JPH0556803B2 - - Google Patents

Info

Publication number
JPH0556803B2
JPH0556803B2 JP61081651A JP8165186A JPH0556803B2 JP H0556803 B2 JPH0556803 B2 JP H0556803B2 JP 61081651 A JP61081651 A JP 61081651A JP 8165186 A JP8165186 A JP 8165186A JP H0556803 B2 JPH0556803 B2 JP H0556803B2
Authority
JP
Japan
Prior art keywords
channel box
fuel channel
ultrasonic sensor
fuel
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081651A
Other languages
Japanese (ja)
Other versions
JPS62238406A (en
Inventor
Hideaki Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61081651A priority Critical patent/JPS62238406A/en
Publication of JPS62238406A publication Critical patent/JPS62238406A/en
Publication of JPH0556803B2 publication Critical patent/JPH0556803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、沸騰水型原子力発電所において使用
される燃料チヤンネルボツクスの形状寸法測定装
置、特に原子力発電所内での照射燃料チヤンネル
ボツクスの形状寸法測定を目的とした燃料チヤン
ネルボツクス寸法測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is a device for measuring the geometry of fuel channel boxes used in boiling water nuclear power plants, particularly for measuring the geometry of irradiated fuel channel boxes in nuclear power plants. This invention relates to a fuel channel box size measuring device for the purpose of measurement.

〔従来の技術〕[Conventional technology]

第2図に示すように、原子力発電所で使用され
る燃料集合体1の構成部品である燃料チヤンネル
ボツクス3は炉心内で長期間中性子照射され、か
つ、燃料チヤンネルボツクス3の内外における圧
力差が大きい状態で運転されるため、使用期間中
にクリープ変形により断面変形や、軸方向の照射
伸び差により軸方向曲りを生じる。第3図に燃料
チヤンネルボツクス3と制御棒5の配置関係を示
すが、燃料チヤンネルボツクス3の変形が大きく
なると、制御棒5と干渉を生じ、制御棒の挿入が
できなくなる。このため、燃料チヤンネルボツク
ス3は制御棒5との干渉が生じない変形範囲内で
使用しなければならず、燃料チヤンネルボツクス
3の寸法測定は燃料チヤンネルボツクス3の寿命
を評価する上で重要な検査となつている。
As shown in Fig. 2, a fuel channel box 3, which is a component of a fuel assembly 1 used in a nuclear power plant, is irradiated with neutrons for a long period of time in the reactor core, and the pressure difference between the inside and outside of the fuel channel box 3 is small. Since it is operated in a large state, cross-sectional deformation due to creep deformation and axial bending occur due to axial irradiation elongation difference during the period of use. FIG. 3 shows the arrangement relationship between the fuel channel box 3 and the control rods 5. If the deformation of the fuel channel box 3 becomes large, it will interfere with the control rods 5, making it impossible to insert the control rods. For this reason, the fuel channel box 3 must be used within a deformation range that does not cause interference with the control rods 5, and the measurement of the dimensions of the fuel channel box 3 is an important inspection in evaluating the life of the fuel channel box 3. It is becoming.

従来、計画されている燃料チヤンネルボツクス
3の寸法測定方式としては、接触型である歪ゲー
ジ方式や差動トランス方式、又、非接触型である
超音波方式が用いられている。
Conventionally, planned methods for measuring the dimensions of the fuel channel box 3 include a contact type strain gauge method and a differential transformer method, and a non-contact type ultrasonic method.

また、装置としては寸法測定部を燃料チヤンネ
ルボツクス長手方向に移動させる方式と、寸法測
定部を長手方向に複数個配置し同時に燃料チヤン
ネルボツクス長手方向形状寸法を測定する方式の
2種類があるが、寸法測定時間を短縮する目的か
らは後者の寸法測定部を複数個配置した装置が有
効である。
There are two types of devices: one in which the dimension measuring section is moved in the longitudinal direction of the fuel channel box, and the other in which a plurality of dimension measuring sections are arranged in the longitudinal direction and simultaneously measure the longitudinal shape and dimension of the fuel channel box. For the purpose of shortening the dimension measurement time, the latter device in which a plurality of dimension measurement sections are arranged is effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した従来の燃料チヤンネルボツクス寸法測
定方式では以下のような問題点がある。
The conventional fuel channel box size measurement method described above has the following problems.

歪ゲージや差動トランスのような接触型の測定
方式においては測定端子を燃料チヤンネルボツク
スに接触させるので、周囲環境の影響を受けずに
測定することができるが、燃料チヤンネルボツク
ス3や測定端子に損傷を与えやすいという問題
や、測定端子を燃料チヤンネルボツクスに接触さ
せるための駆動部が必要となるため装置が大型化
するという問題点がある、 一方、超音波を用いた非接触型の測定方式にお
いては、燃料チヤンネルボツクス3を燃料体2に
装着した状態で測定する場合に、燃料体3が発熱
体であり、燃料チヤンネルボツクス3の周囲にお
いて長手方向に温度分布が生じ、音速が変化する
ため、精度よく測定することが難しいという問題
点がある。周囲での温度を調べる方法としては、
装置に熱電対の設けるという方法があるが、この
場合でも、周囲の水質変化により密度が変化した
場合には正確に音速を求められないという問題
や、熱電対の取付けにより装置が複雑化し、トラ
ブルの原因になりやすいという問題がある。
In contact measurement methods such as strain gauges and differential transformers, the measurement terminals are brought into contact with the fuel channel box, so measurements can be made without being affected by the surrounding environment. There are problems with the problem of easy damage, and the need for a drive part to bring the measurement terminal into contact with the fuel channel box, which increases the size of the device.On the other hand, a non-contact measurement method using ultrasonic waves When measuring with the fuel channel box 3 attached to the fuel body 2, since the fuel body 3 is a heating element, a temperature distribution occurs in the longitudinal direction around the fuel channel box 3, and the speed of sound changes. However, there is a problem in that it is difficult to measure accurately. To find out the temperature in the surrounding area,
There is a method of installing thermocouples in the equipment, but even in this case, there is a problem that the speed of sound cannot be determined accurately if the density changes due to changes in the surrounding water quality, and the installation of thermocouples complicates the equipment and can cause trouble. The problem is that it can easily cause

本発明の目的は、燃料チヤンネルボツクス周囲
環境の音速を測定して温度補正を行い寸法測定精
度を向上させることにある。
SUMMARY OF THE INVENTION An object of the present invention is to measure the sound velocity in the environment surrounding a fuel channel box and perform temperature correction to improve dimensional measurement accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、静止水中に浸漬した燃料集合体の
構成部品である燃料チヤンネルボツクスの形状寸
法を超音波センサーにより測定する燃料チヤンネ
ルボツクス寸法測定装置において、互いに対向す
る少なくとも1対の超音波センサーと、該超音波
センサーと前記燃料チヤンネルボツクスの間に配
置され該超音波センサーとの距離が予め定められ
少なくともその径が該超音波センサーの発信部径
より小さい剛体からなる校正体と、前記超音波セ
ンサーから送信された超音波が該校正体により反
射して受信される迄の時間と前記超音波センサー
と該校正体の距離とから前記燃料チヤンネルボツ
クス周囲環境の音速を求める手段と、該音速と前
記超音波センサーから送信された超音波が前記燃
料チヤンネルボツクスにより反射して受信される
迄の時間とから前記燃料チヤンネルボツクスの形
状寸法を求める手段とを備えたことにより達成さ
れる。
The above object is to provide a fuel channel box size measuring device for measuring the shape and size of a fuel channel box, which is a component of a fuel assembly immersed in still water, using an ultrasonic sensor, including at least one pair of ultrasonic sensors facing each other; a calibration body that is disposed between the ultrasonic sensor and the fuel channel box, has a predetermined distance from the ultrasonic sensor, and has a diameter at least smaller than the diameter of the transmitting part of the ultrasonic sensor; means for determining the speed of sound in the surrounding environment of the fuel channel box from the time it takes for the ultrasonic waves transmitted from the calibrator to be reflected and received by the calibrator and the distance between the ultrasonic sensor and the calibrator; This is achieved by comprising means for determining the shape and dimensions of the fuel channel box from the time it takes for the ultrasonic waves transmitted from the ultrasonic sensor to be reflected by and received by the fuel channel box.

〔作用〕[Effect]

上述の問題点を解決するための手段によつて、
測定精度が如何にして向上できるかを試験結果を
まじえて説明する。
By means of solving the above problems,
We will explain how measurement accuracy can be improved using test results.

まず、第4図に超音波センサーを用いた場合の
温度変化による距離測定値の変化を調べた試験結
果を示す。第4図は20℃で較正(音速を較正)を
施した後に、超音波センサーから20mm離れた位置
に設けられた定盤までの距離を温度を変化させな
がら測定したものである。試験は照射燃料チヤン
ネルボツクスの形状寸法測定と同じ水中で実施し
ている。水温の上昇とともに超音波センサーによ
る距離測定値が小さくなつている。これは水温の
上昇により、水の密度が小さくなつたために超音
波の伝播速度が速くなり、その結果として距離測
定値が小さくなつたものである。
First, FIG. 4 shows the test results of examining changes in distance measurement values due to temperature changes when using an ultrasonic sensor. Figure 4 shows the distance from the ultrasonic sensor to a surface plate set 20 mm away from the ultrasonic sensor after calibration at 20°C (calibration of sound speed) while varying the temperature. The test was conducted in the same water as the geometry measurement of the irradiated fuel channel box. As the water temperature rises, the distance measured by the ultrasonic sensor becomes smaller. This is because as the water temperature rises, the density of the water decreases, so the propagation speed of ultrasonic waves increases, and as a result, the measured distance value decreases.

このように、超音波により測定を行う場合に
は、較正時と測定時で温度変化が生じると音速の
変化が測定誤差となる。したがつて超音波測定方
式で測定精度をよくするためには、測定時の音速
を正確に把握する必要がある。
In this way, when measuring with ultrasonic waves, if a temperature change occurs between the time of calibration and the time of measurement, the change in sound speed causes a measurement error. Therefore, in order to improve the measurement accuracy using the ultrasonic measurement method, it is necessary to accurately understand the sound speed at the time of measurement.

また、第5図に超音波センサーと定盤の間に針
金を張り、この針金からの反射エコーと定盤から
の反射エコーを測定し、両方の反射エコーの大き
さの比を調べた試験結果を示す。本試験では0.5
mmと1.0mmの針金を用いたが、いずれの場合でも
針金からの反射エコーと定盤からの反射エコーを
別々に検出することができる。
Figure 5 also shows test results in which a wire was stretched between the ultrasonic sensor and the surface plate, the echoes reflected from the wire and the echoes reflected from the surface plate were measured, and the ratio of the sizes of both reflected echoes was investigated. shows. 0.5 in this test
mm and 1.0 mm wires were used, but in either case, the echo reflected from the wire and the echo reflected from the surface plate can be detected separately.

このように、実際の被測定体の距離測定を行う
前に、超音波センサーと針金の距離を求めてお
き、実際の測定時にこの針金からの反射エコーの
応答時間を測定すれば、距離測定に用いる超音波
が通過する環境の温度における音速を求めること
ができ、この音速を用いることにより、被測定体
までの距離を正確に測定することができることに
なる。
In this way, you can calculate the distance between the ultrasonic sensor and the wire before actually measuring the distance to the object being measured, and then measure the response time of the echo reflected from the wire during the actual measurement. The speed of sound at the temperature of the environment through which the ultrasonic waves used can be determined, and by using this speed of sound, it is possible to accurately measure the distance to the object to be measured.

第6図に前記の原理を適用して、水温を変化さ
せながら、超音波センサーと定盤の距離を測定し
た時の測定精度評価結果を示すが、前記の原理の
適用により、精度よく測定できることが確認され
る。
Figure 6 shows the measurement accuracy evaluation results when the distance between the ultrasonic sensor and the surface plate was measured while changing the water temperature by applying the above principle. is confirmed.

〔実施例〕〔Example〕

以下、本発明による燃料チヤネルボツクス寸法
測定装置の一実施例を第1図、第7図ないし第9
図を用いて説明する。
An embodiment of the fuel channel box size measuring device according to the present invention will be described below with reference to FIGS. 1, 7 to 9.
This will be explained using figures.

まず、燃料チヤンネルボツクス寸法測定装置の
全体図を第7図に示す。この装置は、フレーム1
2、ガイドローラ機構13、寸法測定部14およ
び着座部15から構成されている。ここで寸法測
定装置10は、同図に示すように使用済燃料貯蔵
プール7の壁8に吊り下げた状態で使用されるよ
うになつている。
First, FIG. 7 shows an overall view of the fuel channel box size measuring device. This device is frame 1
2, a guide roller mechanism 13, a dimension measuring section 14, and a seating section 15. Here, the dimension measuring device 10 is adapted to be used while being suspended from the wall 8 of the spent fuel storage pool 7, as shown in the figure.

前記ガイドローラ機構13は第9図に示すよう
に、前述の燃料チヤンネルボツクス3の4面がガ
イドできるように4個のガイドローラ16が取付
けられ、各々のガイドローラ16はスプリング1
7により燃料チヤンネルボツクス3に押付けられ
る構造となつている。このガイドローラ機構13
は燃料チヤンネルボツクス3を前記寸法測定装置
10に搬入する時のガイドの機能とともに、測定
時に燃料チヤンネルボツクス3が捩じれた状態と
ならないように保持する機能を併せ持つている。
つまり、燃料チヤンネルボツクス3を捩れた状態
で測定した場合には外幅寸法の測定誤差が大きく
なり、測定精度が著しく低下する。このため、ガ
イドローラ機構13により燃料チヤンネルボツク
ス3の測定面の垂直方向と測定端子の方向が一致
するように燃料チヤンネルボツクス3の向きを補
正しているものとなつている。
The guide roller mechanism 13, as shown in FIG.
7, it is pressed against the fuel channel box 3. This guide roller mechanism 13
has the function of guiding the fuel channel box 3 when it is carried into the dimension measuring device 10, and also has the function of holding the fuel channel box 3 so that it does not become twisted during measurement.
That is, when the fuel channel box 3 is measured in a twisted state, the measurement error in the outer width dimension becomes large, and the measurement accuracy is significantly reduced. Therefore, the direction of the fuel channel box 3 is corrected by the guide roller mechanism 13 so that the vertical direction of the measurement surface of the fuel channel box 3 matches the direction of the measurement terminal.

寸法測定部14は第8図に示すように軸方向に
数ケ所配置されている。また、寸法測定部14の
断面図を第1図に示すが、超音波センサー18が
4面に設けられており、4面同時に測定すること
ができる。各々の超音波センサー18の前には長
手方向に垂直な向きに針金19を張り、各超音波
センサー18と針金19の距離は事前に音速の明
確にわかつている環境における針金19からの反
射エコーの応答時間により測定するか、又は別の
測定機器により測定を行つておく。燃料チヤンネ
ルボツクス形状寸法測定時には、この距離が既知
の針金19を用いて燃料チヤンネルボツクス周囲
プール水での音速を測定する。第1図では各々の
超音波センサー18の前に針金19を設けている
が、燃料チヤンネルボツクス3の4面の条件が変
わらない場合には、1ケの超音波センサーの前に
針金を取付けるだけでよい。
The dimension measuring sections 14 are arranged at several locations in the axial direction, as shown in FIG. Further, a cross-sectional view of the dimension measuring section 14 is shown in FIG. 1, and the ultrasonic sensors 18 are provided on four sides, and the four sides can be measured simultaneously. In front of each ultrasonic sensor 18, a wire 19 is stretched perpendicular to the longitudinal direction, and the distance between each ultrasonic sensor 18 and the wire 19 is determined by the echo reflected from the wire 19 in an environment where the speed of sound is clearly known in advance. Measure the response time of the device, or use another measuring device. When measuring the shape and size of the fuel channel box, the speed of sound in the pool water around the fuel channel box is measured using a wire 19 whose distance is known. In Fig. 1, a wire 19 is installed in front of each ultrasonic sensor 18, but if the conditions on the four sides of the fuel channel box 3 do not change, just attach the wire in front of one ultrasonic sensor. That's fine.

着座部15は第9図に示されるように寸法測定
装置測定部本体11の下端部に設けられており、
燃料チヤンネルボツクス3が寸法測定装置に着座
していることをリミツトスイツチを用いて検出で
きる構造となつている。
The seating section 15 is provided at the lower end of the measurement section main body 11 of the dimension measuring device, as shown in FIG.
The structure is such that it can be detected using a limit switch that the fuel channel box 3 is seated on the dimension measuring device.

次に、このように構成した燃料チヤンネルボツ
クス寸法測定装置の寸法測定方法について説明す
る。
Next, a method for measuring dimensions using the fuel channel box dimension measuring apparatus configured as described above will be explained.

最初に、寸法が既知の校正用チヤンネルボツク
スを燃料交換台車の燃料把み装置等により寸法測
定装置10に取付ける。ここで、寸法が既知の校
正用チヤンネルボツクスを超音波センサー18で
測定することにより、対面する超音波センサーの
距離を求めると同時に各々の長手方向に取付けら
れた超音波センサー18の真値からのはずれを求
めておく。
First, a calibration channel box whose dimensions are known is attached to the dimension measuring device 10 using a fuel gripping device of a fuel exchange truck or the like. Here, by measuring a calibration channel box whose dimensions are known with the ultrasonic sensor 18, the distance between the facing ultrasonic sensors is determined, and at the same time, the distance from the true value of each ultrasonic sensor 18 attached in the longitudinal direction is calculated. Look for deviations.

次に、測定対象となる燃料チヤンネルボツクス
3は燃料把み装置等により寸法測定装置10に取
付け、各々の超音波センサー18と燃料チヤンネ
ルボツクス3の距離を測定することにより、前記
校正時に求めた対面超音波センサー間の距離及び
長手方向の各超音波センサーの真値からのずれと
から燃料チヤンネルボツクスの外幅及び長手方向
曲がり等の形状寸法を求める。
Next, the fuel channel box 3 to be measured is attached to the dimension measuring device 10 using a fuel gripping device or the like, and by measuring the distance between each ultrasonic sensor 18 and the fuel channel box 3, the facing surface obtained at the time of calibration is measured. From the distance between the ultrasonic sensors and the deviation from the true value of each ultrasonic sensor in the longitudinal direction, the dimensions such as the outer width and longitudinal bending of the fuel channel box are determined.

ここで、超音波センサー18と校正用チヤンネ
ルボツクスあるいは燃料チヤンネルボツクス3の
距離は超音波センサー18から発信された超音波
の針金19からの反射エコーの応答時間と、超音
波センサー取付け時に測定してある距離との関係
から測定時の音速を求めると同時に被測定体から
の反射エコーの応答時間を求めることにより測定
することができる。
Here, the distance between the ultrasonic sensor 18 and the calibration channel box or fuel channel box 3 is determined by the response time of the reflected echo from the wire 19 of the ultrasonic waves emitted from the ultrasonic sensor 18 and by the measurement when the ultrasonic sensor is installed. It can be measured by finding the speed of sound at the time of measurement from the relationship with a certain distance and at the same time finding the response time of the reflected echo from the object to be measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料チヤンネルボツクスと超
音波センサー間の距離測定に用いる超超音波が通
過する環境の温度における音速を求めて音速の温
度補正を行うので、燃料チヤンネルボツクスの形
状寸法を精度良く測定出来るという効果が得られ
る。
According to the present invention, the sound speed is corrected by determining the sound speed at the temperature of the environment through which the ultrasonic waves used to measure the distance between the fuel channel box and the ultrasonic sensor pass, so the shape and dimensions of the fuel channel box can be accurately adjusted. The effect of being measurable can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料チヤンネルボツクス
寸法測定装置の一実施例を示す構成図、第2図は
燃料集合体の構成を示す断面図、第3図は炉心に
おける燃料チヤンネルボツクスと制御棒の配置を
示す平面図、第4図ないし第6図は本発明の原理
を示す説明図で、第4図は水温の変化による超音
波距離測定値の変化を調べた試験結果図、第5図
は超音波の針金からの反射エコーを調べた試験結
果図、第6図は超音波距離測定の精度評価試験結
果図、第7図は燃料チヤンネルボツクス寸法測定
装置の全体を示す構成図、第8図は、燃料チヤン
ネルボツクス寸法測定装置の測定部本体を示す構
成図、第9図は第8図における着座部の構成図で
ある。 1……燃料集合体、2……燃料体、3……燃料
チヤンネルボツクス、4……チヤンネルフアス
ナ、5……制御棒、6……上部格子、7……使用
済燃料貯蔵プール、8……使用済燃料貯蔵プール
壁、9……燃料把み装置、10……燃料チヤンネ
ルボツクス寸法測定装置、11……寸法測定装置
全体、12……フレーム、13……ガイドローラ
機構、14……寸方測定部、15……着座部、1
6……ガイドローラ、17……スプリング、18
……超音波センサー、19……針金。
Fig. 1 is a configuration diagram showing an embodiment of the fuel channel box dimension measuring device according to the present invention, Fig. 2 is a sectional view showing the structure of a fuel assembly, and Fig. 3 is an arrangement of the fuel channel box and control rods in the reactor core. FIGS. 4 to 6 are explanatory views showing the principle of the present invention. FIG. Figure 6 is a diagram showing the test results of examining the reflected echoes of sound waves from the wire. Figure 6 is a diagram showing the results of an accuracy evaluation test for ultrasonic distance measurement. Figure 7 is a configuration diagram showing the entire fuel channel box dimension measuring device. Figure 8 is a diagram showing the overall configuration of the fuel channel box dimension measuring device. FIG. 9 is a block diagram showing the main body of the measuring section of the fuel channel box size measuring device, and FIG. 9 is a block diagram of the seating section in FIG. 8. DESCRIPTION OF SYMBOLS 1...Fuel assembly, 2...Fuel body, 3...Fuel channel box, 4...Channel assener, 5...Control rod, 6...Upper grid, 7...Spent fuel storage pool, 8... ...Spent fuel storage pool wall, 9...Fuel grasping device, 10...Fuel channel box dimension measuring device, 11...Dimension measuring device as a whole, 12...Frame, 13...Guide roller mechanism, 14...Dimensions direction measurement part, 15...seating part, 1
6...Guide roller, 17...Spring, 18
...Ultrasonic sensor, 19...Wire.

Claims (1)

【特許請求の範囲】 1 静止水中に浸漬した燃料集合体の構成部品で
ある燃料チヤンネルボツクスの形状寸法を超音波
センサーにより測定する燃料チヤンネルボツクス
寸法測定装置において、互いに対向する少なくと
も1対の超音波センサーと、該超音波センサーと
前記燃料チヤンネルボツクスの間に配置され該超
音波センサーとの距離が予め定められ少なくとも
その径が該超音波センサーの発信部径より小さい
剛体からなる校正体と、前記超音波センサーから
送信された超音波が該校正体により反射して受信
される迄の時間と前記超音波センサーと該校正体
の距離とから前記燃料チヤンネルボツクス周囲環
境の音速を求める手段と、該音速と前記超音波セ
ンサーから送信された超音波が前記燃料チヤンネ
ルボツクスにより反射して受信される迄の時間と
から前記燃料チヤンネルボツクスの形状寸法を求
める手段とを備えたことを特徴とする燃料チヤン
ネルボツクス寸法測定装置。 2 前記校正体が金属線であることを特徴とする
特許請求の範囲第1項に記載のチヤンネルボツク
ス寸法測定装置。
[Claims] 1. In a fuel channel box size measuring device that measures the shape and size of a fuel channel box, which is a component of a fuel assembly immersed in still water, using an ultrasonic sensor, at least one pair of ultrasonic waves facing each other is provided. a calibration body that is disposed between the ultrasonic sensor and the fuel channel box, has a predetermined distance from the ultrasonic sensor, and has at least a diameter smaller than the diameter of the transmitting part of the ultrasonic sensor; means for determining the speed of sound in the surrounding environment of the fuel channel box from the time it takes for the ultrasonic waves transmitted from the ultrasonic sensor to be reflected and received by the calibration body and the distance between the ultrasonic sensor and the calibration body; A fuel channel characterized by comprising means for determining the shape and dimensions of the fuel channel box from the speed of sound and the time it takes for the ultrasonic waves transmitted from the ultrasonic sensor to be reflected by and received by the fuel channel box. Box dimension measuring device. 2. The channel box dimension measuring device according to claim 1, wherein the calibration body is a metal wire.
JP61081651A 1986-04-09 1986-04-09 Apparatus for measuring dimension of fuel channel box Granted JPS62238406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081651A JPS62238406A (en) 1986-04-09 1986-04-09 Apparatus for measuring dimension of fuel channel box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081651A JPS62238406A (en) 1986-04-09 1986-04-09 Apparatus for measuring dimension of fuel channel box

Publications (2)

Publication Number Publication Date
JPS62238406A JPS62238406A (en) 1987-10-19
JPH0556803B2 true JPH0556803B2 (en) 1993-08-20

Family

ID=13752233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081651A Granted JPS62238406A (en) 1986-04-09 1986-04-09 Apparatus for measuring dimension of fuel channel box

Country Status (1)

Country Link
JP (1) JPS62238406A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307611A (en) * 1988-06-06 1989-12-12 Hitachi Ltd Measuring instrument for shape and dimension of fuel channel box
DE19945930C2 (en) * 1999-09-24 2003-05-28 Framatome Anp Gmbh Method and device for inspecting a nuclear reactor fuel assembly
KR100905375B1 (en) 2007-11-19 2009-07-01 한국원자력연구원 Apparatus and method for replacing nuclear fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425759A (en) * 1977-07-29 1979-02-26 Hitachi Ltd Coordinate reader of three-dimensional models
JPS564008A (en) * 1979-06-25 1981-01-16 Toshiba Corp Dimension measuring device
JPS60195409A (en) * 1984-03-16 1985-10-03 Nuclear Fuel Ind Ltd External size measuring instrument of channel box
JPS6196404A (en) * 1984-10-18 1986-05-15 Kawasaki Steel Corp Method and instrument for measuring thickness of cooling water film of belt caster
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425759A (en) * 1977-07-29 1979-02-26 Hitachi Ltd Coordinate reader of three-dimensional models
JPS564008A (en) * 1979-06-25 1981-01-16 Toshiba Corp Dimension measuring device
JPS60195409A (en) * 1984-03-16 1985-10-03 Nuclear Fuel Ind Ltd External size measuring instrument of channel box
JPS6196404A (en) * 1984-10-18 1986-05-15 Kawasaki Steel Corp Method and instrument for measuring thickness of cooling water film of belt caster
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile

Also Published As

Publication number Publication date
JPS62238406A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
EP0607057B1 (en) Electrochemical monitoring of vessel penetrations
US4246783A (en) Spring-force measuring device
US5225148A (en) Method for checking the thickness and the cohesion of the interface of a duplex tube
US5156636A (en) Ultrasonic method and apparatus for measuring outside diameter and wall thickness of a tube and having temperature compensation
EP0046079B1 (en) Apparatus for inspecting a heat exchanger tube
GB1587969A (en) Device for measuring local power within a nuclear reactor fuel assembly
KR830000819B1 (en) Inspection device for heat exchanger tubing
JPH0233082B2 (en)
US4108719A (en) Method and apparatus for gauging the radial spacing between fuel and surrounding cladding of a fuel rod for nuclear reactors
US4517152A (en) Method of testing fuel element tubes for defects
JPH0556803B2 (en)
US4426352A (en) Composite detector
US4892701A (en) Device for measuring nuclear reactor fuel assembly grids
EP0727787B1 (en) Nuclear fuel assembly bow and twist measurement apparatus
EP0501663A1 (en) Nuclear fuel bundle spacer spring force gauge
KR100609259B1 (en) Fuel rod testing apparatus
US20060291608A1 (en) Fuel channel characterization method and device
JP3469029B2 (en) Control rod guide tube deformation measurement system for reactor fuel assemblies
US5098643A (en) Method for detecting leaky rods in a nuclear fuel assembly
JPH0569186B2 (en)
US5118463A (en) Process and device for detecting unsealed fuel pencils in a fuel assembly by means of ultrasonics
US20060193422A1 (en) Fuel channel characterization method and device
JPS62274297A (en) Fuel channel-box size measuring device
KR100579399B1 (en) Method of making laboratory degraded heat transfer tubes for steam generator
RU2545521C2 (en) Method and device for continuous monitoring of process channel pipe bend