JPH05562B2 - - Google Patents

Info

Publication number
JPH05562B2
JPH05562B2 JP58071405A JP7140583A JPH05562B2 JP H05562 B2 JPH05562 B2 JP H05562B2 JP 58071405 A JP58071405 A JP 58071405A JP 7140583 A JP7140583 A JP 7140583A JP H05562 B2 JPH05562 B2 JP H05562B2
Authority
JP
Japan
Prior art keywords
tubular body
cosθ
membrane tube
outer periphery
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58071405A
Other languages
Japanese (ja)
Other versions
JPS59197606A (en
Inventor
Takeo Takagi
Juji Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP58071405A priority Critical patent/JPS59197606A/en
Publication of JPS59197606A publication Critical patent/JPS59197606A/en
Publication of JPH05562B2 publication Critical patent/JPH05562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 放射性物質の貯蔵、詰め替え、配分、その他実
験や加工に際し放射能汚染からの防護壁で囲われ
た、いわゆるホツトセルの遮へい壁を介した操作
に利用するために開発されたマニプレータ(マジ
ツクハンド)は、その後ロボツト技術の発展によ
り、人力作業の代替を含む広範用途において、そ
の使途の拡大はめざましい。
[Detailed description of the invention] (Industrial application field) For storage, refilling, distribution, and other operations of radioactive materials through the shielding wall of a so-called hot cell surrounded by a protective wall from radioactive contamination during experiments and processing. The manipulator (magic hand) that was developed for this purpose has since expanded into a wide range of applications, including the replacement of manual labor, due to the development of robotics technology.

かようなマニプレータまたはその類似物の操作
部として、とくに適切なアクチユエータの改良に
関して以下のべるところは、ロボツト工学系技術
の分野に、位置づけられる。
The following discussion regarding improvements in particularly suitable actuators as operating parts of such manipulators or similar devices lies in the field of robotics technology.

(従来の技術) 上記ホツトセルに設備されるマニプレータ用ア
クチユエータの型式は種々あるが、モータとくに
電気式のものは、スパークが不可避なので防爆上
の必要のあるとき、好んで空気式が用いられ、こ
の場合に使途はもちろん汎用である。
(Prior Art) There are various types of actuators for manipulators installed in the above-mentioned hot cells, but since sparks are unavoidable with motors, especially electric ones, pneumatic types are preferably used when explosion-proofing is required. Of course, it can be used for general purposes.

従来の空気式アクチユエータは、いわゆるエア
ーシリンダタイプのものが多いが、そのシリンダ
−ピストン組立体は鉄製とされるを通例とするの
で、操作部としてその自重が、操作力の割りには
過大となるきらいがある。
Conventional pneumatic actuators are often of the so-called air cylinder type, but the cylinder-piston assembly is usually made of iron, so its own weight as an operating part is excessive compared to the operating force. I don't like it.

一方で、エアーバツクタイプもまた既知であ
り、この場合とくに、エアーバツグの制御圧力適
用による膨径に基く軸方向の収縮力を、操作力と
して利用することが有利であり、ここにエアーバ
ツグ自体軽量なほか、摺動部分がないので摩擦力
の影響を受けず、エアー洩れの心配もない、など
の利点が認められる反面、該圧力適用に際して封
入される空気量が、エアーシリンダに比しエアー
バツグの膨径による内容積拡大のためかなり多量
に上るので、その解放により大気中に放散される
こととなる操作用空気使用量の面で不利となる。
On the other hand, air bag types are also known, in which case it is particularly advantageous to use the axial contraction force due to the expansion diameter of the air bag by applying a controlled pressure as the operating force, and here the air bag itself is lightweight. In addition, since there are no sliding parts, it is not affected by frictional force and there is no need to worry about air leakage. However, the amount of air sealed when applying the pressure is smaller than that of an air cylinder, which reduces the expansion of the air bag. Since the internal volume increases due to the diameter, the amount of air used is quite large, which is disadvantageous in terms of the amount of air used for operation, which is dissipated into the atmosphere when released.

また上記制御圧力は、エアーバツグ内において
その内部空洞囲壁の全面に働くので、少くともエ
アーバツグの作動初期における軸方向に直角な断
面積つまり軸方向受圧面積と制御圧力との積であ
らわされる抗力が、有効な軸方向の収縮力を減殺
することも欠点にあげられる。
Furthermore, since the control pressure acts on the entire surface of the internal cavity surrounding wall within the air bag, at least at the initial stage of operation of the air bag, the drag force represented by the product of the cross-sectional area perpendicular to the axial direction, that is, the axial pressure-receiving area and the control pressure, is Another disadvantage is that it reduces the effective axial retraction force.

(発明が解決しようとする問題点) エアーバツグタイプのニユーマチツクアクチユ
エータにつき、上記した不利を、長所の阻害なし
に克服し得るように改良したニユーマチツクアク
チユエータを提案することが、この発明の目的で
ある。
(Problems to be Solved by the Invention) It is possible to propose an improved pneumatic actuator that can overcome the above-mentioned disadvantages without hindering the advantages of the air bag type pneumatic actuator. , which is the object of this invention.

(課題を解決するための手段) 上記目的は、次の事項を骨子とする構成によ
り、有利に充足される。
(Means for Solving the Problems) The above objectives are advantageously satisfied by a configuration that has the following points as its main points.

有機又は無機質高張力繊維類を耐張強化素子と
する編組構造体と、この編組構造体により外周を
補強し、両端開口を、少なくとも片側については
接続孔をもつ閉鎖部材の対により封止した、ゴム
又はゴム状弾性材料の管状体と、この管状体の内
部空洞内にて上記両端閉鎖部材間にわたり軸方向
に伸縮可能な、該空洞の内径と同等の外径をも
つ、耐外圧強度の高い、ひだつき膜管とを具備し
て成り、上記管状体の内部空洞内への上記接続孔
を通した圧力媒体の注入に基く膨径変形中、軸方
向の収縮力を生起することを特徴とする、ニユー
マチツク・アクチユエータ。
A braided structure using organic or inorganic high tensile strength fibers as a tensile reinforcing element, the outer periphery of the braided structure reinforced, and openings at both ends sealed at least on one side by a pair of closing members each having a connecting hole. A tubular body made of rubber or a rubber-like elastic material, capable of expanding and contracting in the axial direction within the internal cavity of the tubular body between the above-mentioned both end closing members, having an outer diameter equivalent to the inner diameter of the cavity, and having high external pressure resistance. , and a pleated membrane tube, which generates an axial contraction force during expansion and diameter deformation based on injection of pressure medium into the internal cavity of the tubular body through the connection hole. A pneumatic actuator.

(作用) 上記の構成によれば、有機又は無機質高張力繊
維類を耐張強化素子とする編組構造体により外周
を補強し、両端の開口を閉止部材により封止した
ゴム又はゴム状弾性耐材料の管状体すなわちエア
ーバツグの内部に、閉止部材に設けた接続孔に配
管を介し連結した圧力源でもつてする制御圧力の
適用に基く、上記編組構造体のパンタグラフ運動
を伴う膨径変形による軸方向の収縮力を生起させ
ることができるのはもちろんであるが、この制御
圧力の適用され上記管状体の内部空洞が、この発
明にあたつてはとくにひだつき膜管によつて占有
されているので、その総体積に対応した空気使用
量の節減が次のように達せられる。
(Function) According to the above configuration, the outer periphery is reinforced with a braided structure using organic or inorganic high tensile strength fibers as a tensile reinforcement element, and the openings at both ends are sealed with a closing member. Based on the application of a controlled pressure to the inside of the tubular body, that is, the air bag, by a pressure source connected via piping to a connecting hole provided in the closing member, the axial direction is caused by expansion and diameter deformation accompanied by pantograph movement of the above-mentioned braided structure. It is of course possible to generate a contractile force, since the internal cavity of the tubular body to which this control pressure is applied is occupied in the present invention by a particularly pleated membrane tube. The reduction in air usage corresponding to the total volume is achieved as follows.

すなわち上記管状体の全内容積Vは、次式 V=π/4d2(sin2θx/sin2θ0・cosθx/cosθ0
l……(1) ここに d:管状体の内径 l:管状体の有効長さ θ0:編組角(初期値) θx:編組角(膨径時) で与えられ、また収縮率εは、次式 ε=cosθ0−cosθx/cosθ0 ……(2) で示されるので、管状体の内部空洞内にその内径
にほぼ等しい外径をもつ耐外圧強度の高いひだつ
き膜管を配置するときその占有体積vは、次式 v=π/4d2(1−ε)l ……(3) で示され、従つてこの膜管をこの発明に従い装着
した管状体の制御圧力の適用空間の内容積Vcは、
次式 Vc=π/4d2{sin2θx/sin2θ0・cosθx/cosθ0−(
1−ε)}l……(4) のようになり、従つてこの内容積Vcと、全内容
積Vとの比、つまり従来のエアーバツグ式アクチ
ユエータに対する、この発明における1操作当り
エアー使用量の比feは次のようにして計算され
る。
In other words, the total internal volume V of the tubular body is determined by the following formula: V=π/4d 2 (sin 2 θ x /sin 2 θ 0・cos θ x /cos θ 0 )
l...(1) where d: Internal diameter of the tubular body l: Effective length of the tubular body θ 0 : Braid angle (initial value) θ x : Braid angle (when expanded) It is given by, and the contraction rate ε is , as shown by the following formula ε=cosθ 0 −cosθ x /cosθ 0 ...(2) Therefore, a pleated membrane tube with high resistance to external pressure and having an outer diameter approximately equal to the inner diameter of the inner cavity of the tubular body is placed. Then, the occupied volume v is expressed by the following formula v=π/4d 2 (1−ε)l (3), and therefore, the space to which the control pressure is applied in the tubular body equipped with this membrane tube according to the present invention is The internal volume V c is
The following formula V c = π/4d 2 {sin 2 θ x /sin 2 θ 0・cosθ x /cosθ 0 −(
1-ε)}l...(4) Therefore, the ratio of this internal volume V c to the total internal volume V, that is, the air consumption per operation in this invention compared to the conventional air bag type actuator. The ratio f e is calculated as follows.

fe=Vc/V=sin2θx/sin2θ0・cosθx/cosθ0−(1
−ε)/sin2θx/sin2θ0・cosθx/cosθ0……(5) ここで(2)式りcosθx=(1−ε)cosθ0であり、
よつて(5)式は fe=sin2θx cosθx−(1−ε)sin2θ0cosθ0/sin2
θx・cosθx=(1−cos2θx)cosθx−(1−ε)sin2
θ0cosθ0/(1−cos2θx)cosθx ={1−(1−ε)2cos2θ0}(1−ε)cosθ0−(
1−ε)sin2θ0 cosθ0{1−(1−ε)2cos2θ0}(
1−ε)
cosθ0 =(1−ε)[{1−(1−ε)2cos2θ0}cosθ0
sin2θ0 cosθ0]{1−(1−ε)2cos2θ0}(1−ε
)cosθ0
……(6) のように整理できる。
f e =V c /V=sin 2 θ x /sin 2 θ 0・cosθ x /cosθ 0 −(1
−ε) /sin 2 θ x /sin 2 θ 0・cosθ x /cosθ 0 ...(5) Here, according to the formula (2), cosθ x = (1−ε)cosθ 0 ,
Therefore, equation (5) is f e = sin 2 θ x cosθ x −(1−ε) sin 2 θ 0 cosθ 0 /sin 2
θ x・cosθ x = (1−cos 2 θ x )cosθ x −(1−ε) sin 2
θ 0 cosθ 0 / (1−cos 2 θ x )cosθ x = {1−(1−ε) 2 cos 2 θ 0 }(1−ε) cosθ 0 −(
1−ε) sin 2 θ 0 cosθ 0 {1−(1−ε) 2 cos 2 θ 0 }(
1-ε)
cosθ 0 = (1-ε) [{1-(1-ε) 2 cos 2 θ 0 } cosθ 0
sin 2 θ 0 cosθ 0 ] {1-(1-ε) 2 cos 2 θ 0 }(1-ε
) cosθ 0
...(6) can be arranged as follows.

この結果に従いたとえば編組角初期値20°の場
合、εをほぼ0.3程度に定めると、ひだつき膜管
を使用しないエアーバツグに比べてアクチユエー
タの1操作回数当りのエアー使用量は、ほぼ10%
程度以上も節減され得ることとなり、ひん繁な稼
動中の全エアー消費量の抑制効果は著大にのぼ
る。
According to this result, for example, when the initial value of the braid angle is 20°, if ε is set to approximately 0.3, the amount of air used per actuator operation will be approximately 10% compared to an air bag that does not use a pleated membrane tube.
This results in savings of more than a certain amount, and the effect of suppressing the total air consumption during frequent operations is significant.

またひだつき膜管はその内部につき、制御圧力
が全く作用しないので、その断面積を受圧面積と
する制御圧力に基く、収縮抗力がなくなり、その
分、管状体の収縮力をより有効に仕事に利用でき
る。
In addition, since the pleated membrane tube has no control pressure acting on its inside, there is no contraction resistance based on the control pressure whose cross-sectional area is the pressure-receiving area, and the contraction force of the tubular body can be used for work more effectively. Available.

(実施例) さて第1図にこの発明に従うニユーマチツク・
アクチユエータの要部断面を、外観正面にあわせ
示し、図中1は管状体、2はその外周の編組補強
構造体、3は両端の閉鎖部材、4はかしめキヤツ
プである。
(Embodiment) Now, FIG. 1 shows a pneumatic system according to the present invention.
A cross section of the main parts of the actuator is shown along with the front appearance. In the figure, 1 is a tubular body, 2 is a braided reinforcement structure on the outer periphery, 3 is a closing member at both ends, and 4 is a caulking cap.

管状体1は、ゴム又はゴム状弾性材料がエアー
不透過性、可撓性の面で重宝に活用され得るが、
均等材料、たとえば各種のプラスチツクで代替し
てもよい。
For the tubular body 1, rubber or rubber-like elastic material can be usefully used in terms of air impermeability and flexibility.
Equivalent materials such as various plastics may be substituted.

編組補強体2は、たとえば耐圧ゴムホースにお
ける慣用に準じるが、その場合にいわゆる静止角
(54°44′)に近い編組角とされるのに反して管状
体1の内圧充てんによる最大膨径において上記静
止角に至るように、のぞましくは編組角度初期値
θ0を、20°程度において、常用の歪みεがほぼ0.3
程度に至るように使用条件を定める。
The braided reinforcing body 2 conforms to the customary use in pressure-resistant rubber hoses, for example, but in that case, the braiding angle is close to the so-called rest angle (54° 44'), whereas the maximum expansion diameter due to internal pressure filling of the tubular body 1 is the above-mentioned. In order to reach the rest angle, preferably the initial value of the braid angle θ is set to about 20°, and the normal strain ε is approximately 0.3.
Conditions of use shall be established to ensure the appropriate level of use.

この編組補強構造体2に用いる耐張強化素子
は、有機又は無機質高張力繊維類、たとえば芳香
族ポリアミド繊維(ケプラー:商品名)や、極細
金属ワイヤの如きフイラメントの撚り又は無撚り
の束などが適合する。
The tensile strength reinforcing element used in this braided reinforced structure 2 is made of organic or inorganic high tensile strength fibers, such as aromatic polyamide fibers (Kepler: trade name), twisted or untwisted bundles of filaments such as ultrafine metal wires, etc. Compatible.

上記初期値20°のようにかなりに低い角度配列
の下では、管状体1の外周における編上げ操作が
必ずしも容易でないけれども、たとえば通常のゴ
ムホース用ブレード編上げ機にて得られる編組体
を上記初期値に適合するように軸方向に延伸した
状態にて、管状体1の外周にはめかぶせると、簡
便であり、この際、管状体1の外周に適宜接着を
施してもよい。
Although the braiding operation on the outer periphery of the tubular body 1 is not necessarily easy under a considerably low angle arrangement such as the initial value of 20°, for example, a braided body obtained with a normal rubber hose braiding machine can be adjusted to the above initial value. It is convenient to fit it over the outer periphery of the tubular body 1 while being stretched in the axial direction. At this time, adhesive may be applied to the outer periphery of the tubular body 1 as appropriate.

さらにこの編組補強構造体2の外周には、適
宜、耐候性、耐外傷性保護被膜の外皮を設けるを
可とする。
Further, the outer periphery of the braided reinforced structure 2 may be provided with a weather-resistant and trauma-resistant protective coating as appropriate.

管状体1の両端に適合する閉鎖部材3の対は、
管状体1の両端開口にそれぞれ緊密に、好ましく
は接着剤を用いた封止に供するためのニツプル5
と、その位置定めをつかさフランジ6、さらには
連結ピン孔をあけたアイ又はクレビス端7とから
なり、ニツプル5の外周には、その先端に向う緩
テーパーを、反対向きの急テーパーとともに形成
する、抜け止め用の管状突条8を設けるを可とす
る。閉鎖部材3の対のうち少なくとも一方につい
ては図示のようにニツプル5の中央孔を介し管状
体1の内部空洞と連通する接続孔9をあけ、ここ
にフイツテイング10を取付ける。
A pair of closure members 3 fitted at both ends of the tubular body 1 are
Nipples 5 are provided at both ends of the tubular body 1 for sealing tightly, preferably using an adhesive.
Its position is determined by a flange 6, and an eye or clevis end 7 with a connecting pin hole, and the outer periphery of the nipple 5 is formed with a gentle taper toward its tip and a sharp taper in the opposite direction. , it is possible to provide a tubular protrusion 8 for preventing slippage. At least one of the pairs of closure members 3 is provided with a connecting hole 9 communicating with the internal cavity of the tubular body 1 through the central hole of the nipple 5, as shown, and a fitting 10 is attached thereto.

かしめキヤツプ4は、フランジ6と係合して管
状体1の端部外周にかぶさり、とくに端縁にフレ
アー11を形成した円筒状金物より成り、ニツブ
ル5に向けて半径方向に局部押圧して閉鎖部材3
に対し管状体を緊密に封止する。図中12はかし
め工具による圧痕を例示した。
The caulking cap 4 engages with the flange 6 and covers the outer periphery of the end of the tubular body 1. The caulking cap 4 is made of a cylindrical metal piece with a flare 11 formed on the edge, and is locally pressed in the radial direction toward the nibble 5 to close it. Part 3
The tubular body is tightly sealed against. In the figure, numeral 12 illustrates an indentation made by a caulking tool.

この例では、ニツプル5の先端にて接着固定し
たひだつき膜管13の1例としてベローズを両端
の閉鎖部材3,3間にわたらせ、ニツプル5の中
央孔をプラグ14にて閉塞した胴壁に通気孔15
を開口させて、管状体1の内周と、ベローズ13
の外周とのすき間に開通させる。
In this example, as an example of a pleated membrane tube 13 fixed with adhesive at the tip of the nipple 5, a bellows is extended between the closing members 3 and 3 at both ends, and the center hole of the nipple 5 is attached to the body wall closed with a plug 14. Vent hole 15
is opened, and the inner periphery of the tubular body 1 and the bellows 13
Open the gap between the outer periphery of the

ベローズの例で示したひだつき膜管13は、軸
方向に容易に伸縮し得るが、耐外圧強度が高く、
制御圧力下に圧潰変形は生じないことが必要であ
り、このため図示しないひだの谷の外周と、ひだ
の山の内周にリング補強を設けることがのぞまし
い。
The pleated membrane tube 13 shown in the bellows example can easily expand and contract in the axial direction, but has high external pressure resistance,
It is necessary that no crushing deformation occurs under controlled pressure, and for this reason, it is desirable to provide ring reinforcement on the outer periphery of the valleys of the pleats and the inner periphery of the crests of the pleats (not shown).

またフイツテイング10を設けない側の閉鎖部
材3についてはそのニツプル5の中央孔を介して
ひだつき膜管13の内部を、大気と連通させても
よい。
Further, in the closing member 3 on the side where the fitting 10 is not provided, the inside of the pleated membrane tube 13 may be communicated with the atmosphere through the central hole of the nipple 5.

ひだつき膜管13はベローズに限らず、第2図
に示すような、いわゆるベロフラム16にて連結
した、薄肉剛性管17,17′のテレスコピツク
結合により伸縮自在としたものも使用できる。
The pleated membrane tube 13 is not limited to bellows, but may also be made flexible by telescopically connecting thin-walled rigid tubes 17, 17' connected by a so-called bellows frame 16, as shown in FIG.

フイツテイング10には図示しないが操作圧力
源たとえはエアーコンプレツサを、3方弁を含む
管路と接続し、管状体1の内部空洞内に制御圧力
を適用することにより、編組構造体2の編組角θ0
のθxに至る拡大つまり、パンタグラフ運動によつ
て、管状体1の膨径と、それに由来した軸方向の
収縮すなわち閉鎖部材3の連結ピン孔間距離の縮
少をもたらし、この収縮力Fは、次式 で与えられる。
The braiding of the braided structure 2 is performed by connecting an operating pressure source (not shown) to the fitting 10, such as an air compressor, to a conduit containing a three-way valve and applying a controlled pressure within the internal cavity of the tubular body 1. Angle θ 0
In other words, due to the pantograph movement, the expansion diameter of the tubular body 1 is expanded to θ , the following equation is given by

一方上記制御圧力の解放にて、内部空洞中のエ
アーは3方弁を通して大気中に放散され、管状体
1は、編組補強構造体2の編組角θxの減少の下に
復元伸長するのはいうまでもない。
On the other hand, upon release of the control pressure, the air in the internal cavity is dissipated into the atmosphere through the three-way valve, and the tubular body 1 is restored and elongated as the braid angle θ x of the braided reinforcement structure 2 decreases. Needless to say.

従つてこのようなニユーマチツク・アクチユエ
ータは、たとえば関節連結をした作動アーム間に
わたり両端の閉鎖部材3のアイ又はクレビス7に
よつてピン連結を行い、作動アーム間に屈伸、関
節運動を導くことができるのは、明らかである。
Therefore, such a pneumatic actuator can, for example, perform a pin connection between the articulated actuating arms through the eyes or clevises 7 of the closing member 3 at both ends to guide bending, extension, and joint movements between the actuating arms. It's obvious.

(発明の効果) 以上詳しく説明を加えたところにおいてこの発
明のニユーマチツク・アクチユエータは、エアー
バツク式の範疇に入り、また従来のエアーバツク
式アクチユエータは比べて操作力並びにコンプラ
イアンスの制御が一層容易であるけれども、従来
その膨径による内容積の増加がエアーシリンダタ
イプのそれに対してほぼ2倍強にも上るために操
作用空気の使用量が過大であつた不利を、管状体
の内部空洞の少なくとも大部分の空間を占有させ
たひだつき膜管の内蔵によつて、軸方向の収縮力
を減殺する抗力を事実上生ぜずしてエアーバツク
式アクチユエータの諸利点を害することなしに大
幅に上る軽減を実現できる。
(Effects of the Invention) As described in detail above, the pneumatic actuator of the present invention falls into the category of air bag type actuators, and although it is easier to control operating force and compliance than conventional air bag type actuators, Conventionally, the increase in internal volume due to the expanded diameter is more than twice that of the air cylinder type, so the amount of operating air used was excessive. The incorporation of space-occupying pleated membrane tubes provides virtually no drag that counteracts the axial retraction force, thereby providing significant relief without compromising the advantages of air bag actuators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す要部断面の正
面図、第2図はひだつき膜管の別例の断面図であ
る。 1……管状体、2……編組補強構造体、3……
閉鎖部材、9……接続孔、13……ひだつき膜
管。
FIG. 1 is a sectional front view of a main part showing an embodiment of the present invention, and FIG. 2 is a sectional view of another example of a pleated membrane tube. 1... Tubular body, 2... Braided reinforcement structure, 3...
Closing member, 9... connection hole, 13... pleated membrane tube.

Claims (1)

【特許請求の範囲】 1 有機又は無機質高張力繊維類を耐張強化素子
とする編組構造体と、 この編組構造体により外周を補強し、両端開口
を、少なくとも片側については接続孔をもつ閉鎖
部材の対により封止した、ゴム又はゴム状弾性材
料の管状体と、 この管状体の内部空洞内にて上記両端閉鎖部材
間にわたり軸方向に伸縮可能な、該空洞の内径と
同等の外径をもつ、耐外圧強度の高い、ひだつき
膜管と を具備して成り、上記管状体の内部空洞内への上
記接続孔を通した圧力媒体の注入に基く膨径変形
中、それに伴つて軸方向の収縮力を生起すること
を特徴とする、ニユーマチツチ・アクチユエー
タ。 2 ひだつき膜管が、ひだの谷の外周とひだの山
の内周とにそれぞれリング補強を有するものであ
る、特許請求の範囲1に記載のアクチユエータ。
[Scope of Claims] 1. A braided structure using organic or inorganic high tensile strength fibers as a tensile reinforcement element, and a closing member whose outer periphery is reinforced by this braided structure and has openings at both ends and a connection hole on at least one side. a tubular body made of rubber or rubber-like elastic material sealed by a pair of the tubular bodies, and having an outer diameter equivalent to the inner diameter of the cavity, which is expandable and contractible in the axial direction between the end closing members within the inner cavity of the tubular body; and a pleated membrane tube with high resistance to external pressure, during expansion and diameter deformation due to the injection of pressure medium into the internal cavity of the tubular body through the connection hole, the axial direction A pneumatic actuator characterized by generating a contractile force of. 2. The actuator according to claim 1, wherein the pleated membrane tube has ring reinforcements on the outer periphery of the valleys of the pleats and the inner periphery of the crests of the pleats.
JP58071405A 1983-04-25 1983-04-25 Pneumatic actuator Granted JPS59197606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071405A JPS59197606A (en) 1983-04-25 1983-04-25 Pneumatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071405A JPS59197606A (en) 1983-04-25 1983-04-25 Pneumatic actuator

Publications (2)

Publication Number Publication Date
JPS59197606A JPS59197606A (en) 1984-11-09
JPH05562B2 true JPH05562B2 (en) 1993-01-06

Family

ID=13459569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071405A Granted JPS59197606A (en) 1983-04-25 1983-04-25 Pneumatic actuator

Country Status (1)

Country Link
JP (1) JPS59197606A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145206A (en) * 1990-10-04 1992-05-19 Bridgestone Corp Hollow elastic expansion body
JP6854504B2 (en) * 2016-11-02 2021-04-07 学校法人 中央大学 Fluid system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473916B1 (en) * 1968-05-29 1972-02-03
JPS6332402Y2 (en) * 1981-05-30 1988-08-30

Also Published As

Publication number Publication date
JPS59197606A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
JPH0447167B2 (en)
EP0123558B1 (en) Pneumatic actuator for manipulator
US5083498A (en) Bendable actuator
JPH0348004A (en) Double-acting type actuator
JPS59197605A (en) Pneumatic actuator
JPH05562B2 (en)
JPS6165796A (en) Multi-joint arm
JPS61157803A (en) End portion closing member fitting structure of elastic contraction element
JPH0445317B2 (en)
JPH0567397B2 (en)
CN209599261U (en) A kind of robot general pipeline packet protective case
JP2584257B2 (en) Flexible hose
JPS6052288A (en) Pneumatic actuator
JPH05564B2 (en)
JPS60139905A (en) Pneumatic actuator
JPH0546443B2 (en)
JPS60227002A (en) High durability elastic shrinkable cylinder responsive to internal pressure
JPS6262005A (en) Resilient shrinking body
JPH05599B2 (en)
JPH0546444B2 (en)
WO2023112448A1 (en) Holding member with actuator cover, and actuator cover
JPS61279551A (en) Elastic shrinkable body
JPH057565B2 (en)
JPS61206809A (en) Resilient contraction body with cover
JPS63120903A (en) Elastic shrinkage body