JPH05561B2 - - Google Patents

Info

Publication number
JPH05561B2
JPH05561B2 JP58180701A JP18070183A JPH05561B2 JP H05561 B2 JPH05561 B2 JP H05561B2 JP 58180701 A JP58180701 A JP 58180701A JP 18070183 A JP18070183 A JP 18070183A JP H05561 B2 JPH05561 B2 JP H05561B2
Authority
JP
Japan
Prior art keywords
elastic
control valve
connecting portion
pressure
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180701A
Other languages
Japanese (ja)
Other versions
JPS6073106A (en
Inventor
Juji Sakaguchi
Takeo Takagi
Yoshinori Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP58180701A priority Critical patent/JPS6073106A/en
Publication of JPS6073106A publication Critical patent/JPS6073106A/en
Publication of JPH05561B2 publication Critical patent/JPH05561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は駆動系に内部圧力に応じて収縮量が定
まる弾性収縮体を用いた被駆動系の駆動方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of driving a driven system using an elastic contracting body whose contraction amount is determined according to internal pressure in the drive system.

(従来技術とその問題) 加圧流体を導入することにより半径方向に膨脹
しつつ長手方向に収縮する弾性収縮体は、電動モ
ータや液圧シリンダを用いる装置に比べ、重量も
軽く、運動がなめらかで、位置決めが確実に行な
えるなど、従来のアクチユエータにない数多くの
優れた特徴を有しており、その特性を利用した
種々の適用が考えられている。
(Prior art and its problems) Elastic contractile bodies that expand in the radial direction and contract in the longitudinal direction when pressurized fluid is introduced are lighter in weight and move more smoothly than devices that use electric motors or hydraulic cylinders. It has many excellent features not found in conventional actuators, such as being able to perform positioning reliably, and various applications are being considered that take advantage of these characteristics.

第1図は、トルクモータ1とノズル2,3、フ
ラツパ4、絞り弁5,6とを有するサーボ弁、直
列に配列された2本の弾性収縮体7,8、および
この2本の弾性収縮体に結合された質点9よりな
る加圧空気を用いた直線駆動装置である。その質
点9を駆動させる作動を説明する。まずトルクモ
ータ1に電流が作用し、フラツパ4を図中矢印A
で示す方向に偏移させたとする。従つて、ノズル
2,3とフラツパ4との間隔がノズル2の側では
小さく、ノズル3側では大きくなり、ノズル2側
の背圧は加圧空気の供給圧に近づき、ノズル3側
の背圧は大気圧に近づく。この結果、弾性収縮体
7に加圧空気が供給され、他の弾性収縮体8から
は加圧空気が排気されるので質点9は矢印Bで示
す方向に偏位することになる。フラツパ4が矢印
Aと逆方向に偏位すれば、質点9は矢印Bと逆方
向に偏位することになる。
FIG. 1 shows a torque motor 1, a servo valve having nozzles 2 and 3, a flapper 4, and a throttle valve 5 and 6, two elastic contraction bodies 7 and 8 arranged in series, and these two elastic contraction bodies. It is a linear drive device using pressurized air consisting of a mass point 9 connected to the body. The operation of driving the mass point 9 will be explained. First, a current is applied to the torque motor 1, and the flapper 4 is moved by the arrow A in the figure.
Suppose that it is shifted in the direction shown by . Therefore, the distance between the nozzles 2, 3 and the flapper 4 is small on the nozzle 2 side and large on the nozzle 3 side, and the back pressure on the nozzle 2 side approaches the supply pressure of pressurized air, and the back pressure on the nozzle 3 side increases. approaches atmospheric pressure. As a result, pressurized air is supplied to the elastic contraction body 7, and pressurized air is exhausted from the other elastic contraction bodies 8, so that the mass point 9 is displaced in the direction shown by arrow B. If the flapper 4 is displaced in the direction opposite to the arrow A, the mass point 9 will be displaced in the opposite direction to the arrow B.

しかし上述の駆動方法をとる装置等において
は、高価なトルクモータを使用するのでコストの
上昇が避けられないばかりか、応答速度も遅く、
常に加圧空気を放出しているため、質点9を静止
させた状態で2つの弾性収縮体7,8からなる駆
動系の、一般に弾性率Eの逆数で表されるコンプ
ライアンスを変化させたり、安定して保持するこ
とができないという問題があつた。このコンプラ
イアンスの問題は弾性収縮体を用いる駆動系にと
つて致命的な欠点と言える。
However, devices that use the above-mentioned drive method use expensive torque motors, which inevitably increases costs, and the response speed is also slow.
Since pressurized air is constantly released, the compliance, which is generally expressed as the reciprocal of the elastic modulus E, of the drive system consisting of the two elastic contracting bodies 7 and 8 can be changed or stabilized while the mass point 9 is stationary. There was a problem that it was not possible to hold it. This compliance problem can be said to be a fatal drawback for drive systems using elastic contractile bodies.

(発明の目的) 本発明は上記の問題を解決すべくなされたもの
であり、その目的は、従来用いられてきた高価な
サーボ弁を用いることなく、2本の弾性収縮体を
用い、しかもこれらの弾性収縮体に所望のコンプ
ライアンスを付与した状態で弾性収縮体の各々を
連結する連結部を所望の位置まで一層優れた応答
性のもとで駆動可能とし、さらに、このコンプラ
イアンスを安定した状態の下で容易に制御可能と
する連結部の駆動方法を提供することである。
(Object of the Invention) The present invention was made to solve the above-mentioned problems, and its purpose is to use two elastic contracting bodies without using the expensive servo valves that have been used in the past. It is possible to drive the connecting part connecting each of the elastic contracting bodies to a desired position with better responsiveness while imparting the desired compliance to the elastic contracting bodies, and furthermore, it is possible to drive this compliance in a stable state. It is an object of the present invention to provide a method for driving a connecting portion that can be easily controlled under the conditions.

(発明の構成) この目的を達成するため、本発明の弾性収縮体
の連結部駆動方法では、内部圧力に応じて収縮量
が定まる、2本で一組の弾性収縮体の各々に流入
量制御弁および流出量制御弁をそれぞれ設け、各
弾性収縮体への加圧流体の給排により生じる前記
弾性収縮体の軸方向の収縮力により前記弾性収縮
体の連結部を旋回および/または並進運動させる
に際し、 前記連結部の駆動に先立つて、それぞれの流出
量制御弁の閉止状態下でそれぞれの流入量制御弁
を開口状態として、それぞれの弾性収縮体を所定
の圧力まで加圧した後それぞれの流入量制御弁を
閉止状態として前記連結部を所定の位置で弾性保
持し、次いで連結部の駆動にあたり、一方の弾性
収縮体の流入量制御弁を開口してこの弾性収縮体
の内部圧力を当初圧力より高め、併せて、他方の
弾性収縮体の流出量制御弁を開口してこの弾性収
縮体の内部圧力を前記一方の弾性収縮体の圧力増
加分に略見合う圧力だけ低めてそれらの制御弁を
閉止し、これにより、前記連結部を弾性保持しな
がら所定の位置まで旋回および/または並進させ
て停止させることを特徴とする。
(Structure of the Invention) In order to achieve this object, in the method for driving a connection part of an elastic contractile body of the present invention, the amount of contraction is determined according to the internal pressure, and the inflow amount is controlled to each of a set of two elastic contracture bodies. A valve and an outflow control valve are respectively provided, and the connecting portion of the elastic contracting body is rotated and/or translated by the contraction force in the axial direction of the elastic contracting body generated by supplying and discharging pressurized fluid to each elastic contracting body. In this case, prior to driving the connecting portion, each inflow control valve is opened while each outflow control valve is closed, and after pressurizing each elastic contractile body to a predetermined pressure, each inflow is closed. The amount control valve is closed and the connecting portion is elastically held at a predetermined position. Then, when driving the connecting portion, the inflow amount control valve of one of the elastic contracting bodies is opened to reduce the internal pressure of this elastic contracting body to the initial pressure. At the same time, open the outflow control valve of the other elastic contraction body to lower the internal pressure of this elastic contraction body by a pressure approximately corresponding to the pressure increase of the one elastic contraction body, and close those control valves. It is characterized in that it is closed, whereby the connecting portion is rotated and/or translated to a predetermined position while being elastically held, and then stopped.

(実施例) 以下、本発明による弾性収縮体の連結部駆動方
法の一実施例を図面に記載した装置に基づいて説
明する。
(Example) Hereinafter, an example of a method for driving a connecting portion of an elastic contractile body according to the present invention will be described based on an apparatus shown in the drawings.

第2図は、加圧流体として加圧空気を用いた本
発明の駆動方法を実現するための装置の一例を示
す模式図である。図において、10及び11は弾
性収縮体であり、これらの弾性体はθ0なる編上げ
角を有する補強コードを具え、これらの補強コー
ドは図に示すように各弾性収縮体の軸線に対し反
対方向に傾斜して相互に交差するようにゴムもし
くはゴム状弾性体に配設させている。弾性収縮体
10,11はそれぞれ一端が図の斜線で示す固定
壁に固定され、互いに対向するそれらの端部は連
結部材または質点12で連結されている。
FIG. 2 is a schematic diagram showing an example of a device for realizing the driving method of the present invention using pressurized air as the pressurized fluid. In the figure, reference numerals 10 and 11 are elastic contracting bodies, and these elastic bodies are provided with reinforcing cords having a braided angle of θ 0 , and these reinforcing cords extend in opposite directions with respect to the axis of each elastic contracting body, as shown in the figure. They are arranged on a rubber or rubber-like elastic body so as to be inclined and intersect with each other. One end of each of the elastic contraction bodies 10 and 11 is fixed to a fixed wall indicated by diagonal lines in the figure, and the mutually opposing ends are connected by a connecting member or a mass point 12.

図示の13,14,15,16は本発明に好適
な流量制御弁であり、これらの流量制御弁のうち
の図の13及び15が図示する制御装置からの制
御信号に基づいて加圧流体の流入量を制御する電
磁式流入量制御弁であり、流入量制御弁13が弾
性収縮体10に、流入制御弁15が弾性収縮体1
1に、それぞれ加圧流体導管部を通じて連結され
ている。
The illustrated flow control valves 13, 14, 15, and 16 are suitable for the present invention, and among these flow control valves, 13 and 15 in the figure control the flow of pressurized fluid based on control signals from the illustrated control device. This is an electromagnetic inflow control valve that controls the inflow amount, and the inflow control valve 13 is connected to the elastic contraction body 10, and the inflow control valve 15 is connected to the elastic contraction body 1.
1 through pressurized fluid conduit sections, respectively.

これらの流量制御弁13及び15は、図示して
いない加圧空気供給源から導管を介して図の下方
より加圧空気の供給を受け、その加圧空気を図の
上方の導管部を通じて弾性収縮体10及び11に
供給するよう構成している。また、図の14及び
16は、図の制御装置からの制御信号に基づいて
弾性収縮体10及び11の内部に充填された加圧
空気を導管部を通じて図の上方の大気圧側に放出
する流出量を制御する電磁式流出量制御弁であ
る。
These flow control valves 13 and 15 are supplied with pressurized air from a pressurized air supply source (not shown) through a conduit from the bottom of the figure, and the pressurized air is elastically contracted through the conduit section above the figure. It is configured to supply to the bodies 10 and 11. In addition, 14 and 16 in the figure indicate an outflow for releasing the pressurized air filled inside the elastic contracting bodies 10 and 11 to the atmospheric pressure side above the figure through the conduit part based on the control signal from the control device in the figure. This is an electromagnetic outflow control valve that controls the amount.

流出量制御弁14が弾性収縮体10に、流出量
制御弁16が弾性収縮体11に、それぞれ加圧流
体導管部を通じて連結されている。
The outflow control valve 14 and the outflow control valve 16 are connected to the elastic contraction body 10 and the elastic contraction body 11 through pressurized fluid conduit portions, respectively.

上記の流入量制御弁13,15及び流出量制御
弁14,16の構造体の一例を第3図に示す。電
磁石17は第2図に示す制御装置と電気的に接続
されていて、制御装置から出力される信号電圧に
基づき電磁石17のコイル電圧を連続して変化さ
せることにより電磁石17の電磁力を連続して変
えることが可能である。これにより、第3図に示
す上方に向う矢印の方向に作用する加圧流体の、
ノズル部20を介して作用する押圧力に抗して磁
性体よりなる弁体18を弁座19方向に偏移させ
る力を連続的に変化させ、流量制御を行なうもの
である。ここで流量制御とは、弁体18が開口し
て加圧流体を所定の量だけ第3図の右側に向う矢
印の方向に流入させもしくは流出させた後、弁体
18が閉止状態を保持することを意味する。
An example of the structures of the inflow control valves 13, 15 and outflow control valves 14, 16 described above is shown in FIG. The electromagnet 17 is electrically connected to the control device shown in FIG. 2, and the electromagnetic force of the electromagnet 17 is continuously changed by continuously changing the coil voltage of the electromagnet 17 based on the signal voltage output from the control device. It is possible to change the As a result, the pressurized fluid acting in the direction of the upward arrow shown in FIG.
The flow rate is controlled by continuously changing the force that causes the valve body 18 made of a magnetic material to shift toward the valve seat 19 against the pressing force acting through the nozzle portion 20. Here, flow rate control means that after the valve body 18 opens and allows a predetermined amount of pressurized fluid to flow in or out in the direction of the arrow pointing to the right in FIG. 3, the valve body 18 remains closed. It means that.

次に前記の装置を用いた場合の本発明の連結部
駆動方法について説明する。
Next, a method for driving a connecting portion according to the present invention using the above-mentioned device will be explained.

まづ、弾性収縮体10及び11は、それぞれが
切り離されて独立している場合、それぞれの弾性
収縮体は、加圧空気を充填すると収縮作用を生
じ、その収縮量は加圧空気の圧力で定まる。した
がつて、第2図に示すように互に対向する弾性収
縮体10,11のそれぞれの一方の端部を連結部
材12に連結し、それぞれの他方の端部を固定壁
に固定した状態で、流出量制御弁14及び16を
閉止し、流入量制御弁13及び15を開口して所
定量の加圧空気を弾性収縮体10及び11に流入
させると、これらの両弾性収縮体に収縮力が生じ
る。この収縮力により弾性収縮体10及び11は
特定の値のコンプライアンスもしくは弾性率を有
することとなる。この場合、所定量の加圧空気を
流入させた後流入量制御弁13及び15を閉止す
る。
First, when the elastic contraction bodies 10 and 11 are separated and independent, each elastic contraction body produces a contraction action when filled with pressurized air, and the amount of contraction is determined by the pressure of the pressurized air. Determined. Therefore, as shown in FIG. 2, one end of each of the elastic contracting bodies 10 and 11 facing each other is connected to the connecting member 12, and the other end of each is fixed to a fixed wall. When the outflow control valves 14 and 16 are closed and the inflow control valves 13 and 15 are opened to allow a predetermined amount of pressurized air to flow into the elastic contraction bodies 10 and 11, a contraction force is applied to both of these elastic contraction bodies. occurs. This contraction force causes the elastic contraction bodies 10 and 11 to have a specific value of compliance or elastic modulus. In this case, the inflow control valves 13 and 15 are closed after a predetermined amount of pressurized air has been introduced.

上記により、連結部12は特定のコンプライア
ンスの値を有する系により弾性保持される。また
連結部12は、弾性収縮体10及び11に作用す
る収縮力が釣合う位置で静止する。この場合、弾
性収縮体10及び11の内部圧力は必らずしも同
一である必要はなく異なる圧力としてもよい。
As described above, the connecting portion 12 is elastically held by a system having a specific compliance value. Further, the connecting portion 12 comes to rest at a position where the contraction forces acting on the elastic contraction bodies 10 and 11 are balanced. In this case, the internal pressures of the elastic contraction bodies 10 and 11 do not necessarily have to be the same, and may be different pressures.

上記の静止した位置から連結部12を所望の位
置まで移動させるには、下記の方法に従えばよ
い。即ち、弾性収縮体10もしくは11のいずれ
か一方、例えば弾性収縮体11に設けた流出量制
御弁16のみを開口し、所定の量だけ加圧空気を
放出した後この流出量制御弁を閉止して、弾性収
縮体11の内部圧力を上記の初期圧力以下とす
る。かくすれば、弾性収縮体10及び11の収縮
力が相互に異なるので、その結果、相互の収縮力
が釣合う位置まで連結部12は特定のコンプライ
アンスの値をもつて弾性保持されながら、第2図
の右方向に移動偏移して停止し静止する。
To move the connecting portion 12 from the above-mentioned stationary position to a desired position, the following method may be followed. That is, only the outflow control valve 16 provided on either one of the elastic contraction bodies 10 or 11, for example, the elastic contraction body 11, is opened, and after a predetermined amount of pressurized air is released, this outflow control valve is closed. Then, the internal pressure of the elastic contractile body 11 is set to be equal to or lower than the above-mentioned initial pressure. In this way, since the contractile forces of the elastic contractile bodies 10 and 11 are different from each other, as a result, the connecting portion 12 is elastically held with a specific compliance value until the second It moves to the right in the figure, stops, and comes to rest.

上記は流出量制御弁16のみを開口し、他の制
御弁を閉止状態とした例であるが、弾性収縮体1
0の流入量制御弁13のみを開口し、他の制御弁
を全て閉止状態とすれば上記同様に連結部12
は、特定のコンプライアンスの値をもつて弾性保
持されながら、第2図の右方向に移動偏移して停
止し静止する。
The above is an example in which only the outflow control valve 16 is opened and the other control valves are closed.
If only the inflow control valve 13 of No. 0 is opened and all other control valves are closed, the connecting portion 12
is elastically maintained with a specific compliance value, moves to the right in FIG. 2, and then stops and stands still.

第2図に示すように、弾性収縮体10及び11
を前記の方法により略同一の空気圧P1とした状
態を所定の基準とし、この状態から、弾性収縮体
10の流出量制御弁14を閉止下において流入量
制御弁13を開口して、弾性収縮体10に所定量
の加圧空気を流入せしめてこれの内部圧力をΔP
だけ高めた後に流入量制御弁13を閉止する動作
と、この動作に併せ、弾性収縮体11の流入量制
御弁15を閉止下において流出量制御弁16を開
口して、前記のΔPに略相当す加圧空気の量を弾
性収縮11より流出せしめた後に流出量制御弁1
6を閉止する動作とを行なわしめることにより、
連結部12は所定のコンプライアンスの値をもつ
て弾性保持されながら第2図に右方向に移動偏移
して、両方の弾性収縮体の収縮力が釣合う位置で
停止し静止する。
As shown in FIG. 2, elastic contracting bodies 10 and 11
A predetermined standard is a state in which the air pressure P 1 is set to approximately the same value by the method described above, and from this state, the inflow control valve 13 is opened while the outflow control valve 14 of the elastic contractile body 10 is closed, and the elastic contraction is performed. A predetermined amount of pressurized air is allowed to flow into the body 10, and its internal pressure is set to ΔP.
After increasing the amount by ΔP, the inflow control valve 13 is closed, and in conjunction with this operation, the inflow control valve 15 of the elastic contracting body 11 is closed and the outflow control valve 16 is opened to increase the flow rate approximately corresponding to the above-mentioned ΔP. After the amount of pressurized air is allowed to flow out from the elastic contraction 11, the outflow amount control valve 1
By performing the action of closing 6,
The connecting portion 12 is elastically maintained with a predetermined compliance value, moves to the right in FIG. 2, and stops at a position where the contraction forces of both elastic contraction bodies are balanced.

上記の一連の動作による連結部12の駆動は第
2図の制御装置からの信号電圧をそれぞれの制御
弁13,14,15及び16に加えることで達成
可能である。ここで、前記2本の弾性収縮体1
0,11からなる駆動系のコンプライアンスを、
連結部またはその質点12を所定の位置に保持した
まま変える場合、所望のコンプライアンスに応じ
て、閉止している流入量制御弁13,15を略同
時に開口し、弾性収縮体10,11の各々に略同
等量の加圧流体を供給するか、もしくは、閉止し
ている流出量制御弁14,16を略同時に開口
し、弾性収縮体10,11の各々から略同等量の
加圧流体を流出せしめる。このようにして弾性収
縮体10,11からなる駆動系のコンプライアン
スは所望の値に設定可能である。なお本発明に使
用する流量制御弁は上述の流量制御弁に限定され
ることなく、制御信号に応じて前記した一連の作
動を行い流量制御を可能とするものであれば適用
可能である。
Driving the connecting portion 12 through the series of operations described above can be achieved by applying signal voltages from the control device shown in FIG. 2 to the respective control valves 13, 14, 15 and 16. Here, the two elastic contracting bodies 1
Compliance of the drive system consisting of 0,11,
When changing the connection part or its mass point 12 while being held in a predetermined position, depending on the desired compliance, the closed inflow control valves 13 and 15 are opened almost simultaneously, and each of the elastic contracting bodies 10 and 11 is Either supply approximately the same amount of pressurized fluid, or open the closed outflow control valves 14 and 16 at approximately the same time to cause approximately the same amount of pressurized fluid to flow out from each of the elastic contracting bodies 10 and 11. . In this way, the compliance of the drive system made up of the elastic contraction bodies 10 and 11 can be set to a desired value. Note that the flow control valve used in the present invention is not limited to the above-mentioned flow control valve, but any valve that can perform the above-described series of operations in response to a control signal to control the flow rate can be used.

次にこのような装置を用いて連結体12を駆動
偏移させる動作について数式を用いて説明する。
弾性収縮体10もしくは11に作用する空気圧を
Pとしたとき、各弾性収縮体に生ずる収縮力f
は、一般に次のように表わされ、質点12のmには
同一の力fが反対方向に作用し静止状態にある。
Next, the operation of driving and shifting the connecting body 12 using such a device will be explained using mathematical expressions.
When the air pressure acting on the elastic contraction body 10 or 11 is P, the contraction force f generated in each elastic contraction body is
is generally expressed as follows, where the same force f acts on the mass point m in the opposite direction and it is in a stationary state.

f=π/4D2P/sin2θ0{3cos2θ0(1−ε)2
1}≒k1P−k2Pε……(1) ただし、 Dは弾性収縮体に内圧Pを与えた際の外径、θ0
は補強コードの偏上げ角、εは弾性収縮体に内圧
Pを与えた際の歪である。
f=π/4D 2 P/sin 2 θ 0 {3cos 2 θ 0 (1−ε) 2
1}≒k 1 P−k 2 Pε……(1) However, D is the outer diameter when internal pressure P is applied to the elastic contractile body, θ 0
is the heave angle of the reinforcing cord, and ε is the strain when internal pressure P is applied to the elastic contractile body.

今、両弾性収縮体10及び11に所定圧力P1
が作用し両弾性収縮体の収縮力が互いに平衡状態
にあるときに、連結部の質点12に第2図の矢印
方向に向つてxなる偏移を与えるため、制御装置
からの制御信号に応じ弾性収縮体10の流出量制
御弁14を閉止状態として流入量制御弁13を開
口し、弾性収縮体に更にΔPなる圧力を作用させ
る。これに併せ、これとは逆に弾性収縮体11の
流入量制御弁15を閉止状態として流出量制御弁
16を開口し、弾性収縮体11に−ΔPなる減圧
力を作用させる。これらの動作が終した後に流入
量制御弁13及び流出量制御弁16を閉止する。
この状態において弾性収縮体10にはPa=P1
ΔP、弾性収縮体11にはPb=P1−ΔPなる圧力
が作用することになり、質点12は前記したよう
に第2図の右側に向う偏移を生じxの距離だけ移
動し停止する。
Now, a predetermined pressure P 1 is applied to both elastic contracting bodies 10 and 11.
acts, and when the contraction forces of both elastic contraction bodies are in equilibrium with each other, in order to give the mass point 12 of the connection part a deviation of x in the direction of the arrow in FIG. The outflow control valve 14 of the elastic contraction body 10 is closed, the inflow control valve 13 is opened, and a pressure of ΔP is further applied to the elastic contraction body. At the same time, conversely, the inflow control valve 15 of the elastic contractile body 11 is closed, the outflow control valve 16 is opened, and a reducing pressure of -ΔP is applied to the elastic contractility body 11. After these operations are completed, the inflow control valve 13 and the outflow control valve 16 are closed.
In this state, the elastic contractile body 10 has Pa=P 1 +
ΔP, a pressure of Pb=P 1 −ΔP acts on the elastic contractile body 11, and the mass point 12 shifts to the right in FIG. 2 as described above, moves by a distance x, and then stops.

このxだけ移動する際に質点12に当初作用す
る力とあらためてFとおくと式(1)の各々のfの差
をとればよいので、 F=k1(P1+ΔP)−k2(P1+ΔP)εa−k1(P1−ΔP
)−k2(P1−ΔP)εb……(3) ただし、 l0は弾性収縮体の自然長であり、lは各弾性収
縮体の内部圧力をP1としたときの長さであり、
第2図はこのP1における状態を示している。ま
た簡略のため弾性収縮体を同一とする。
Letting F be the force that initially acts on the mass point 12 when it moves by x, it is sufficient to take the difference between each f in equation (1), so F=k 1 (P 1 +ΔP)−k 2 (P 1 +ΔP)εa−k 1 (P 1 −ΔP
)−k 2 (P 1 −ΔP)εb……(3) However, l 0 is the natural length of the elastic contraction body, l is the length when the internal pressure of each elastic contraction body is P 1 ,
FIG. 2 shows the state at P1 . Further, for the sake of simplicity, the elastic contracting bodies are assumed to be the same.

式(3)に式(2)、(4)を代入して整理すると F=kpΔP−P1kxx ……(5) ただし、 となり、式(5)は、第2図に示す駆動系において、
質点12、すなわち連結部12を偏位させる際に
連結部12に作用する力およびその偏移距離と弾
性収縮体10及び11に作用させる圧力との関係
を表わすものである。また、式(5)においてF=0
となるxの値のとき連結部12は停止し静止状態
を保つ。
Substituting equations (2) and (4) into equation (3) and rearranging, F=k p ΔP−P 1 k x x ……(5) However, In the drive system shown in Fig. 2, Equation (5) becomes:
It represents the relationship between the force acting on the mass point 12, that is, the connecting portion 12 when the connecting portion 12 is deflected, the displacement distance thereof, and the pressure acting on the elastic contracting bodies 10 and 11. Also, in equation (5), F=0
When the value of x is , the connecting portion 12 stops and remains stationary.

なお本発明の連結部駆動方法の一実施例とし
て、直線駆動装置を用いて本発明を説明したが、
第4図に示すような旋回を行なう装置、または連
結部に作用する力を制御する装置にも適用し得る
ものである。流入量、流出量制御弁はそれぞれ直
接に弾性収縮体に設けても良いが、口金と一体と
して形成したものを用いると加圧流体の供給配管
の問題がなくり一層有利である。
Note that the present invention has been described using a linear drive device as an embodiment of the connecting portion driving method of the present invention.
The present invention can also be applied to a device for turning as shown in FIG. 4, or a device for controlling the force acting on a connecting portion. Although the inflow and outflow control valves may be provided directly on the elastic contractile body, it is more advantageous to use valves that are integrally formed with the mouthpiece, as this eliminates the problem of pressurized fluid supply piping.

(発明の効果) 本発明の駆動方法によれば、その駆動装置は電
磁石に作用するコイル電圧を変化させ流量制御を
行なう電磁式流量制御弁4個を電気的に結合した
ので従来のサーボ弁に比して応答性に優れ、安価
な装置で連結部の位置制御を行なえる。また本発
明によれば、簡易な構成で2本の弾性収縮体の基
準圧を変えることができ、また駆動系のコンプラ
イアンスを必要に応じて安定状態のもとで容易に
変えることが出来る。
(Effects of the Invention) According to the driving method of the present invention, the driving device electrically couples four electromagnetic flow control valves that control the flow rate by changing the coil voltage acting on the electromagnet. In comparison, it has excellent responsiveness and can control the position of the connecting part with an inexpensive device. Further, according to the present invention, the reference pressure of the two elastic contracting bodies can be changed with a simple configuration, and the compliance of the drive system can be easily changed as required under a stable state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直線駆動装置の略線図、第2図
は本発明を好適に実現する直線駆動装置の略線
図、第3図は本発明に使用するのに好適な電磁式
流量制御弁の断面図、第4図は本発明の他の実施
例を実現する装置の略線図である。 1……トルクモータ、2,3……ノズル、4…
…フラツパ、5,5……絞り弁、7,8,10,
11……弾性収縮体、9,12……質点、13,
14,15,16……電磁式流量制御弁、17…
…電磁石、18……弁体、19……弁座、20…
…ノズル部。
Fig. 1 is a schematic diagram of a conventional linear drive device, Fig. 2 is a schematic diagram of a linear drive device that preferably implements the present invention, and Fig. 3 is an electromagnetic flow control suitable for use in the present invention. A cross-sectional view of the valve, FIG. 4, is a schematic diagram of a device implementing another embodiment of the invention. 1... Torque motor, 2, 3... Nozzle, 4...
...Flap valve, 5, 5... Throttle valve, 7, 8, 10,
11... Elastic contractile body, 9, 12... Mass point, 13,
14, 15, 16...Solenoid flow control valve, 17...
...Electromagnet, 18... Valve body, 19... Valve seat, 20...
...Nozzle section.

Claims (1)

【特許請求の範囲】 1 内部圧力に応じて収縮量が定まる、2本で一
組の弾性収縮体の各々に流入量制御弁および流出
量制御弁をそれぞれ設け、各弾性収縮体への加圧
流体の給排により生じる前記弾性収縮体の軸方向
の収縮力により前記弾性収縮体の連結部を旋回お
よび/または並進運動させるに際し、 前記連結部の駆動に先立つて、それぞれの流出
量制御弁の閉止状態下でそれぞれの流入量制御弁
を開口状態として、それぞれの弾性収縮体を所定
の圧力まで加圧した後それぞれの流入量制御弁を
閉止状態として前記連結部を所定の位置で弾性保
持し、次いで連結部の駆動にあたり、一方の弾性
収縮体の流入量制御弁を開口してこの弾性収縮体
の内部圧力を当初圧力より高め、併せて、他方の
弾性収縮体の流出量制御弁を開口してこの弾性収
縮体の内部圧力を前記一方の弾性収縮体の圧力増
加分に略見合う圧力だけ低めてそれらの制御弁を
閉止し、これにより、前記連結部を弾性保持しな
がら所定の位置まで旋回および/または並進させ
て停止させることを特徴とする弾性収縮体の連結
部駆動方法。
[Claims] 1. A set of two elastic contracting bodies whose contraction amount is determined according to internal pressure are each provided with an inflow control valve and an outflow control valve, and each elastic contraction body is pressurized. When the connecting portion of the elastic contracting body is rotated and/or translated by the axial contractile force of the elastic contracting body generated by supplying and discharging fluid, prior to driving the connecting portion, each outflow control valve is activated. Under the closed state, each inflow control valve is opened, and each elastic contractile body is pressurized to a predetermined pressure, and then each inflow control valve is closed, and the connecting portion is elastically held at a predetermined position. Then, when driving the connecting part, the inflow control valve of one elastic contraction body is opened to increase the internal pressure of this elastic contraction body from the initial pressure, and at the same time, the outflow control valve of the other elastic contraction body is opened. Then, the internal pressure of this elastic contraction body is reduced by a pressure approximately corresponding to the pressure increase of the one elastic contraction body, and these control valves are closed, thereby holding the connecting portion elastically until it reaches a predetermined position. A method for driving a connecting portion of an elastic contracting body, characterized by rotating and/or translating and stopping the connecting portion.
JP58180701A 1983-09-30 1983-09-30 Drive control device for connecting parts of elastic contraction body Granted JPS6073106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180701A JPS6073106A (en) 1983-09-30 1983-09-30 Drive control device for connecting parts of elastic contraction body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180701A JPS6073106A (en) 1983-09-30 1983-09-30 Drive control device for connecting parts of elastic contraction body

Publications (2)

Publication Number Publication Date
JPS6073106A JPS6073106A (en) 1985-04-25
JPH05561B2 true JPH05561B2 (en) 1993-01-06

Family

ID=16087798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180701A Granted JPS6073106A (en) 1983-09-30 1983-09-30 Drive control device for connecting parts of elastic contraction body

Country Status (1)

Country Link
JP (1) JPS6073106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290203A (en) * 1985-06-18 1986-12-20 Ngk Spark Plug Co Ltd Pulse operating-type linearly reciprocating driving device
JPS61290202A (en) * 1985-06-18 1986-12-20 Ngk Spark Plug Co Ltd Pulse operating-type rotary driving device
JPS63191538A (en) * 1987-02-05 1988-08-09 Sumitomo Heavy Ind Ltd Minute driving mechanism for fine working machinery
DE102009040051B4 (en) 2009-09-03 2014-05-08 Siemens Aktiengesellschaft Free piston machine with magnetic bearing of the piston

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125554A (en) * 1974-08-27 1976-03-02 Yardley Prod Corp SONY UTAI
JPS5482574A (en) * 1977-12-13 1979-06-30 Kobe Steel Ltd Control circuit of actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473916B1 (en) * 1968-05-29 1972-02-03
JPS5125554B1 (en) * 1970-09-29 1976-07-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125554A (en) * 1974-08-27 1976-03-02 Yardley Prod Corp SONY UTAI
JPS5482574A (en) * 1977-12-13 1979-06-30 Kobe Steel Ltd Control circuit of actuator

Also Published As

Publication number Publication date
JPS6073106A (en) 1985-04-25

Similar Documents

Publication Publication Date Title
JP5485706B2 (en) 1st stage pilot valve
US4319609A (en) Five-position hydraulic actuating apparatus
KR910700411A (en) Digital servo valve system
US4765140A (en) Piezoelectric servomechanism apparatus
US4457341A (en) Variable pressure drop proportional motor controlled hydraulic directional valve
US5458047A (en) High speed pneumatic servo actuator with hydraulic damper
JPH05561B2 (en)
CN102597537A (en) Rotation actuator
US3028880A (en) Fluid flow control valve
US3054388A (en) Servo valve with flow rate feedback
US8061261B2 (en) Antagonistic fluid control system for active and passive actuator operation
US2996078A (en) Jet assisted sleeve valve
EP3875783A1 (en) Servo valve
JP2000508043A (en) Control valve operated by piezoelectric activator
US4428188A (en) Bistable fuel valve
JPH037656Y2 (en)
JPS6383407A (en) Oil pressure control valve
JPS61130603A (en) Pneumatic actuator
JPS595263Y2 (en) Combined independent control solenoid valve
JPH0276985A (en) Intermittent valve
US3218936A (en) Servo valve feedback system
SU1495531A1 (en) Electrohydraulic amplifier
Yokota et al. A high speed electro-hydraulic no leakage servo valve using multilayered piezoelectric devices (PZT) and an observer
SU981710A1 (en) Double-channel distributing apparatus
CN105465086A (en) Force feedback type electro-hydraulic proportional directional valve for mollisol shield tunneling machine