDカメラ8に前眼像が形成
される。CCDカメラ8はテレビモニター(図示を略
す)に接続され、図2に示すようにその画面11には前
眼部像12が表示される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 is an observation optical system for observing the anterior segment of an eye E, and reference numerals 2 and 3 are projection corpuscles of a cornea C of the eye E.
Alignment projection optical systems 4, 5 for projecting toward the optical axis are light receiving optical systems for receiving the light flux reflected by each film C of the projected light flux. The observation optical system 1 has an objective lens 6, a half mirror 7, and a CCD camera 8. The optical axis of the objective lens 6 is
It is coaxial with the axis M of the nozzle 9. The nozzle 9 constitutes a part of an air flow blowing unit that discharges an air flow toward the cornea C. The eye E to be examined is illuminated by the light emitting diode 10, and the anterior eye image is formed on the CCD camera 8 by the objective lens 6. The CCD camera 8 is connected to a television monitor (not shown), and an anterior segment image 12 is displayed on its screen 11 as shown in FIG.

【0016】ノズル9は図3に示すように保持ガラス1
3に保持され、シリンダー装置14のチャンバー15に
連通されている。16はチャンバー窓ガラスである。チ
ャンバー15にはチャンバー内の圧力を逐次検出する圧
力検出手段としての圧力センサ15aが設けられてい
る。
The nozzle 9 has a holding glass 1 as shown in FIG.
3 and is communicated with the chamber 15 of the cylinder device 14. Reference numeral 16 is a chamber window glass. The chamber 15 is provided with a pressure sensor 15a as a pressure detecting means for sequentially detecting the pressure inside the chamber.

【0017】チャンバー15は圧縮室17に連通し、往
復動可能のピストン18がピストンロッド19、アーム
20を介してロータリーソレノイド21に連結されてい
る。そのロータリーソレノイド21は、被検眼Eが正規
にアライメントされてノズル9の先端9aから角膜Cの
頂点22までの距離が基準作動距離Wになると駆動開始
されるものである。
The chamber 15 communicates with the compression chamber 17, and a reciprocable piston 18 is connected to a rotary solenoid 21 via a piston rod 19 and an arm 20. The rotary solenoid 21 starts driving when the eye E to be examined is properly aligned and the distance from the tip 9a of the nozzle 9 to the apex 22 of the cornea C reaches the reference working distance W.

【0018】アライメント投影光学系2は、図1に示す
ように、赤外発光ダイオード24、絞り25、コンデン
サレンズ26、ハーフミラー27、対物レンズ28を備
え、アライメント投影光学系3は赤外発光ダイオード2
9、絞り30、コンデンサレンズ31、ハーフミラー3
2、33、対物レンズ34を備えている。
As shown in FIG. 1, the alignment projection optical system 2 includes an infrared light emitting diode 24, a diaphragm 25, a condenser lens 26, a half mirror 27, and an objective lens 28. The alignment projection optical system 3 includes an infrared light emitting diode. Two
9, diaphragm 30, condenser lens 31, half mirror 3
2, 33 and an objective lens 34 are provided.

【0019】赤外発光ダイオード24からの赤外光は、
絞り25を通過してコンデンサレンズ26により集光さ
れ、ハーフミラー27の中央部を透過して対物レンズ2
8に導かれ、この対物レンズ28により平行光束P1と
して角膜Cに向けて投影される。同様に、赤外発光ダイ
オード29からの赤外光は対物レンズ34により平行光
束P2として角膜Cに向けて投影される。その平行光束
P1、P2の角膜鏡面反射により一対の虚像i、i′が
形成される。
The infrared light from the infrared light emitting diode 24 is
The light passes through the diaphragm 25, is condensed by the condenser lens 26, passes through the central portion of the half mirror 27, and passes through the objective lens 2
8 and is projected by the objective lens 28 onto the cornea C as a parallel light beam P1. Similarly, the infrared light from the infrared light emitting diode 29 is projected by the objective lens 34 toward the cornea C as a parallel light flux P2. A pair of virtual images i and i'is formed by corneal specular reflection of the parallel light beams P1 and P2.

【0020】受光光学系4は、対物レンズ28、ハーフ
ミラー27、結像レンズ35、反射ミラー36等から大
略構成され、受光光学系5は対物レンズ34、ハーフミ
ラー33、32、結像レンズ37、反射ミラー38から
大略構成されている。ハーフミラー32は赤外発光ダイ
オード24の赤外光に基づき虚像iを形成する鏡面反射
光束をその周辺部で反射する機能を有し、ハーフミラー
27は赤外発光ダイオード29の赤外光に基づき虚像
i′を形成する鏡面反射光束をその周辺部で反射する機
能を有する。
The light receiving optical system 4 is roughly composed of an objective lens 28, a half mirror 27, an image forming lens 35, a reflecting mirror 36, etc., and the light receiving optical system 5 is an objective lens 34, half mirrors 33, 32, and an image forming lens 37. The reflection mirror 38 is generally configured. The half mirror 32 has a function of reflecting the specularly reflected light flux forming the virtual image i based on the infrared light of the infrared light emitting diode 24 at its peripheral portion, and the half mirror 27 based on the infrared light of the infrared light emitting diode 29. It has a function of reflecting the specularly reflected light flux forming the virtual image i ′ at its peripheral portion.

【0021】虚像iを形成する鏡面反射光束は対物レン
ズ34によって平行光束とされ、ハーフミラー32によ
り反射されて結像レンズ37に導かれ、この結像レンズ
37により収束され、反射ミラー38を介してハーフミ
ラー7に導かれる。同様に、虚像i′を形成する鏡面反
射光束は対物レンズ28、ハーフミラー27、結像レン
ズ35、反射ミラー36を介してハーフミラー7に導か
れる。虚像i、i′を形成する鏡面反射光束はその一部
がハーフミラー7により反射されて、図4に示す受光器
39に導かれる。
The mirror-reflected light flux forming the virtual image i is collimated by the objective lens 34, reflected by the half mirror 32, guided to the imaging lens 37, converged by the imaging lens 37, and passed through the reflection mirror 38. Is guided to the half mirror 7. Similarly, the specularly reflected light flux forming the virtual image i ′ is guided to the half mirror 7 via the objective lens 28, the half mirror 27, the imaging lens 35, and the reflection mirror 36. A part of the specularly reflected light flux forming the virtual images i and i'is reflected by the half mirror 7 and guided to the light receiver 39 shown in FIG.

【0022】画面11には、ハーフミラー7を透過して
CCDカメラ8に導かれた鏡面反射光束により一対の虚
像i、i′に対応する一対の指標像K、K′が形成さ
れ、その一対の指標像K、K´は被検眼Eが正規にアラ
イメントされると(受光光学系4、5の光軸L1、L2
とノズル9の軸線Mとの交点が角膜頂点22に合致する
と)、図5に示すように互いに合致し、被検眼Eが正規
にアライメントされていないときには、図2に示すよう
に分離する。受光器39はその一対の指標像K、K´が
合致すると検出回路40に検出信号を出力する。検出回
路40はこれによりソレノイド駆動手段41に駆動信号
を出力し、角膜Cに向けての気流の放出が開始される。
On the screen 11, a pair of index images K and K'corresponding to a pair of virtual images i and i'is formed by the specularly reflected light flux which is transmitted through the half mirror 7 and is guided to the CCD camera 8. The index images K and K'of the target eye E are aligned normally (optical axes L1 and L2 of the light receiving optical systems 4 and 5).
When the intersection of the axis M of the nozzle 9 and the axis M of the nozzle 9 coincides with the apex 22 of the cornea), they coincide with each other as shown in FIG. 5, and when the eye E to be inspected is not properly aligned, they are separated as shown in FIG. The light receiver 39 outputs a detection signal to the detection circuit 40 when the pair of index images K and K'match. As a result, the detection circuit 40 outputs a drive signal to the solenoid drive means 41, and discharge of the air flow toward the cornea C is started.

【0023】アライメント投影光学系2と受光光学系5
の一部とは角膜Cに向けて光束を投影して角膜Cの変形
に伴う反射光束の光量変化を検出して角膜Cの変形を検
出する角膜変形検出光学系に兼用されている。その角膜
Cからの反射光束はハーフミラー33により反射されて
コンデンサレンズ43に導かれ、このコンデンサレンズ
43により集光されて絞り44に導かれ、この絞り44
を通過して受光器45に至る。
Alignment projection optical system 2 and light receiving optical system 5
Is also used as a corneal deformation detection optical system for detecting the deformation of the cornea C by projecting the light beam toward the cornea C and detecting the change in the amount of the reflected light beam accompanying the deformation of the cornea C. The light flux reflected from the cornea C is reflected by the half mirror 33 and guided to the condenser lens 43, condensed by the condenser lens 43 and guided to the diaphragm 44, and the diaphragm 44.
To reach the light receiver 45.

【0024】圧力センサ15aの出力と受光器45の出
力とは、演算回路46に入力されている。圧力センサ1
5aにより検出されるチャンバー内の圧力はピストンの
作動に伴って図6に示すような圧力変化曲線Pを描き、
受光器45に受光される反射光束の光量は気流吹き付け
に伴う角膜Cの変形に伴って光量変化曲線Dを描く。こ
こでは、演算回路46には反射光束の光量検出レベルL
が図6に示すように設けられている。
The output of the pressure sensor 15a and the output of the light receiver 45 are input to the arithmetic circuit 46. Pressure sensor 1
The pressure in the chamber detected by 5a draws a pressure change curve P as shown in FIG.
The light quantity of the reflected light flux received by the light receiver 45 draws a light quantity change curve D along with the deformation of the cornea C accompanying the air flow blowing. Here, the arithmetic circuit 46 is provided with a light amount detection level L of the reflected light flux.
Are provided as shown in FIG.

【0025】この光量検出レベルLは光量変化曲線Dの
光量増加側において反射光束の光量が光量検出レベルL
を横切る反射光量対応点Xと光量変化曲線Dの光量減少
側において反射光束の光量が光量検出レベルLを横切る
反射光量対応点Yとを定義するのに用いられる。
This light amount detection level L is the light amount detection level L of the reflected light flux on the light amount increasing side of the light amount change curve D.
It is used to define a reflected light quantity corresponding point X that crosses the light quantity change curve D and a reflected light quantity corresponding point Y that the light quantity of the reflected light flux crosses the light quantity detection level L on the light quantity decrease side of the light quantity change curve D.

【0026】演算回路46はその反射光量対応点Xの位
置と反射光量対応点Yとの間の光量変化曲線Dの光量検
出レベルLを積算して反射光量対応重心点Zの位置を算
出する。そして、演算回路46はその反射光量対応重心
点Zの位置に対応する圧力センサ15aの圧力値P0か
ら眼圧値IOPを演算する。
The arithmetic circuit 46 integrates the light amount detection level L of the light amount change curve D between the position of the reflected light amount corresponding point X and the reflected light amount corresponding point Y to calculate the position of the reflected light amount corresponding barycentric point Z. Then, the calculation circuit 46 calculates the intraocular pressure value IOP from the pressure value P0 of the pressure sensor 15a corresponding to the position of the center of gravity Z corresponding to the reflected light amount.

【0027】尚、光量検出レベルLを複数個設けて、こ
の複数個の反射光量対応重心点を求め、この複数個の反
射光量対応重心点の平均値に対応する圧力値P0から眼
圧値IOPを求めることも可能である。また、複数個の
反射光量対応重心点に対応する圧力値P0を夫々求め、
その平均圧力値に基づいて眼圧値IOPを求めてもよ
い。
A plurality of light amount detection levels L are provided, a plurality of barycentric points corresponding to the reflected light amounts are obtained, and a pressure value P0 corresponding to an average value of the plurality of barycentric points corresponding to the reflected light amounts is calculated to an intraocular pressure value IOP. It is also possible to ask. Further, the pressure values P0 corresponding to the plurality of gravity points corresponding to the reflected light amounts are obtained,
The intraocular pressure value IOP may be obtained based on the average pressure value.

【0028】図7は反射光束の光量検出レベルLを0と
した場合の実施例を示すもので、この場合には、反射光
量対応点Xは光量変化開始点X′を意味し、反射光量対
応点Yは光量変化終点Y′を意味し、反射光量対応重心
点Zは、光量変化開始点X′の位置と光量変化終点Y′
の位置との間の光量変化曲線Dの光量検出レベルLを積
算して求められる。
FIG. 7 shows an embodiment in which the light quantity detection level L of the reflected light flux is set to 0. In this case, the reflected light quantity corresponding point X means the light quantity change start point X ', and the reflected light quantity corresponding point X'. The point Y means the light amount change end point Y ′, and the reflected light amount corresponding centroid point Z is the position of the light amount change start point X ′ and the light amount change end point Y ′.
It is obtained by integrating the light amount detection level L of the light amount change curve D with respect to the position.

【0029】これらの実施例によれば、理論的にピーク
値となる角膜Cが偏平C′に圧平されたことを検出する
代わりに、光量変化曲線Dの増加側と減少側とにおいて
同一反射光量レベルとなる反射光量対応点の位置をそれ
ぞれ求めて、その各反射光量対応点の間の光量変化曲線
の反射光量レベルの重心点を求めて眼圧値を測定してい
るので、気流の不均一性、角膜の弾性、涙、まつ毛等に
起因する測定の不安定性を回避することができる。
According to these embodiments, instead of detecting that the cornea C which theoretically has the peak value is flattened to the flattened C ', the same reflection occurs on the increasing side and the decreasing side of the light amount change curve D. Since the positions of the corresponding points of the reflected light amount that are the light amount levels are obtained respectively, and the barycentric points of the reflected light amount level of the light amount change curve between the respective reflected light amount corresponding points are obtained to measure the intraocular pressure value, the air flow is not measured. Measurement instability due to uniformity, corneal elasticity, tears, eyelashes, etc. can be avoided.

【0030】なお、光量検出レベルLはソフト的にもハ
ード的にも設定できるものである。例えば、受光器45
の後段に、光量検出レベルLを設定するための逆方向ダ
イオードを設けて反射光束の光量が所定値以上でなけれ
ば受光器45の検出信号が演算回路46に向かって出力
されないようにする構成として光量レベルLを設定する
こともできる。
The light amount detection level L can be set by software or hardware. For example, the light receiver 45
A backward diode for setting the light amount detection level L is provided in the subsequent stage so that the detection signal of the light receiver 45 is not output to the arithmetic circuit 46 unless the light amount of the reflected light flux is equal to or more than a predetermined value. The light quantity level L can also be set.

【0031】また、反射光量対応点には時間を用いるこ
ともできるが、メモリの座標位置を用いることもでき
る。
Although the time corresponding to the reflected light amount corresponding point can be used, the coordinate position of the memory can also be used.

【0032】[0032]

【発明の効果】本発明に係わる非接触式眼圧計は、以上
説明したように構成したので、角膜に吹き付けられる気
流の不均一性、涙、角膜の弾性、まつ毛の等の混入に起
因する測定の不安定性を回避することができるという効
果を奏する。
Since the non-contact tonometer according to the present invention is constructed as described above, the measurement is caused by the nonuniformity of the air flow blown onto the cornea, tears, elasticity of the cornea, and mixing of eyelashes. The instability of can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる非接触式眼圧計の光学系の一例
を示す平面図である。
FIG. 1 is a plan view showing an example of an optical system of a non-contact tonometer according to the present invention.

【図2】図1に示す非接触式眼圧計の非アライメント状
態の説明図である。
FIG. 2 is an explanatory diagram of a non-alignment state of the non-contact tonometer shown in FIG.

【図3】図1に示す非接触式眼圧計の気流吹き付け手段
の概略構成図である。
FIG. 3 is a schematic configuration diagram of an air flow blowing unit of the non-contact tonometer shown in FIG.

【図4】図1に示す非接触式眼圧計の要部を説明するた
めの図である。
FIG. 4 is a diagram for explaining a main part of the non-contact tonometer shown in FIG.

【図5】図1に示す非接触式眼圧計のアライメント状態
の説明図である。
5 is an explanatory diagram of an alignment state of the non-contact tonometer shown in FIG.

【図6】本発明に係わる非接触式眼圧計の眼圧値測定の
一例を説明するための光量・圧力変化曲線図である。
FIG. 6 is a light amount / pressure change curve diagram for explaining an example of intraocular pressure value measurement of the non-contact tonometer according to the present invention.

【図7】本発明に係わる非接触式眼圧計の眼圧値測定の
他の例を説明するための光量・圧力変化曲線図である。
FIG. 7 is a light amount / pressure change curve diagram for explaining another example of the intraocular pressure value measurement of the non-contact tonometer according to the present invention.

【図8】角膜変形と光量変化曲線との関係を示す説明図
である。
FIG. 8 is an explanatory diagram showing a relationship between corneal deformation and a light amount change curve.

【図9】光量変化曲線と圧力変化曲線との関係を示す説
明図である。
FIG. 9 is an explanatory diagram showing a relationship between a light amount change curve and a pressure change curve.

【図10】二つのピークを有する光量変化曲線を示す説
明図である。
FIG. 10 is an explanatory diagram showing a light amount change curve having two peaks.

【図11】緩やかな光量変化曲線を示す説明図である。FIG. 11 is an explanatory diagram showing a gradual light amount change curve.

【図12】ピークに細かな乱れを有する光量変化曲線を
示す図である。
FIG. 12 is a diagram showing a light amount change curve having a fine disturbance at the peak.

【符号の説明】[Explanation of symbols]

C…角膜 D…光量変化曲線 E…被検眼 X…反射光量対応点(増加側) Y…反射光量対応点(減少側) Z…反射光量対応重心点 IOP…眼圧値 2…アライメント投影光学系(角膜変形検出光学系) 5…受光光学系(角膜変形検出光学系) 9…ノズル(気流吹き付け手段) 15a…圧力センサ(圧力検出手段) 46…演算回路 C ... Cornea D ... Light amount change curve E ... Eye to be examined X ... Reflected light amount corresponding point (increasing side) Y ... Reflected light amount corresponding point (decreasing side) Z ... Reflected light amount corresponding centroid point IOP ... Intraocular pressure value 2 ... Alignment projection optical system (Cornea Deformation Detection Optical System) 5 ... Receiving Optical System (Cornea Deformation Detection Optical System) 9 ... Nozzle (Air Flow Blowing Means) 15a ... Pressure Sensor (Pressure Detection Means) 46 ... Arithmetic Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検眼の角膜に気流を吹き付けて角膜を
変形させる気流吹き付け手段と、前記角膜に光束を投影
して角膜変形に伴う反射光束の光量変化曲線を検出して
該角膜の変形を検出する角膜変形検出光学系と、前記気
流吹き付け手段に設けられて該気流吹き付け手段内の圧
力を逐次検出する圧力検出手段と、前記光量変化曲線の
光量増加側と減少側とにおいて同一反射光量レベルとな
る反射光量対応点の位置をそれぞれ求めると共にこの各
反射光量対応点の間の前記光量変化曲線の反射光量レベ
ルを積算することにより眼圧値を測定するための反射光
量対応重心点を演算しかつ該反射光量対応重心点におけ
る前記圧力検出手段の圧力値に基づき前記眼圧値を演算
する演算回路と、を備えていることを特徴とする非接触
式眼圧計。
1. An air flow blowing unit that blows an air flow to the cornea of an eye to be inspected to deform the cornea, and a light flux is projected onto the cornea to detect a light amount change curve of a reflected light flux associated with the corneal deformation, thereby deforming the cornea. A corneal deformation detection optical system for detecting, a pressure detecting means provided in the air flow blowing means for sequentially detecting the pressure in the air flow blowing means, and the same reflected light amount level on the light amount increasing side and the light amount changing side of the light amount change curve. And calculate the position of the reflected light amount corresponding point and calculate the reflected light amount corresponding barycentric point for measuring the intraocular pressure value by integrating the reflected light amount level of the light amount change curve between the respective reflected light amount corresponding points. And a calculation circuit for calculating the intraocular pressure value based on the pressure value of the pressure detection means at the center of gravity corresponding to the reflected light amount.
JP03223136A 1991-09-03 1991-09-03 Non-contact tonometer Expired - Fee Related JP3073279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03223136A JP3073279B2 (en) 1991-09-03 1991-09-03 Non-contact tonometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03223136A JP3073279B2 (en) 1991-09-03 1991-09-03 Non-contact tonometer

Publications (2)

Publication Number Publication Date
JPH0556930A true JPH0556930A (en) 1993-03-09
JP3073279B2 JP3073279B2 (en) 2000-08-07

Family

ID=16793361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03223136A Expired - Fee Related JP3073279B2 (en) 1991-09-03 1991-09-03 Non-contact tonometer

Country Status (1)

Country Link
JP (1) JP3073279B2 (en)

Also Published As

Publication number Publication date
JP3073279B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US8596789B2 (en) Non-contact tonometer
JP2588881B2 (en) Non-contact tonometer
AU683142B2 (en) Improved non-contact tonometer
JP3970141B2 (en) Non-contact tonometer
JP3862869B2 (en) Non-contact tonometer
US6537215B2 (en) Non-contact type tonometer
US5031623A (en) Non-contact tonometer
JPH0586215B2 (en)
JP3346468B2 (en) Non-contact tonometer
US5465123A (en) Noncontact type tonometer
JP3330461B2 (en) Non-contact tonometer
US5680196A (en) Position detecting apparatus for an ophthalmologic apparatus
JPH0556930A (en) Non-contact type ophthalmic pressure gage
JP3073278B2 (en) Non-contact tonometer
JPH08173385A (en) Ophthalmic instrument
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JPH08150116A (en) Ophthalmic apparatus
JP3496994B2 (en) Non-contact tonometer
JP3429028B2 (en) Non-contact tonometer
JP3379719B2 (en) Non-contact tonometer
JPH09192105A (en) Tonometer for eye
JP3577071B2 (en) Non-contact tonometer
JPH11216118A (en) Non-contact type tonometer
JPH03118030A (en) Non-contact type eye pressure meter
JPH03118029A (en) Non-contact type eye pressure meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees