JPH0556290B2 - - Google Patents

Info

Publication number
JPH0556290B2
JPH0556290B2 JP19229685A JP19229685A JPH0556290B2 JP H0556290 B2 JPH0556290 B2 JP H0556290B2 JP 19229685 A JP19229685 A JP 19229685A JP 19229685 A JP19229685 A JP 19229685A JP H0556290 B2 JPH0556290 B2 JP H0556290B2
Authority
JP
Japan
Prior art keywords
aqueous solution
stannous
stannous oxide
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19229685A
Other languages
Japanese (ja)
Other versions
JPS6252130A (en
Inventor
Mitsuyoshi Kubota
Shiro Tsunoda
Akihiko Terakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19229685A priority Critical patent/JPS6252130A/en
Publication of JPS6252130A publication Critical patent/JPS6252130A/en
Publication of JPH0556290B2 publication Critical patent/JPH0556290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酸に易溶性で特にめつき用として好
適な酸化第一錫の製造法に関するものである。 〔従来の技術〕 酸化第一錫は、錫めつき浴の建浴用あるいは錫
イオン補加物質としてめつき工業上広く用いられ
ている。 従来、酸化第一錫の製造方法としては、(1)第一
錫塩の酸性水溶液にアルカリ水溶液を加えて反応
させ、生成したスラリーを煮沸する方法、(2)水酸
化第一錫を、炭酸ガス等不活性雰囲気中で、400
℃程度で〓焼する方法等が一般的である。 しかしながら、これらの方法では煮沸、又は〓
焼の工程が必要で且つ得られる酸化第一錫は、酸
に対する溶解性が悪く、又形状が不揃いで、その
為嵩密度が低く、安息角が比較的大きく取扱いの
面でも欠点の多いものであつた。 〔発明が解決しようとする問題点〕 本発明の目的は、上記の欠点のない酸化第一錫
の製造法を提供することにある。 〔問題点を解決するための手段〕 この目的を達成するため、本願発明者等は鋭意
研究の結果、従来方法より低温領域(100℃以下)
でも水酸化第一錫が酸化第一錫に容易に転換でき
ることを知見し、更に低温の30℃以下において酸
に易溶性のほぼ球形の酸化第一錫の生成条件を見
出し、本発明法に到達したものである。 即ち、本発明の方法は少量の水に炭酸アルカリ
を加えてPH6.2〜9.3好ましくはPH6.5〜9.0の水溶
液を調製し、これを温度10〜30℃に保持し撹拌し
つつ該水溶液に、第一錫塩を溶解した酸性水溶液
と炭酸ナトリウム、炭酸カリウム等の炭酸アルカ
リ水溶液とを同時に、上記水溶液のPH及び温度を
維持しつつ該水溶液の底部に吹き込むようにして
添加し、後30分〜1時間程度生成した酸化第一錫
を熟成したのち、生成した酸化第一錫を分離し乾
燥するというものである。 〔作 用〕 本発明で使用する第一錫塩の酸性水溶液の濃度
は、特に限定するものではないが第一錫塩として
250〜350g/程度の濃度のものが好ましい。こ
の水溶液は1分間当り4〜10ml好ましくは4〜8
mlの速度で、反応槽のPHを所定値に維持する量の
炭酸アルカリ水溶液と共に例えばローラーポンプ
で供給され、この間のPHは別途設置されているPH
コントロール計で調整される。 本発明の方法において、反応槽内のPHを6.2〜
9.3好ましくは6.5〜9.0の範囲とするのは、これ以
外では何れも白色の5SnO・2H2Oを生成するから
である。 次に反応槽内の温度を10〜30℃の範囲とする理
由は、10℃以下では上記と同様の5SnO・2H2Oが
生成し、30℃以上では、酸に易溶性の酸化第一錫
は得られるが、結晶の形状が第1図に示すような
球形を失ない、更に温度を60℃以上と上昇させる
と得られる結晶は第2図に示したような多面体と
なり、取扱いの面で支障をきたすからである。 本発明で使用する第一錫塩としては、塩化物、
硫酸塩、その他の塩を用いても同様の製品が得ら
れる。 尚、第一錫塩の酸性水溶液と炭酸アルカリ水溶
液とを反応させるに際し、予め100〜200ml程度の
イオン水又は本発明法で得られる結晶母液の繰り
返し溶液等を所定のPHに調整して、これに第一錫
塩と炭酸アルカリを吹き込むようにして反応させ
るのは、主として処理時のPHを所定値にコントロ
ールするためである。 本発明法はバツチでも連続法でも適用すること
ができるが、特に連続法で行なう場合には、生成
した酸化第一錫が酸化しないように、アルゴン、
窒素等でパージするのが好ましい。反応終了後の
熟成は30分間以上で全ての結晶がほぼ球形とな
る。 本発明法の実施に対し特に留意すべき点は、反
応液のPH値である。処理時のPH範囲は6.2〜9.3の
範囲を許容するが、例えばバツチ法で反応を開始
し、その初期のPHを6.2とし、中間時のPHを8.0と
し最終時のPHを9.0とするように、PHの許容範囲
内であつても反応途中でPHを自在に変動させるこ
とは本発明法で許されない。 本発明法の特徴とも云える反応液のPH変動幅
は、所定のPH値±0.2〜0.3である。 即ち、反応初期のPHが6.5である場合には、反
応終了時までPH範囲は6.2〜6.7の間にあるのが好
ましい。 本発明法で得られる酸化第一錫は、単に硫酸等
の鉱酸、ホウフツ化水素酸などの無機酸、フエノ
ールスルホン酸、クレゾールスルホン酸などの有
機酸に易溶性を示すだけでなく、形状がほぼ球形
で嵩密度が大きく安息角が小さいため、ハンドリ
ングが容易でめつき用に好適のものが得られる。 〔実施例〕 以下実施例について説明する。 実施例 工業用塩化第一錫をイオン水と少量の塩酸を用
いて溶解して得た塩化第一錫を300g/の濃度
で含有する塩酸酸性水溶液と、試薬1級の炭酸ナ
トリウムを150g/含有する水溶液を、容量5
のガラス製容器に予め各100mlのイオン水に水
酸化ナトリウム水溶液を添加して所定の温度とPH
値とし、マグネチツクスターラーを用いて軽く撹
拌させ、PHコントロール計を付設した反応槽に、
ローラーポンプを用いて夫々同時に上記の温度と
PHを維持しながら添加し、添加終了後、各30分保
持し熟成するバツチ法により処理し、のち夫々吸
引濾過し各5回少量の水で洗浄したのち真空乾燥
を行ない、得られた結晶の形状の観察、X線回折
による組成及び嵩密度、安息角を夫々測定した。 その結果を第1表及び第2表に示す。
[Industrial Application Field] The present invention relates to a method for producing stannous oxide, which is easily soluble in acids and is particularly suitable for plating. [Prior Art] Stannous oxide is widely used in the plating industry for preparing tin plating baths or as a tin ion additive. Conventionally, methods for producing stannous oxide include (1) adding an alkaline aqueous solution to an acidic aqueous solution of a stannous salt and reacting the resulting slurry, and (2) boiling the resulting slurry. 400 in an inert atmosphere such as gas
A common method is to bake it at about ℃. However, these methods require boiling or
The stannous oxide that is obtained and requires a calcination process has poor solubility in acids, is irregular in shape, has a low bulk density, and has a relatively large angle of repose, and has many disadvantages in terms of handling. It was hot. [Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing stannous oxide that does not have the above-mentioned drawbacks. [Means for solving the problem] In order to achieve this objective, the inventors of the present application have conducted extensive research and found that
However, they discovered that stannous hydroxide can be easily converted to stannous oxide, and also discovered the conditions for producing nearly spherical stannous oxide that is easily soluble in acids at low temperatures of 30°C or below, and arrived at the method of the present invention. This is what I did. That is, the method of the present invention involves adding alkali carbonate to a small amount of water to prepare an aqueous solution with a pH of 6.2 to 9.3, preferably 6.5 to 9.0, and adding the aqueous solution to the aqueous solution while maintaining the temperature at 10 to 30°C and stirring. , an acidic aqueous solution in which a stannous salt was dissolved and an aqueous alkali carbonate solution such as sodium carbonate or potassium carbonate were added at the same time by blowing into the bottom of the aqueous solution while maintaining the pH and temperature of the aqueous solution, and after 30 minutes. After aging the produced stannous oxide for about 1 hour, the produced stannous oxide is separated and dried. [Function] The concentration of the acidic aqueous solution of the stannous salt used in the present invention is not particularly limited;
A concentration of about 250 to 350 g/g is preferable. This aqueous solution is 4 to 10 ml per minute, preferably 4 to 8 ml per minute.
ml, and is supplied with an aqueous alkali carbonate solution in an amount that maintains the PH of the reaction tank at a predetermined value, for example, by a roller pump.
Adjusted with a control meter. In the method of the present invention, the pH in the reaction tank is 6.2-6.2.
9.3 The reason why it is preferably in the range of 6.5 to 9.0 is that anything other than this produces white 5SnO.2H 2 O. Next, the reason why the temperature in the reaction tank is set in the range of 10 to 30°C is that below 10°C, 5SnO 2H 2 O similar to the above is produced, and above 30°C, stannous oxide, which is easily soluble in acids, is produced. However, if the crystal shape does not lose its spherical shape as shown in Figure 1, and the temperature is further increased to 60°C or higher, the resulting crystal becomes a polyhedron as shown in Figure 2, making it difficult to handle. This is because it will cause trouble. The stannous salt used in the present invention includes chloride,
Similar products can be obtained using sulfates and other salts. In addition, when reacting an acidic aqueous solution of a stannous salt with an aqueous alkali carbonate solution, about 100 to 200 ml of ionized water or a repeated solution of the crystal mother liquor obtained by the method of the present invention is adjusted to a predetermined pH in advance. The purpose of reacting by blowing stannous salt and alkali carbonate into the solution is mainly to control the pH during treatment to a predetermined value. The method of the present invention can be applied either batchwise or continuously. In particular, when the process is carried out continuously, argon,
It is preferable to purge with nitrogen or the like. After completion of the reaction, all crystals become almost spherical after 30 minutes or more of ripening. Particular attention should be paid to the pH value of the reaction solution when carrying out the method of the present invention. The PH range during treatment is allowed to range from 6.2 to 9.3, but for example, the reaction may be started using the batch method, with an initial PH of 6.2, an intermediate PH of 8.0, and a final PH of 9.0. The method of the present invention does not allow the PH to be freely varied during the reaction even if the PH is within the permissible range. The PH fluctuation range of the reaction solution, which can be said to be a feature of the method of the present invention, is within ±0.2 to 0.3 of the predetermined PH value. That is, when the pH at the beginning of the reaction is 6.5, the pH range is preferably between 6.2 and 6.7 until the end of the reaction. The stannous oxide obtained by the method of the present invention is not only easily soluble in mineral acids such as sulfuric acid, inorganic acids such as hydroborofluoric acid, and organic acids such as phenolsulfonic acid and cresolsulfonic acid, but also has a shape. Since it is approximately spherical, has a large bulk density, and a small angle of repose, it is easy to handle and suitable for plating. [Example] Examples will be described below. Example An acidic hydrochloric acid aqueous solution containing industrial stannous chloride at a concentration of 300 g/dissolved using ionized water and a small amount of hydrochloric acid, and 150 g/contains sodium carbonate, a first class reagent. Aqueous solution with a volume of 5
Aqueous sodium hydroxide solution was added to 100ml of ionized water in a glass container in advance to maintain the specified temperature and pH.
value, stir it lightly using a magnetic stirrer, and place it in a reaction tank equipped with a PH control meter.
Using a roller pump, the above temperature and
It was added while maintaining the pH, and after the addition was completed, it was treated by a batch method in which it was kept for 30 minutes each time to ripen, and then it was filtered by suction, washed five times with a small amount of water, and vacuum dried. The shape was observed, and the composition, bulk density, and angle of repose were measured by X-ray diffraction. The results are shown in Tables 1 and 2.

【表】 第1表より明らかなように、酸塩化第一錫水溶
液の添加速度は8ml/分以下でないと、殆んどの
製品は球形とならず多角形が殆んど占めるように
なる。実験No.4及び5は錫の収率、酸に対する溶
解性についてはさほど低下しないが取扱い面では
劣るもので、横幅50μm程度の多面体又は多角形
のものが多かつた。実験No.1〜3の製品は、平均
粒径30〜40μmのほぼ球形のものであつた。
[Table] As is clear from Table 1, unless the addition rate of the aqueous solution of stannous acid chloride is 8 ml/min or less, most of the products will not be spherical and will be mostly polygonal. In Experiments Nos. 4 and 5, the yield of tin and the solubility in acids did not decrease significantly, but they were inferior in terms of handling, and many of them were polyhedral or polygonal with a width of about 50 μm. The products of Experiment Nos. 1 to 3 were approximately spherical with an average particle size of 30 to 40 μm.

【表】 第2表を見て判るように、処理時のPH又は温度
が本発明法の範囲外の実験No.9〜11は、酸化第一
錫が得られず、処理温度のみが本発明法より高い
実験No.6〜8は、一応酸化第一錫は得られるが第
2図に示すような多面体の結晶しか得られない。
本発明法の製品は、第1図(実験No.13)に示すよ
うなほぼ粒度の揃つた球形のもので嵩密度、安息
角とも他の製品より優れたものであつた。ちなみ
に実験No.13の不純物を定量したところ第3表の通
りであつた。
[Table] As can be seen from Table 2, in experiments No. 9 to 11 where the PH or temperature during treatment was outside the range of the method of the present invention, stannous oxide was not obtained, and only the treatment temperature was determined according to the method of the present invention. In experiments Nos. 6 to 8, which were higher than the method, stannous oxide was obtained, but only polyhedral crystals as shown in FIG. 2 were obtained.
The product produced by the method of the present invention had a spherical shape with almost uniform particle size as shown in Figure 1 (Experiment No. 13), and was superior to other products in both bulk density and angle of repose. Incidentally, when the impurities in Experiment No. 13 were quantified, they were as shown in Table 3.

【表】 次に第2表の各製品について、夫々フエノール
スルフオン酸に対する溶解性を調べた。 溶解テストは、溶解後の遊離フエノールスルホ
ン酸71.0g/、Sn20.0g/の濃度となるよう
に行ない、溶解した水溶液の濁り具合については
吸光光度計(日立製)を用いその吸光度を判定し
た。吸光度は0に近いほど溶解性が高いと云うこ
とができる。 その結果を第4表に示す。
[Table] Next, the solubility of each product in Table 2 in phenolsulfonic acid was investigated. The dissolution test was conducted so that the concentration of free phenolsulfonic acid after dissolution was 71.0 g/Sn and 20.0 g/Sn, and the degree of turbidity of the dissolved aqueous solution was determined by its absorbance using an absorption photometer (manufactured by Hitachi). It can be said that the closer the absorbance is to 0, the higher the solubility. The results are shown in Table 4.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第一錫塩より酸に易溶で球形の酸化第一錫を効
率よく製造することができる。球形であるから特
にホツパーからの切り出し等の取扱いが極めて容
易である。処理温度がほぼ常温で純度の高い製品
を得ることができるとい利点もある。
It is possible to efficiently produce spherical stannous oxide that is more easily soluble in acids than stannous salts. Since it is spherical, handling such as cutting out from a hopper is extremely easy. Another advantage is that a product with high purity can be obtained at almost room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明法実験No.13で得られた酸化第
一錫の結晶の構造を示した500倍走査型電子顕微
鏡写真図、第2図は比較例実験No.6で得られた酸
化第一錫の結晶の構造を示した500倍走査型電子
顕微鏡写真図である。
Figure 1 is a 500x scanning electron micrograph showing the structure of the stannous oxide crystal obtained in Experiment No. 13 using the method of the present invention, and Figure 2 is a photograph obtained in Comparative Example Experiment No. 6. 1 is a 500x scanning electron micrograph showing the structure of a stannous oxide crystal.

Claims (1)

【特許請求の範囲】 1 第一錫塩の酸性水溶液と炭酸アルカリ水溶液
との反応によつて酸化第一錫を製造する方法にお
いて、水にアルカリを加えてPH6.2〜9.3の水溶液
を調製し、これを温度10〜30℃に保持し、撹拌さ
れている該水溶液に、第一錫塩の酸性水溶液と炭
酸アルカリ水溶液とを同時に、上記水溶液のPH及
び温度を維持しつつ該水溶液の底部に吹き込むよ
うにして添加し、生成した酸化第一錫を熟成する
ことを特徴とする酸に易溶性の球状酸化第一錫の
製造方法。 2 第一錫塩の酸性水溶液の添加速度は、錫とし
て300g/の濃度の水溶液を1分間当り4〜8
mlである特許請求の範囲1項に記載の酸に易溶性
の球状酸化第一錫の製造方法。
[Claims] 1. A method for producing stannous oxide by reacting an acidic aqueous solution of a stannous salt with an aqueous alkali carbonate solution, in which an alkali is added to water to prepare an aqueous solution with a pH of 6.2 to 9.3. This is maintained at a temperature of 10 to 30°C, and an acidic aqueous solution of a stannous salt and an alkali carbonate aqueous solution are simultaneously added to the bottom of the aqueous solution while maintaining the PH and temperature of the aqueous solution. A method for producing spherical stannous oxide easily soluble in acid, which comprises adding the stannous oxide by blowing and aging the produced stannous oxide. 2. The rate of addition of the acidic aqueous solution of stannous salt is 4 to 8 times per minute an aqueous solution with a concentration of 300 g of tin.
ml. A method for producing spherical stannous oxide easily soluble in acid according to claim 1.
JP19229685A 1985-08-30 1985-08-30 Production of spherical stannous oxide readily soluble in acid Granted JPS6252130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19229685A JPS6252130A (en) 1985-08-30 1985-08-30 Production of spherical stannous oxide readily soluble in acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19229685A JPS6252130A (en) 1985-08-30 1985-08-30 Production of spherical stannous oxide readily soluble in acid

Publications (2)

Publication Number Publication Date
JPS6252130A JPS6252130A (en) 1987-03-06
JPH0556290B2 true JPH0556290B2 (en) 1993-08-19

Family

ID=16288913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19229685A Granted JPS6252130A (en) 1985-08-30 1985-08-30 Production of spherical stannous oxide readily soluble in acid

Country Status (1)

Country Link
JP (1) JPS6252130A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402433C (en) * 2006-09-07 2008-07-16 浙江理工大学 Hydrothermal synthesis method for producing Nano sheet material of stannous oxide
EP2578536B1 (en) * 2011-09-30 2014-04-09 Dow Global Technologies LLC Plurality of SNO flakes
EP3712114A4 (en) * 2017-11-15 2021-01-13 JX Nippon Mining & Metals Corporation Stannous oxide and method for producing same
WO2019171692A1 (en) * 2018-03-05 2019-09-12 Jx金属株式会社 Stannous oxide powder
WO2020021782A1 (en) * 2018-07-25 2020-01-30 Jx金属株式会社 Tin(ii) oxide powder

Also Published As

Publication number Publication date
JPS6252130A (en) 1987-03-06

Similar Documents

Publication Publication Date Title
NO171969B (en) CRYSTALLINIC SCANDIUM OX POWDER AND PROCEDURE FOR ITS PREPARATION
JPH11310415A (en) Highly pure tin oxide and its production
JPH0556290B2 (en)
US4042672A (en) Process for preparing carbonated zirconium oxide hydrate
CN110668488A (en) Production method of zinc sulfate monohydrate
US4450148A (en) Preparation of manganite, MnOOH
US4490337A (en) Preparation of cupric hydroxide
US1504670A (en) Titanium compound
JPH0331646B2 (en)
US4248848A (en) Dihydrate of calcium hypochlorite and method for manufacture thereof
JPH03223112A (en) Preparation of stannous oxide
JP2002503620A (en) Pure titanium dioxide hydrate and method for producing the same
JPS60255632A (en) Production of nickel hydroxide of high purity
JPS585174B2 (en) Method for producing basic aluminum lactate
US4126716A (en) Process for preparing stable anhydrous sodium dithionite
JP2984764B2 (en) Method for producing granular sodium metasilicate hydrous crystals
CN113277540A (en) Production method of high-purity calcium hydroxide
JPS6137326B2 (en)
US2563442A (en) Process
JPH0812328A (en) Production of cupric hydroxide
CN110965122A (en) Preparation method of layered octahedral aragonite crystal and obtained product
US2653857A (en) Preparation of calcium fluoride
US5308548A (en) Preparing a dispersible, sol-forming cerium (IV) composition
JP3070750B2 (en) Baking soda production method
JPH01278417A (en) Novel reactive derivative of zirconium and method for its manufacture