JPH0556175B2 - - Google Patents

Info

Publication number
JPH0556175B2
JPH0556175B2 JP1134533A JP13453389A JPH0556175B2 JP H0556175 B2 JPH0556175 B2 JP H0556175B2 JP 1134533 A JP1134533 A JP 1134533A JP 13453389 A JP13453389 A JP 13453389A JP H0556175 B2 JPH0556175 B2 JP H0556175B2
Authority
JP
Japan
Prior art keywords
membrane
regenerated cellulose
dialysis
hollow fiber
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1134533A
Other languages
Japanese (ja)
Other versions
JPH034924A (en
Inventor
Kazuo Imamura
Masahiko Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1134533A priority Critical patent/JPH034924A/en
Publication of JPH034924A publication Critical patent/JPH034924A/en
Publication of JPH0556175B2 publication Critical patent/JPH0556175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、人工透析療法等に用いられる改良さ
れた再生セルロース系透析膜に関する。更に詳し
くは、血液に対する適合性が改良された再生セル
ロース系透析膜に関する。 〔従来の技術〕 人工透析療法に於いて、再生セルロース系透析
膜、とりわけ銅アンモニウム法再生セルロース系
透析膜は、広く用いられ、透析装置や透析技術の
進歩と共に、腎不全患者の延命、会社復帰に大き
な役割を果たしている。 しかしながら、透析療法の進歩にもかかわら
ず、透析に伴う種々の問題がまだ未解決で残され
ている。例えば、抗凝固剤が長期大量投与され、
そのために生じると考えられる種々の副作用の問
題、また、再生セルロース系透析膜やその他一部
の膜で血液透析を行なつた場合の一過性の白血球
減少や補体成分の活性化の問題等が指摘されてい
る。後者の現象については、臨床症状との関連、
或いは臨床的意義は明らかではないが、再生セル
ロース系透析膜の他の優れた性能を損なわず、こ
れらの現象を軽減することが望まれている。 かかる問題や現象に対して、再生セルロース系
透析膜の血液適合性を改良する方法が種々提案さ
れている。例えば、膜表面をヘパリン化すること
により抗血栓性を付与する方法が特開昭51−194
で提案されているが、十分な効果が得られず、ま
たコストも割高になるため実用化されていない。
また、各種ポリマーやビタミンを再生セルロース
系透析膜の表面にコーテイングする方法も提案さ
れているが、被膜の安定性や滅菌の方法が限定さ
れるなどの問題点がある。また、特開昭61−8105
に再生セルロース系透析膜にイソシアネートプレ
ポリマーを反応させる方法が、特開昭60−118203
にブリツジ剤を介してホリマー酸を化学的に結合
させる方法が提案されているが、反応物質安定性
及び反応工程の複雑さなどの問題がある。さら
に、特開昭61−113459にジエチルアミノエチルセ
ルロース等の改変セルロースを用いて製膜した透
析膜が提案されているが、血液凝固を軽減する面
での改良は十分とは言えない。 〔発明が解決しようとする課題〕 上記のように、再生セルロース膜の血液適合性
を向上させる試みには、一長一短がある。そこで
本発明の目的は血液適合性を向上させた、改良さ
れた再生セルロース系透析膜を提供することにあ
る。 〔課題を解決するための手段〕 再生セルロース透析膜を用いた場合生じる補体
成分の活性化や白血球の一過性減少には、膜表面
の水酸基が関与していると考えられている。一
方、この膜表面の水酸基は種々の官能基と反応し
分子鎖を結合することができる。結合した分子鎖
が、膜表面上の水酸基をマスキングし、補体蛋白
や血球と水酸基の直接の接触を妨げ、血液に対す
る適合性を改良すると考えられる。このような考
えのもとに改良した再生セルロース系透析膜が提
案されている。 本発明者らは、改良効果が発現するグラフト量
について鋭意研究を重ねた結果、本発明の完成に
到つた。すなわち、本発明では、再生セルロース
系透析膜において、少なくとも血液と接触する膜
表面に、膜面積1m2あたり、0.1mg以上の、式 HO2CCH2−(OCH2CH2o−OR (n=1〜150; R=炭素数が1〜20の飽和または不飽和炭化水
素) で示されるポリエチレングライコールモノカルボ
ン酸のアシル残基がエステル結合によりグラフト
していることを特徴とする再生セルロース系透析
膜が提供される。 本明細書において「グラフト鎖」とは、膜表面
に少なくとも一端が化学結合した分子鎖であり、
本発明では、エステル結合しているポリエチレン
グライコールモノカルボン酸のアシル残基が相当
し、また「グラフト量」とは、エステル結合した
ポリエチレングライコールモノカルボン酸の量を
示す。 本発明で使用する「再生セルロース」とは、天
然セルロースを一旦化学的に或いは物理的に変化
させた後再生したものであつて、例えば、銅アン
モニウム法再生セルロース、ビスコースレーヨ
ン、セルロースエステルを鹸化したものが含まれ
るが、透析性能及び長年の実績により裏付けられ
た高い安全性等から銅アンモニウム法再生セルロ
ースが好んで用いられる。 再生セルロースの形状は、平膜または中空糸膜
等何れの形状に成型されたものを用いることがで
きるが、中空糸膜が好ましい。例えば、特公昭50
−40168及び特開昭59−204912に開示されている
ような、膜厚が数μm〜60μmであり、外径が
10μm〜数百μmの真円形の横断面を有する中空
糸膜等が用いられる。 本発明で用いられるポリエチレングライコール
モノカルボン酸(以下、場合により高分子カルボ
ン酸という)の再生セルロース系透析膜の表面へ
のグラフトは、膜表面に存在する水酸基とのエス
テル化反応によつて行なわれ、公知の低分子のア
ルコールと低分子のカルボン酸またはその酸誘導
体との反応が適用できる。たとえば、反応を促進
させるエステル化触媒として、ジシクロヘキシル
カルボジイミドと4−ジメチルアミノピリジン及
び/または4−ピロリジノピリジンとの混合触媒
を用い、これらと高分子カルボン酸またはその酸
誘導体を反応媒体に分散または溶解させた処理液
で再生セルロース系透析膜を処理することによ
り、エステル化反応が進み高分子カルボン酸のグ
ラフトが行なわれる。従つて、この処理条件、例
えば処理液中のカルボン酸濃度や触媒濃度、反応
時間、及び反応温度等によつて、グラフト量が変
動する。 改質した再生セルロース系透析膜をアルカリ水
溶液で抽出すると、エステル結合が加水分解さ
れ、膜にグラフトしていた高分子カルボン酸が抽
出される。これを分析することにより膜表面上の
グラフト量を求めることが出来る。また、単に付
着しているだけの高分子カルボン酸は水で抽出さ
れるので、改質した再生セルロース系透析膜表面
に付着している高分子カルボン酸の有無は水抽出
液を分析することにより容易に判別できる。 上述したように、再生セルロース膜での補体成
分の活性化作用や白血球一過性減少には、膜表面
の水酸基が関与する。参考例1に示されるように
極微量のグラフト量から膜表面の物理化学的性
質、たとえばゼータ電位や親水性の変化が観察さ
れるが、補体成分の活性化作用の抑制は不充分で
ある。逆に、グラフト量の多い実施例5での中空
糸膜では、その親水性は未処理の中空糸と同レベ
ルだが、補体成分の活性化作用を充分に抑制して
いる。従つて、本発明の目的を達成するために
は、膜表面の物理化学的性質の変化よりも、生体
反応に関与する膜表面の水酸基をグラフトした高
分子カルボン酸が遮蔽していることが必要であ
る。また、膜表面の物理化学的性質の変化につい
ては、再生セルロース膜と他の特性、例えば、膜
の水漏れ性や物質の透過性等への影響が考えられ
るが、実施例1〜5に示されるように、グラフト
による膜表面の物理化学的性質の変化は、膜の他
の特性に影響するほど大きくない。後述する実施
例から明らかに、本発明の目的を達成するために
は、高分子カルボン酸のグラフト量が膜面積1m2
あたり0.1mg以上であることが必要であり、0.2mg
以上であることが更に好ましい。 治療に使用する前に滅菌操作が必要であるが、
本発明の再生セルロース系透析膜は、各種の滅菌
法を利用することができる。即ち、組み込んだ透
析器を、そのまま乾燥状態で滅菌する、エチレン
オキサイドガス滅菌、高圧蒸気滅菌、及びガンマ
線滅菌等が利用でき、または組み込んだ透析器に
水または生理食塩水などを充填した後滅菌する、
高圧蒸気滅菌、またはガンマ線滅菌などが利用で
きる。このような滅菌操作によつて、改良された
血液適合性が変化することはない。 〔実施例〕 次に、実施例により本発明の内容をさらに詳細
に述べる。 なお以下の実施例中に記載されている測定項目
は、各々次の方法で測定したものである。 (1) 補体消費率 約2mm長に細断した試料中空糸をポリエチレ
ン管に入れ、これにゼラチンベロナール緩衝液
で4倍に希釈したモルモツト補体(コーデイ
ス・ラポ)200μを添加した。37℃で1時間
撹拌しながらインキユベートし、上清液の補体
価を測定した。補体価はマイヤー変法:エクス
ペリメンタルイムノケムストリー
(Experimetal Immunochemistry)第2版、
第133頁、シー・シー・トーマス(C.C.
Thomas)出版者、1961年、参照)によつて求
めた。即ち、補体の50%溶血価(CH50値)を
求め、コントロールに対する補対消費率(%)
を算出した。 (2) 毛細管上昇値 試料中空糸を25℃の水中にほぼ垂直に立てて
浸漬させ、毛細管現象による中空糸内部の液面
の上昇の値を外部水面を基準にして測定した。
膜表面が親水性であるほど、原理的に毛細管上
昇により液面は上昇し、大きな値を示す。 (3) ゼータ電位 試料中空糸の片側から1ミリモル/リツター
の塩化カリウム溶液を圧力(P)をかけて流通さ
せ、その際中空糸の両端に生じる電位差(E)を白
金電極により測定する。圧力変化(ΔP)に対
応する電位差変化(ΔE)を求め、次式からゼ
ータ電位を算出した。 ゼータ電位=4πηk/D/(ΔE)/(ΔP) 但し、η、k、Dは、それぞれ塩化カリウム
溶液の粘度、比電気伝導度、誘電率を示す。 (4) グラフト量 試料中空糸を細断し、三角フラスコに入れ、
これに水を加え、37℃で1時間振盪し、付着の
高分子カルボン酸を水抽出した。この水抽出液
を半分だけ分離後、試料中空糸の三角フラスコ
にさらに水酸化ナトリウム水溶液を加え、50℃
で2時間振盪した。このようにして得られたア
ルカリ抽出液を分離し塩酸で中和した。水抽出
液及びアルカリ抽出液をそれぞれ凍結乾燥した
後、残渣を1,4−ジオキサンに再溶解し、9
−アンスリルジアゾメタン(フナコシ製薬品)
を添加した反応させ、蛍光検出器を備えた高速
液体クロマトグラフイーにより分析した。 アルカリ抽出液の分析値から水抽出液の分析
値を差引いて、高分子カルボン酸のグラフト量
を算出した。 実施例 1 再生セルロース中空糸膜(内径180μm、膜厚
いμm、長さ24cm)の束(本数約9000本)を、上
下にノズルを装備したステンレス管に充填した。
また内容が1000mlのフラスト内に、アルコキシポ
リエチレングライコールモノカルボン酸
(HO2CCH2−(OCH2CH27−O−C13H27)0.28
g、4−ジメチルアミノピリジン(以下、
「DMAP」という)0.01g、ジシクロヘキシルカ
ルボジイミド(以下、「DCC」という)0.13g及
び1,1,2−トリクロロ−1,2,2−トリフ
ルオロエタン−ジクロロメタン混合溶媒(ジクロ
ロメタン5wt%)700mlを加え、処理液を調合し
た。この処理液をチユーブポンプを用い、下部ノ
ズルからステンレス管に導入し、上部ノズルから
の流出液をフラスコに戻す方式で、20分循環し
た。この際ステンレス管とフラスコは、水浴中に
いれ、処理液の液温が35℃を保つようにした。 処理後の中空糸膜束をメチルアルコール中に一
昼夜浸漬した後、室温で減圧乾燥することによつ
て改良された中空糸膜を得た。 エステル化処理を行なつた中空糸膜について、
毛細管上昇値、ゼータ電位、グラフト量及び補体
消費率の測定を実施した。結果を第1表に示す。 実施例 2〜5 高分子カルボン酸として実施例1で用いたと同
じアルコキシポリエチレングライコールモノカル
ボン酸を用い、下記の条件で処理液を調合した。
実施例1と同様にしてエステル化処理を行ない、
改良された中空糸膜を得た。
[Industrial Field of Application] The present invention relates to an improved regenerated cellulose-based dialysis membrane used in artificial dialysis therapy and the like. More specifically, the present invention relates to a regenerated cellulose-based dialysis membrane with improved compatibility with blood. [Prior art] In artificial dialysis therapy, regenerated cellulose-based dialysis membranes, especially copper ammonium method regenerated cellulose-based dialysis membranes, are widely used, and with advances in dialysis equipment and dialysis technology, they have been used to prolong the lives of renal failure patients and help them return to work. plays a major role in However, despite advances in dialysis therapy, various problems associated with dialysis still remain unsolved. For example, anticoagulants are administered in large doses over a long period of time,
As a result, there are various side effects that are thought to occur, as well as issues such as transient leukopenia and activation of complement components when performing hemodialysis with regenerated cellulose dialysis membranes and some other membranes. has been pointed out. Regarding the latter phenomenon, the relationship with clinical symptoms,
Alternatively, although the clinical significance is not clear, it is desired to alleviate these phenomena without impairing the other excellent performance of the regenerated cellulose-based dialysis membrane. In response to such problems and phenomena, various methods have been proposed to improve the blood compatibility of regenerated cellulose-based dialysis membranes. For example, a method for imparting antithrombotic properties by heparinizing the membrane surface was disclosed in Japanese Patent Application Laid-open No. 51-194.
However, it has not been put into practical use because it is not sufficiently effective and the cost is relatively high.
Additionally, methods have been proposed in which various polymers and vitamins are coated on the surface of regenerated cellulose-based dialysis membranes, but these methods have problems such as the stability of the coating and limited sterilization methods. Also, JP-A-61-8105
A method of reacting an isocyanate prepolymer with a regenerated cellulose-based dialysis membrane was disclosed in Japanese Patent Application Laid-Open No. 118203/1983.
A method of chemically bonding a polymeric acid via a bridging agent has been proposed, but there are problems such as stability of reactants and complexity of the reaction process. Further, although a dialysis membrane formed using modified cellulose such as diethylaminoethyl cellulose has been proposed in Japanese Patent Application Laid-open No. 113459/1989, the improvement in reducing blood coagulation is not sufficient. [Problems to be Solved by the Invention] As described above, attempts to improve blood compatibility of regenerated cellulose membranes have advantages and disadvantages. Therefore, an object of the present invention is to provide an improved regenerated cellulose-based dialysis membrane with improved blood compatibility. [Means for Solving the Problems] Hydroxyl groups on the membrane surface are thought to be involved in the activation of complement components and the transient decrease in white blood cells that occur when a regenerated cellulose dialysis membrane is used. On the other hand, the hydroxyl groups on the surface of this membrane can react with various functional groups to bond molecular chains. It is believed that the bound molecular chains mask the hydroxyl groups on the membrane surface, preventing direct contact between the hydroxyl groups and complement proteins and blood cells, and improving compatibility with blood. Based on this idea, improved regenerated cellulose-based dialysis membranes have been proposed. The present inventors have completed the present invention as a result of intensive research on the amount of grafting that produces an improvement effect. That is, in the present invention, in the regenerated cellulose-based dialysis membrane, at least the surface of the membrane in contact with blood contains 0.1 mg or more of the formula HO 2 CCH 2 −(OCH 2 CH 2 ) o −OR (n = 1 to 150; R = saturated or unsaturated hydrocarbon having 1 to 20 carbon atoms. A dialysis membrane is provided. In this specification, a "graft chain" is a molecular chain with at least one end chemically bonded to the membrane surface,
In the present invention, the ester-bonded acyl residue of polyethylene glycol monocarboxylic acid corresponds to this, and the "grafting amount" refers to the amount of ester-bonded polyethylene glycol monocarboxylic acid. The "regenerated cellulose" used in the present invention is natural cellulose that has been chemically or physically changed and then regenerated. However, copper ammonium regenerated cellulose is preferably used due to its dialysis performance and high safety backed by many years of experience. The regenerated cellulose may be formed into any shape such as a flat membrane or a hollow fiber membrane, but a hollow fiber membrane is preferable. For example,
-40168 and JP-A No. 59-204912, the film thickness is several μm to 60 μm and the outer diameter is
A hollow fiber membrane or the like having a perfectly circular cross section of 10 μm to several hundred μm is used. The grafting of the polyethylene glycol monocarboxylic acid (hereinafter referred to as polymeric carboxylic acid in some cases) used in the present invention onto the surface of the regenerated cellulose-based dialysis membrane is carried out by an esterification reaction with the hydroxyl groups present on the membrane surface. Therefore, a known reaction between a low-molecular alcohol and a low-molecular carboxylic acid or an acid derivative thereof can be applied. For example, a mixed catalyst of dicyclohexylcarbodiimide and 4-dimethylaminopyridine and/or 4-pyrrolidinopyridine is used as an esterification catalyst to accelerate the reaction, and these and a polymeric carboxylic acid or its acid derivative are dispersed or By treating the regenerated cellulose-based dialysis membrane with the dissolved treatment solution, the esterification reaction progresses and grafting of the polymeric carboxylic acid takes place. Therefore, the amount of grafting varies depending on the treatment conditions, such as the carboxylic acid concentration and catalyst concentration in the treatment liquid, reaction time, and reaction temperature. When the modified regenerated cellulose-based dialysis membrane is extracted with an aqueous alkaline solution, the ester bonds are hydrolyzed and the polymeric carboxylic acid grafted onto the membrane is extracted. By analyzing this, the amount of grafting on the membrane surface can be determined. In addition, since the polymeric carboxylic acid that is simply attached is extracted with water, the presence or absence of the polymeric carboxylic acid that is attached to the surface of the modified regenerated cellulose dialysis membrane can be determined by analyzing the water extract. Easy to identify. As mentioned above, the hydroxyl groups on the membrane surface are involved in the activation of complement components and the temporary decrease in white blood cells in the regenerated cellulose membrane. As shown in Reference Example 1, changes in the physicochemical properties of the membrane surface, such as zeta potential and hydrophilicity, are observed from a very small amount of grafting, but the activation effect of complement components is not sufficiently inhibited. . On the contrary, in the hollow fiber membrane of Example 5, which has a large amount of grafting, its hydrophilicity is at the same level as that of the untreated hollow fiber, but the activation effect of complement components is sufficiently suppressed. Therefore, in order to achieve the purpose of the present invention, it is necessary that the hydroxyl groups on the membrane surface involved in biological reactions be shielded by the grafted polymeric carboxylic acid, rather than changing the physicochemical properties of the membrane surface. It is. In addition, changes in the physicochemical properties of the membrane surface may have an effect on the regenerated cellulose membrane and other properties, such as the membrane's water leakage and substance permeability, as shown in Examples 1 to 5. As shown, the changes in the physicochemical properties of the membrane surface due to grafting are not large enough to affect other properties of the membrane. It is clear from the Examples described below that in order to achieve the object of the present invention, the amount of grafted polymeric carboxylic acid should be adjusted to a membrane area of 1 m 2
Must be 0.1mg or more per 0.2mg
It is more preferable that it is above. Sterilization is required before use for treatment, but
The regenerated cellulose-based dialysis membrane of the present invention can be sterilized using various sterilization methods. That is, the incorporated dialyzer can be sterilized in a dry state, ethylene oxide gas sterilization, high-pressure steam sterilization, gamma ray sterilization, etc., or the incorporated dialyzer can be sterilized after being filled with water or physiological saline. ,
High-pressure steam sterilization or gamma ray sterilization can be used. Such sterilization procedures do not alter the improved hemocompatibility. [Example] Next, the content of the present invention will be described in more detail with reference to Examples. Note that the measurement items described in the following examples were measured by the following methods. (1) Complement consumption rate A sample hollow fiber cut into pieces of approximately 2 mm length was placed in a polyethylene tube, and 200 μ of guinea pig complement (Cordis Rapo) diluted 4 times with gelatin veronal buffer was added thereto. The mixture was incubated at 37°C for 1 hour with stirring, and the complement value of the supernatant was measured. Complement values are determined by Mayer's modified method: Experimental Immunochemistry, 2nd edition,
Page 133, C.C. Thomas (CC
Thomas) Publishers, 1961, Reference). That is, determine the 50% hemolytic value (CH50 value) of complement, and calculate the complement consumption rate (%) relative to the control.
was calculated. (2) Capillary rise value A sample hollow fiber was immersed in water at 25°C in an almost vertical position, and the rise in the liquid level inside the hollow fiber due to capillary action was measured based on the external water level.
In principle, the more hydrophilic the membrane surface is, the higher the liquid level will be due to capillary rise, and the larger the value will be. (3) Zeta potential A potassium chloride solution of 1 mmol/liter is passed through one side of the sample hollow fiber under pressure (P), and the potential difference (E) generated at both ends of the hollow fiber is measured using a platinum electrode. The potential difference change (ΔE) corresponding to the pressure change (ΔP) was determined, and the zeta potential was calculated from the following formula. Zeta potential = 4πηk/D/(ΔE)/(ΔP) where η, k, and D represent the viscosity, specific electrical conductivity, and dielectric constant of the potassium chloride solution, respectively. (4) Amount of grafting Cut the sample hollow fiber into small pieces, put it in an Erlenmeyer flask,
Water was added to this, and the mixture was shaken at 37°C for 1 hour to extract the attached polymeric carboxylic acid with water. After separating only half of this aqueous extract, an aqueous sodium hydroxide solution was added to the sample hollow fiber Erlenmeyer flask, and the mixture was heated to 50°C.
The mixture was shaken for 2 hours. The alkaline extract thus obtained was separated and neutralized with hydrochloric acid. After freeze-drying the aqueous extract and alkaline extract, respectively, the residue was redissolved in 1,4-dioxane, and 9
-Anthryl diazomethane (Funakoshi Pharmaceuticals)
was added to the reaction, and analyzed by high performance liquid chromatography equipped with a fluorescence detector. The amount of grafted polymeric carboxylic acid was calculated by subtracting the analytical value of the aqueous extract from the analytical value of the alkaline extract. Example 1 A bundle (approximately 9000 membranes) of regenerated cellulose hollow fiber membranes (inner diameter 180 μm, membrane thickness μm, length 24 cm) was packed into a stainless steel tube equipped with nozzles on the top and bottom.
Also, in a 1000 ml glass bottle, 0.28 alkoxypolyethylene glycol monocarboxylic acid (HO 2 CCH 2 −(OCH 2 CH 2 ) 7 −O−C 13 H 27 )
g, 4-dimethylaminopyridine (hereinafter,
0.01 g of dicyclohexylcarbodiimide (hereinafter referred to as "DCC"), and 700 ml of 1,1,2-trichloro-1,2,2-trifluoroethane-dichloromethane mixed solvent (dichloromethane 5wt%) were added. , a treatment solution was prepared. This treated solution was introduced into the stainless steel tube from the lower nozzle using a tube pump, and the effluent from the upper nozzle was returned to the flask for 20 minutes of circulation. At this time, the stainless steel tube and flask were placed in a water bath to maintain the temperature of the treatment solution at 35°C. The treated hollow fiber membrane bundle was immersed in methyl alcohol for a day and night, and then dried under reduced pressure at room temperature to obtain an improved hollow fiber membrane. Regarding hollow fiber membranes subjected to esterification treatment,
Measurements of capillary rise, zeta potential, graft volume, and complement consumption rate were performed. The results are shown in Table 1. Examples 2 to 5 Using the same alkoxypolyethylene glycol monocarboxylic acid used in Example 1 as the polymeric carboxylic acid, a treatment liquid was prepared under the following conditions.
Esterification treatment was carried out in the same manner as in Example 1,
An improved hollow fiber membrane was obtained.

【表】 得られたそれぞれの中空糸膜について、毛細管
上昇値、ゼータ電位、グラフト量及び補体消費率
の測定を実施した。結果を第1表に示す。 参考例 1 高分子カルボン酸、DMAP、及びDCCの濃度
をそれぞれ実施例1の1/3にして処理液を調合し、
実施例1と同様にしてエステル化処理を行なつ
た。得られた中空糸膜及び未処理中空糸について
毛細管上昇値、ゼータ電位、グラフト量及び補体
消費率の測定を実施した。結果を第1表に示す
が、毛細管上昇値では、変化が見られるが、補体
の活性化の抑制は不十分であつた。
[Table] For each of the obtained hollow fiber membranes, the capillary rise value, zeta potential, graft amount, and complement consumption rate were measured. The results are shown in Table 1. Reference Example 1 A treatment solution was prepared with the concentrations of polymeric carboxylic acid, DMAP, and DCC being reduced to 1/3 of that of Example 1,
Esterification treatment was carried out in the same manner as in Example 1. Capillary rise value, zeta potential, graft amount, and complement consumption rate were measured for the obtained hollow fiber membranes and untreated hollow fibers. The results are shown in Table 1. Although changes were observed in the capillary increase value, the suppression of complement activation was insufficient.

【表】 実施例 6 実施例1、2、5及び未処理の再生セルロース
中空糸膜を透析器に組込み、それぞれ犬による体
外循環を行なつた。犬は体重約10Kgのビーグル犬
を用い、頚部に造設したシヤントから100ml/
minの血流をとつて透析器血液側に流した。なお
体外循環に先だつて、生理食塩水で透析器内を洗
浄した後、ヘパリン6000U/L含有の生理食塩水
で透析器及び血液回路内を充填し、その後血液を
流した。透析器入口部で血液を採取し白血球数を
測定した。透析直前の白血球数を100とした時、
透析後15分及び30分の値を第2表に示した。
[Table] Example 6 Examples 1, 2, 5 and untreated regenerated cellulose hollow fiber membranes were incorporated into a dialyzer, and extracorporeal circulation was performed using a dog. The dog used was a beagle dog weighing approximately 10 kg, and 100 ml/ml was used from a shunt created in the neck.
The blood flow of min was collected and sent to the blood side of the dialyzer. Prior to extracorporeal circulation, the inside of the dialyzer was washed with physiological saline, and then the inside of the dialyzer and blood circuit were filled with physiological saline containing 6000 U/L of heparin, and then blood was allowed to flow. Blood was collected at the inlet of the dialyzer and the number of white blood cells was measured. When the white blood cell count just before dialysis is 100,
Table 2 shows the values 15 minutes and 30 minutes after dialysis.

〔発明の効果〕〔Effect of the invention〕

高分子カルボン酸が膜面積1m2あたり0.1mg以
上グラフトしている本発明の再生セルロース膜
は、次のような顕著な効果を奏する。 イ 第1表に示されるように、補体成分の活性作
用が抑制される。 ロ 第2表に示されるように、白血球一過性減少
が大幅に軽減される。 ハ 製造が容易であり、用いた試薬等を除去する
ことも容易であるので、経済的で安全性の高い
透析膜である。
The regenerated cellulose membrane of the present invention, in which 0.1 mg or more of polymeric carboxylic acid is grafted per 1 m 2 of membrane area, exhibits the following remarkable effects. B. As shown in Table 1, the activation of complement components is suppressed. (b) As shown in Table 2, the transient decrease in white blood cells is significantly reduced. C. It is an economical and highly safe dialysis membrane because it is easy to manufacture and the reagents used are easy to remove.

Claims (1)

【特許請求の範囲】 1 再生セルロース系透析膜において、少なくと
も血液と接触する膜表面に、膜面積1m2あたり、
0.1mg以上の、式 HO2CCH2−(OCH2CH2o−OR (n=1〜150; R=炭素数が1〜20の飽和または不飽和炭化水
素) で示されるポリエチレングライコールモノカルボ
ン酸のアシル残基がエステル結合によりグラフト
していることを特徴とする再生セルロース系透析
膜。
[Claims] 1. In a regenerated cellulose-based dialysis membrane, at least on the membrane surface that comes into contact with blood, per 1 m 2 of membrane area,
0.1 mg or more of polyethylene glycol mono represented by the formula HO 2 CCH 2 -(OCH 2 CH 2 ) o -OR (n = 1 to 150; R = saturated or unsaturated hydrocarbon having 1 to 20 carbon atoms) A regenerated cellulose-based dialysis membrane characterized by grafting acyl residues of carboxylic acids through ester bonds.
JP1134533A 1989-05-30 1989-05-30 Reproduced cellulose yarn dialysis membrane Granted JPH034924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134533A JPH034924A (en) 1989-05-30 1989-05-30 Reproduced cellulose yarn dialysis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134533A JPH034924A (en) 1989-05-30 1989-05-30 Reproduced cellulose yarn dialysis membrane

Publications (2)

Publication Number Publication Date
JPH034924A JPH034924A (en) 1991-01-10
JPH0556175B2 true JPH0556175B2 (en) 1993-08-18

Family

ID=15130543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134533A Granted JPH034924A (en) 1989-05-30 1989-05-30 Reproduced cellulose yarn dialysis membrane

Country Status (1)

Country Link
JP (1) JPH034924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056772A (en) * 2015-09-18 2015-11-18 淮阴师范学院 Preparation method for polyvinyl alcohol/attapulgite-polyion liquid catalytic esterification composite membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467950B2 (en) 2015-01-29 2019-02-13 横浜ゴム株式会社 Pneumatic tire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238869A (en) * 1986-11-07 1988-10-04 筏 義人 Blood compatible cellulosic dialytic membrane and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238869A (en) * 1986-11-07 1988-10-04 筏 義人 Blood compatible cellulosic dialytic membrane and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056772A (en) * 2015-09-18 2015-11-18 淮阴师范学院 Preparation method for polyvinyl alcohol/attapulgite-polyion liquid catalytic esterification composite membrane
CN105056772B (en) * 2015-09-18 2017-05-31 淮阴师范学院 The preparation method of polyvinyl alcohol/recessed native poly ion liquid catalytic esterification composite membrane

Also Published As

Publication number Publication date
JPH034924A (en) 1991-01-10

Similar Documents

Publication Publication Date Title
EP0266795B2 (en) Improved regenerated cellulose membrane and process for preparation thereof
CA1326418C (en) Extracorporeal blood de-heparinization system
SE436242B (en) BIO-COMPATIBLE POLYMER MATERIAL AND PROCEDURE FOR ITS PREPARATION
EP0497673B1 (en) Medical material, method for production thereof, and medical apparatus
JP2874029B2 (en) Medical material, method for producing the same, and medical instrument using the same
JPH0459008B2 (en)
EP0303684B1 (en) Methods of making biocompatible nucleophilic material
KR970007243B1 (en) Water-soluble cellulose derivatives and biocompatible material
JPH0556175B2 (en)
AU2006273606A1 (en) Haemofilters for blood detoxification
CN109647227A (en) A kind of filter membrane and preparation method thereof removing low-density lipoprotein
JP4228498B2 (en) Heparin adsorbent and method for removing heparin using the same
EP0362377B1 (en) Medical material and process for its production
JPS63238869A (en) Blood compatible cellulosic dialytic membrane and its production
JP3108453B2 (en) Anticoagulant materials and medical devices
JPH0470047B2 (en)
JPH0529491B2 (en)
JP2929541B2 (en) Medical material and method for producing the same
JPH0468009B2 (en)
JPH0556174B2 (en)
JPS63252160A (en) Medical material and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees