JPH0555732B2 - - Google Patents

Info

Publication number
JPH0555732B2
JPH0555732B2 JP3216489A JP3216489A JPH0555732B2 JP H0555732 B2 JPH0555732 B2 JP H0555732B2 JP 3216489 A JP3216489 A JP 3216489A JP 3216489 A JP3216489 A JP 3216489A JP H0555732 B2 JPH0555732 B2 JP H0555732B2
Authority
JP
Japan
Prior art keywords
friction
plate
weight
lsd
friction plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3216489A
Other languages
Japanese (ja)
Other versions
JPH02212633A (en
Inventor
Yoshuki Hirokawa
Isao Tonomura
Hirobumi Michioka
Yoshio Fuwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takata Corp
Toyota Motor Corp
Original Assignee
Takata Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takata Corp, Toyota Motor Corp filed Critical Takata Corp
Priority to JP3216489A priority Critical patent/JPH02212633A/en
Publication of JPH02212633A publication Critical patent/JPH02212633A/en
Publication of JPH0555732B2 publication Critical patent/JPH0555732B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は摩擦多板式差動制限装置(リミテツド
スリツプデフアレンシヤル。以下「LSD」と略
称する。)に係り、特に、摩擦板の摩擦性能が大
幅に改善された摩擦多板式LSDに関する。 [従来の技術] LSDは、車両の駆動車軸に駆動力を分配伝達
するための装置であつて、例えば、旋回時や悪路
走行時等において、左右駆動車輪の回転数差を制
御しながら駆動力を左右駆動車輪に分配伝達する
ものである。第1図に摩擦多板式LSDの断面図
を示す。第1図において、1はデフアレンシヤル
ケース(デフケース)であり、最終減速ギヤと一
体回転する。2はピニオンシヤフトであり、デフ
ケース1内にデフケース1の回転軸と直交するよ
うに固設されている。3,4は相対向する一対の
ピニオンギヤであり、デフケース1内に収納され
ピニオンシヤフト2に回転自在に軸支されてい
る。5,6は相対向する一対のサイドギヤであ
り、デフケース1の回転軸と同じ回転軸を有し、
ピニオンギヤ3,4に噛合し、左右駆動車輪に連
結した左右の駆動車軸7,8にそれぞれ連結して
いる。デフケース1とサイドギヤ5,6の間に
は、デフケース側に設けられた摩擦板、即ちスラ
ストワツシヤ10とこれらの間に挟まれてサイド
ギヤ5,6に回転自在に軸支されたクラツチ板9
が設けられている。これらのスラストワツシヤ
(摩擦板)10とクラツチ板9を摺動させること
によりデフケース1とサイドギヤ5,6との回転
数差を制御している。なお、このデフケース1の
内部には潤滑剤として鉱物油が入れてある。 このような摩擦多板式LSDにおいて、摩擦板
10の材料としては、従来、鉄製摩擦摺動面に研
磨等の機械加工を施しその後塩酸処理をして表面
を多孔質にした後、マンガン系リン酸被膜を形成
したものや、当り面に自己潤滑性のある材料を塗
布したもの、又はなじみ性のある表面処理を施こ
したものなどがある。 [発明が解決しようとする課題] しかしながら、上記従来の摩擦板材料よりなる
摩擦板を備えるLSDでは次のような欠点があつ
た。 摩擦板の摩擦係数が低いため、近年の高出
力、高性能車両に適応した摩擦トルクが得られ
ず、十分なLSD性能が得られない。 要求特性に対応するトルクを得るには、摩擦
板の枚数を多くしなけばならず、この場合には
LSDのデフケースが大きくなり、エンジン機
構の小型化に適さない。 摩擦板と相手側クラツチ板との摺動におい
て、ステイツクスリツプ現象により低速旋回時
等に異音が発生する。 摩擦板の耐摩耗性が十分でないため、長期使
用により摩滅してしまう。このため、LSDの
耐久性が十分でない。 本発明は上記従来の問題点を解決し、摩擦性能
に優れ、かつ耐摩耗性にも優れた摩擦板を備える
摩擦多板式LSDを提供することを目的とする。 [課題を解決するための手段及び作用] 本発明の摩擦多板式LSDは、固体潤滑剤とし
て、二硫化モリブデン(以下「Mos2」と略記す
る。)及び四弗化エチレン樹脂(以下「PTFE」
と略記する。)を40〜55重量%、並びに、摩擦調
整剤としてカーボン繊維を5〜15重量%含み、残
部が実質的にエポキシ樹脂及び/又はアミノ系樹
脂よりなる乾性皮膜が形成されてなる摩擦板を備
えることを特徴とする。 以下に本発明を図面を参照して詳細に説明す
る。 第2図は本発明の摩擦多板式LSDの摩擦板の
一実施例を示す正面図である。 本発明のLSDは、摩擦板に特定組成の乾性皮
膜が形成されていること以外は、第1図に示す一
般的な摩擦多板式LSDと同様の構成とされてい
る。 本実施例に係る摩擦板10は、格子状の油溝1
0aが形成されたスチール製プレートの摩擦板本
体表面に、必要に応じてリン酸マンガン等の下地
層を介して下記組成の乾性皮膜11が形成されて
なるものである。 乾性皮膜組成 固体潤滑剤:Mos2及びPTFE=40〜55重量% 摩擦調整剤:カーボン繊維=5〜15重量% バインダー:エポキシ樹脂及び/又はアミノ系
樹脂=残部 本発明において、Mos2及びPTFEの固体潤滑
剤が40重量%未満では、ステイツクスリツプ現象
を防止し得る良好な摩擦性能が得られず、耐摩耗
性も不足する。一方、固体潤滑剤が55重量%を超
えても摩擦性能が低下すると共に、耐摩耗性は大
幅に低下する。 固体潤滑剤中のMos2とPTFEとの割合には特
に制限はないが、通常の場合Mos2100重量部に対
して、PTFEを50〜150重量部程度とするのが好
ましい。 一方、カーボン繊維が5重量%未満では、十分
に高い摩擦係数が得られず、15重量%を超えると
耐摩耗性が低下する。十分な耐摩耗性を得るため
には、カーボン繊維の割合は5〜10重量%とする
ことが好ましい。 また、用いるカーボン繊維の繊維径が5μmより
小さいと摩擦調整剤としての役割を十分に発揮で
きず、摩擦係数の向上、耐摩耗性の向上に有効で
ない場合がある。一方、同繊維径が30μmより大
きいとバインダーとの十分な結合が得られず、摺
動により繊維が脱落するため、逆に耐摩耗性が悪
くなる。従つて、カーボン繊維の繊維径は5〜
30μmとするのが好ましく、特に10〜20μmとする
のが好ましい。カーボン繊維の繊維の長さとして
は、アスペクト比が約10のもの、即ち、繊維長さ
が50〜300μmのもの、特に100〜200μmのものが
製造上好適である。 バインダーとして用いるエポキシ樹脂及び/又
はアミノ樹脂の配合割合は任意に選定することが
できる。 このような成分組成よりなる乾性皮膜の厚さ
は、長時間使用に十分に耐え得る耐摩耗性を確保
するため、15μm以上とすることが好ましい。こ
の乾性皮膜の厚さが35μmを超えると熱伝導性が
悪くなり、耐摩耗性が低下する。また皮膜が剥離
しやすくなり、皮膜強度が低下する上にコスト的
にも高価となる。従つて、形成する乾性皮膜の厚
さは15〜35μmとするのが好ましい。 また、乾性皮膜の表面粗さが、5μmより小さい
と摩擦係数のレベルが低く(例えば動摩擦係数
μd=0.05〜0.08)なり、逆に30μmより粗いと初
期のμdは高いが経時の変化(μd低下)が大きく
安定した摩擦係数が得られない。従つて、乾性皮
膜の表面粗さは5〜30μmとするのが好ましく、
特に10〜20μmとするのが好ましい。 このような乾性皮膜は、例えば、バインダー
100重量部に対して、100〜200重量部の溶剤(キ
シレン等)で溶解したものに、固体潤滑剤を加
え、ボールミルにて3時間粉砕を行ない、更にそ
れに対し、所定量の摩擦調整剤を加え攪拌を行な
つたものを試料とし、これを下地処理としてリン
酸マンガン処理を施こしたスチール製のプレート
(油溝付)上にエアースプレー等により吹きつけ、
その後200℃程度で約30分間加熱硬化させること
により、容易に形成することができる。 なお、本発明において、摩擦板の相手材となる
クラツチ板の表面粗さが0.8μmより粗いと摩擦板
の摩耗が大きくなり耐久性及び摩擦係数の安定性
が損なわれることから、クラツチ板の表面粗さは
0.8μm以下、特に0.5μm以下とするのが好ましい。 [実施例] 以下に実施例、比較例及び参考例を挙げて、本
発明をより具体的に説明する。 実施例1〜3 第2図に示す本発明に係る摩擦板を製造した。 即ち、まず、表面に格子状の油溝を形成したス
チール製プレートの表面に、下地処理としてリン
酸マンガン処理を施した。別に、第1表に示す配
合割合にて、樹脂組成物を調製した。具体的に
は、バインダー100重量部に対して、100〜200重
量部の溶剤(M・E・K,キシレン)で溶解した
ものに固体潤滑剤を加え、ボールミルにて3時間
粉砕を行ない、更にそれに対し、所定量の摩擦調
整剤を加え攪拌を行なう。このようにして得られ
た樹脂組成物をエアースプレーによりスチール製
プレートの表面に吹き付け、その後200℃で30分
間加熱硬化させて、厚さ約25μmの乾性皮膜を形
成した。 得られた摩擦板について、下記方法により、摩
擦試験及び摩耗試験を行なつた。結果を第1表に
示す。 摩擦試験 上記乾性皮膜を形成した摩擦板Aと、鋼製(材
質:JIS規格SK5)で焼入れ焼戻しを施した鋼板
(HV450)よりなりその表面粗さが0.5μRzの摩擦
板B(外径120mm、内径100mm、厚さ1.8mm)を組み
合わせて、スラスト試験機により摩擦試験を行な
つた。試験は、LSDオイル中で摩擦板Bに対し
摩擦板Aを荷重400Kgfで押しつけた状態で摩擦
板Bを約5r.p.m.にて回転させ、その時に発生す
る摩擦トルクから摩擦係数(静摩擦係数(以下
「μs」と略記する。)と動摩擦係数(以下「μd」
と略記する。))を調べた。 摩耗試験 と同様に、LSDオイル中で約50r.p.m.にて回
転している摩擦板Bに対し摩擦板Aを荷重500Kg
fで押しつけ200時間後の摩耗量(摩耗深さ)を
調べた。 比較例1〜6 第1表に示す原料配合にて皮膜を形成したこと
以外は、実施例1と同様にして摩擦板Aを製造
し、その性能試験を行なつた。 結果を第3図に示す。
[Industrial Application Field] The present invention relates to a friction multi-plate differential limiting device (Limited Slip Differential, hereinafter abbreviated as "LSD"), and in particular, the present invention relates to a friction multi-disc differential limiting device (hereinafter abbreviated as "LSD"), and in particular, the friction performance of the friction plates is significantly improved. Regarding friction multi-plate LSD. [Prior Art] LSD is a device for distributing and transmitting driving force to the driving axle of a vehicle. For example, when turning or driving on a rough road, LSD is a device that distributes and transmits driving force to the driving axle of a vehicle. It distributes and transmits power to the left and right drive wheels. Figure 1 shows a cross-sectional view of a friction multi-plate LSD. In FIG. 1, 1 is a differential case (differential case), which rotates integrally with the final reduction gear. A pinion shaft 2 is fixedly installed in the differential case 1 so as to be orthogonal to the rotation axis of the differential case 1. Reference numerals 3 and 4 designate a pair of opposing pinion gears, which are housed within the differential case 1 and rotatably supported by the pinion shaft 2. 5 and 6 are a pair of opposing side gears, which have the same rotation axis as the rotation axis of the differential case 1;
It meshes with pinion gears 3 and 4 and is connected to left and right drive axles 7 and 8 that are connected to left and right drive wheels, respectively. Between the differential case 1 and the side gears 5 and 6, there is a friction plate provided on the differential case side, that is, a thrust washer 10, and a clutch plate 9 which is sandwiched between these and rotatably supported by the side gears 5 and 6.
is provided. By sliding these thrust washers (friction plates) 10 and clutch plates 9, the difference in rotational speed between the differential case 1 and the side gears 5 and 6 is controlled. Note that mineral oil is contained inside the differential case 1 as a lubricant. In such a friction multi-plate LSD, the material for the friction plates 10 has conventionally been that the iron friction sliding surface is mechanically processed such as polishing, then treated with hydrochloric acid to make the surface porous, and then treated with manganese-based phosphoric acid. There are types with a coating formed on them, types with a self-lubricating material applied to the contact surface, and types with a conformable surface treatment. [Problems to be Solved by the Invention] However, the LSD equipped with a friction plate made of the conventional friction plate material described above has the following drawbacks. Because the friction coefficient of the friction plate is low, it is not possible to obtain the friction torque suitable for recent high-output, high-performance vehicles, and sufficient LSD performance cannot be obtained. In order to obtain the torque that corresponds to the required characteristics, it is necessary to increase the number of friction plates, and in this case,
The LSD differential case becomes large, making it unsuitable for downsizing the engine mechanism. When the friction plate and the mating clutch plate slide, the stick slip phenomenon causes abnormal noise when turning at low speeds. Since the friction plate does not have sufficient wear resistance, it will wear out after long-term use. For this reason, LSD does not have sufficient durability. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a friction multi-plate LSD equipped with friction plates that have excellent friction performance and excellent wear resistance. [Means and effects for solving the problems] The friction multi-plate LSD of the present invention uses molybdenum disulfide (hereinafter abbreviated as "Mos 2 ") and tetrafluoroethylene resin (hereinafter "PTFE") as solid lubricants.
It is abbreviated as ) and 5 to 15% by weight of carbon fiber as a friction modifier, with the remainder being substantially epoxy resin and/or amino resin. It is characterized by The present invention will be explained in detail below with reference to the drawings. FIG. 2 is a front view showing one embodiment of the friction plate of the friction multi-plate LSD of the present invention. The LSD of the present invention has the same structure as the general friction multi-plate LSD shown in FIG. 1, except that a dry film of a specific composition is formed on the friction plates. The friction plate 10 according to this embodiment has lattice-shaped oil grooves 1
A dry film 11 having the composition shown below is formed on the surface of the friction plate main body of a steel plate on which Oa is formed, with a base layer of manganese phosphate or the like interposed therebetween if necessary. Dry film composition Solid lubricant: Mos 2 and PTFE = 40 to 55% by weight Friction modifier: Carbon fiber = 5 to 15% by weight Binder: Epoxy resin and/or amino resin = balance In the present invention, Mos 2 and PTFE If the solid lubricant is less than 40% by weight, good friction performance that can prevent the stick slip phenomenon cannot be obtained, and wear resistance is also insufficient. On the other hand, even if the solid lubricant exceeds 55% by weight, the friction performance decreases and the wear resistance significantly decreases. Although there is no particular restriction on the ratio of Mos 2 and PTFE in the solid lubricant, it is usually preferable to use about 50 to 150 parts by weight of PTFE per 100 parts by weight of Mos 2 . On the other hand, if the carbon fiber content is less than 5% by weight, a sufficiently high coefficient of friction cannot be obtained, and if it exceeds 15% by weight, the wear resistance decreases. In order to obtain sufficient wear resistance, the proportion of carbon fiber is preferably 5 to 10% by weight. Further, if the fiber diameter of the carbon fiber used is smaller than 5 μm, the role as a friction modifier cannot be fully exhibited, and it may not be effective in improving the friction coefficient and wear resistance. On the other hand, if the fiber diameter is larger than 30 μm, sufficient bonding with the binder cannot be obtained and the fibers will fall off due to sliding, resulting in poor wear resistance. Therefore, the fiber diameter of carbon fiber is 5~
The thickness is preferably 30 μm, particularly preferably 10 to 20 μm. Regarding the length of carbon fibers, carbon fibers having an aspect ratio of about 10, that is, fiber lengths of 50 to 300 μm, particularly 100 to 200 μm, are suitable for production. The blending ratio of the epoxy resin and/or amino resin used as the binder can be arbitrarily selected. The thickness of the dry film made of such a component composition is preferably 15 μm or more in order to ensure wear resistance sufficient to withstand long-term use. When the thickness of this dry film exceeds 35 μm, thermal conductivity deteriorates and wear resistance decreases. In addition, the film becomes easy to peel off, the strength of the film decreases, and the cost becomes high. Therefore, the thickness of the dry film to be formed is preferably 15 to 35 μm. In addition, if the surface roughness of the dry film is smaller than 5 μm, the level of the friction coefficient will be low (for example, the dynamic friction coefficient μd = 0.05 to 0.08), and conversely, if the surface roughness is rougher than 30 μm, the initial μd will be high, but the change over time (μd decreases). ) is large and a stable friction coefficient cannot be obtained. Therefore, the surface roughness of the dry film is preferably 5 to 30 μm,
In particular, it is preferably 10 to 20 μm. Such a dry film can be formed using a binder, for example.
A solid lubricant is added to 100 parts by weight dissolved in 100 to 200 parts by weight of a solvent (such as xylene), and the mixture is ground in a ball mill for 3 hours. The sample was then sprayed with air spray, etc. onto a steel plate (with oil grooves) that had been treated with manganese phosphate as a base treatment.
It can then be easily formed by heating and curing at about 200°C for about 30 minutes. In addition, in the present invention, if the surface roughness of the clutch plate, which is the mating material of the friction plate, is rougher than 0.8 μm, the wear of the friction plate will increase and the durability and stability of the coefficient of friction will be impaired. The roughness is
It is preferably 0.8 μm or less, particularly 0.5 μm or less. [Example] The present invention will be described in more detail below with reference to Examples, Comparative Examples, and Reference Examples. Examples 1 to 3 Friction plates according to the present invention shown in FIG. 2 were manufactured. That is, first, the surface of a steel plate on which a grid-like oil groove was formed was subjected to manganese phosphate treatment as a base treatment. Separately, resin compositions were prepared at the blending ratios shown in Table 1. Specifically, 100 parts by weight of the binder was dissolved in 100 to 200 parts by weight of a solvent (M・E・K, xylene), a solid lubricant was added, the mixture was ground in a ball mill for 3 hours, and then To this, a predetermined amount of friction modifier is added and stirred. The resin composition thus obtained was air-sprayed onto the surface of a steel plate, and then heated and cured at 200° C. for 30 minutes to form a dry film with a thickness of about 25 μm. A friction test and an abrasion test were conducted on the obtained friction plate according to the following method. The results are shown in Table 1. Friction test Friction plate A with the above-mentioned dry film formed, and friction plate B (outer diameter 120 mm, A friction test was conducted using a thrust tester using a combination of 100mm inner diameter and 1.8mm thickness. In the test, friction plate A was pressed against friction plate B with a load of 400 kgf in LSD oil, and friction plate B was rotated at approximately 5 rpm, and the friction coefficient (static friction coefficient (hereinafter referred to as static friction coefficient) was calculated from the friction torque generated at that time. ) and the coefficient of kinetic friction (hereinafter referred to as "μd").
It is abbreviated as )) was investigated. Similar to the wear test, friction plate A was loaded with a load of 500 kg against friction plate B, which was rotating at approximately 50 rpm in LSD oil.
The amount of wear (wear depth) after 200 hours of pressing at f was examined. Comparative Examples 1 to 6 Friction plates A were manufactured in the same manner as in Example 1, except that the coating was formed using the raw material composition shown in Table 1, and a performance test thereof was conducted. The results are shown in Figure 3.

【表】 第3図より明らかなようにカーボン繊維を配合
した実施例1〜3及び比較例3〜6の摩擦係数
は、比較例1,2に比べ大幅に高く、しかもカー
ボン繊維が増加するに従つて高くなり、約20重量
%でピークとなり飽和する傾向を示す。 また、比較例1(従来材)はμsがμdの平均より
高く、ステイツクスリツプ現象による異音が発生
し易い特性を示すのに対し、実施例1〜3及び比
較例3〜6は、常にμs≦μdとなつており、異音
発生が防止される良好な特性を有している。 一方、摩耗についてはカーボン繊維が5〜15重
量%の時(実施例1〜3)、乾性皮膜の厚さ以内
での低摩耗量を示すが、20重量%以上になると、
比較例1,2と同様下地のリン酸マンガン処理層
が露出するようになり、耐摩耗性が悪くなる傾向
を示す。これはカーボン繊維の量が多くなると結
合に必要なバインダー(エポキシ樹脂等)の量が
不足するため、カーボン繊維及び固体潤滑材とバ
インダーとの結合力が低下してくるので、耐摩耗
性が悪くなるためと考えられる。 以上の結果からカーボン繊維の量としては、5
〜15重量%が良好で特に耐摩耗性を考えた場合5
〜10重量%が好ましいことが明らかである。 実施例4〜7、比較例7,8 カーボン繊維の量を7重量%に固定し、固体潤
滑剤(Mos2+PTFE)の量を第2表に示すよう
に変化させたこと以外は実施例1と同様にして摩
擦板Aと製造し、その性能試験を行なつた。結果
を第2表に示す。
[Table] As is clear from Figure 3, the friction coefficients of Examples 1 to 3 and Comparative Examples 3 to 6, in which carbon fibers were blended, were significantly higher than those of Comparative Examples 1 and 2, and as the amount of carbon fibers increased. Therefore, it tends to increase, reaching a peak at about 20% by weight and becoming saturated. In addition, in Comparative Example 1 (conventional material), μs is higher than the average μd, and exhibits a characteristic that abnormal noise is likely to occur due to the stick slip phenomenon, whereas Examples 1 to 3 and Comparative Examples 3 to 6 always μs≦μd, and has good characteristics that prevent abnormal noise from occurring. On the other hand, regarding wear, when the carbon fiber content is 5 to 15% by weight (Examples 1 to 3), a low amount of wear is shown within the thickness of the dry film, but when the content is 20% by weight or more,
As in Comparative Examples 1 and 2, the underlying manganese phosphate treatment layer becomes exposed, and the abrasion resistance tends to deteriorate. This is because when the amount of carbon fiber increases, the amount of binder (epoxy resin, etc.) necessary for bonding becomes insufficient, and the bonding force between carbon fiber and solid lubricant and binder decreases, resulting in poor wear resistance. It is thought that this is because From the above results, the amount of carbon fiber is 5
~15% by weight is good, especially when considering wear resistance 5
It is clear that ~10% by weight is preferred. Examples 4 to 7, Comparative Examples 7 and 8 Example 1 except that the amount of carbon fiber was fixed at 7% by weight and the amount of solid lubricant (Mos 2 + PTFE) was varied as shown in Table 2. Friction plate A was manufactured in the same manner as above, and its performance tests were conducted. The results are shown in Table 2.

【表】 第2表より、固体潤滑剤(Mos2+PTFE)の
量が35重量%(比較例7)の場合、摩擦係数とし
ては高いが、μsとμdとの関係がステイツクスリ
ツプ現象を生じやすい傾向となつており、また摩
耗量も実施例4〜7に比べ大きくなつている。一
方、固体潤滑剤の量が60重量%(比較例8)の場
合、μdのレベルがやや低くなつており、しかも
耐摩耗性が大幅に低下することがわかる。 従つて、固体潤滑剤の量としては、40〜55重量
%が好ましい。なお、第2表において、Mos2
PTFEの固体潤滑剤の配合割合は、Mos2100重量
部に対しPTFEを同じく100重量部としているが、
PTFEを50〜150重量部程度としても同様な結果
が得られる。 また、上記実施例1〜7においては、バイダー
としてエポキシ樹脂とアミノ系樹脂との混合系を
使用しているが、これらは単独使用でも同様な結
果が得られる。 参考例 1 実施例2の摩擦板を摩擦板Aとして用い、摩擦
板Bの表面粗さを第3表に示すように変えて、実
施例1と同様にして摩耗試験を行なつた。結果を
第3表及び第4図に示す。 第3表及び第4図より明らかなように、相手材
のクラツチ板の表面粗さ(Rz)は、0.8μmより粗
くなるとアブレーシブな作用により乾性皮膜側の
摩耗が大きくなる傾向を示し、耐久性及びμd,
μsの安定性に大きく影響するため、0.8μm以下、
好ましくは、0.5μm以下とするのが好ましい。
[Table] From Table 2, when the amount of solid lubricant (Mos 2 + PTFE) is 35% by weight (Comparative Example 7), the friction coefficient is high, but the relationship between μs and μd causes the stick slip phenomenon. Moreover, the amount of wear is larger than that of Examples 4 to 7. On the other hand, it can be seen that when the amount of solid lubricant is 60% by weight (Comparative Example 8), the μd level is slightly lower, and the wear resistance is significantly lowered. Therefore, the amount of solid lubricant is preferably 40 to 55% by weight. In addition, in Table 2, Mos 2 and
The blending ratio of the PTFE solid lubricant is 100 parts by weight of PTFE to 100 parts by weight of Mos 2 .
Similar results can be obtained by adding 50 to 150 parts by weight of PTFE. Further, in Examples 1 to 7 above, a mixed system of an epoxy resin and an amino resin is used as the binder, but similar results can be obtained even when these are used alone. Reference Example 1 A wear test was conducted in the same manner as in Example 1, using the friction plate of Example 2 as friction plate A and changing the surface roughness of friction plate B as shown in Table 3. The results are shown in Table 3 and Figure 4. As is clear from Table 3 and Figure 4, when the surface roughness (Rz) of the mating clutch plate becomes rougher than 0.8 μm, wear on the dry film side tends to increase due to abrasive action, and durability and μd,
0.8μm or less, as it greatly affects the stability of μs.
Preferably, the thickness is 0.5 μm or less.

【表】【table】

【表】 [発明の効果] 以上詳述した通り、本発明の摩擦多板式LSD
によれば、その摩擦板の摩擦性能及び耐摩耗性が
大幅に改善されるため、次のような効果が奏され
る。 摩擦板が従来の摩擦板に比べて、摩擦係数が
約2倍と非常に高いため、高い摩擦トルクが得
られ、LSD性能が大幅に向上する。 より、摩擦板の枚数が低減することができ
ることから、LSD全体の小型化、軽量化を図
ることができる。 摩擦板は、μdがμsより常に高い傾向を示す
ため、ステイツクスリツプ現象による異音の発
生がない。 摩擦板の耐摩耗性が従来の摩擦板に比べて格
段に優れているため、長期間安定して使用する
ことができる。このため、LSDの耐久性、信
頼性が大幅に向上する。
[Table] [Effects of the invention] As detailed above, the friction multi-plate LSD of the present invention
According to the invention, the friction performance and wear resistance of the friction plate are significantly improved, resulting in the following effects. The friction plate has an extremely high coefficient of friction, approximately twice that of conventional friction plates, which results in high friction torque and greatly improves LSD performance. Since the number of friction plates can be reduced, the entire LSD can be made smaller and lighter. Friction plates always show a tendency for μd to be higher than μs, so there is no abnormal noise caused by the stick slip phenomenon. The wear resistance of the friction plate is much superior to that of conventional friction plates, so it can be used stably for a long period of time. This greatly improves the durability and reliability of LSD.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は摩擦多板式LSDの断面図、第2図は
本発明のLSDに係る摩擦板を示す正面図、第3
図は実施例1〜3及び比較例1〜6の結果を示す
グラフ、第4図は参考例1の結果を示すグラフで
ある。 1……デフケース、5,6……サイドギヤ、9
……クラツチ板、10……摩擦板。
Fig. 1 is a sectional view of a friction multi-plate LSD, Fig. 2 is a front view showing a friction plate according to the LSD of the present invention, and Fig. 3 is a cross-sectional view of a friction multi-plate LSD.
The figure is a graph showing the results of Examples 1 to 3 and Comparative Examples 1 to 6, and FIG. 4 is a graph showing the results of Reference Example 1. 1... Differential case, 5, 6... Side gear, 9
...Clutch plate, 10...Friction plate.

Claims (1)

【特許請求の範囲】[Claims] 1 固体潤滑剤として、二硫化モリブデン及び四
弗化エチレン樹脂を40〜55重量%、並びに、摩擦
調整剤としてカーボン繊維を5〜15重量%含み、
残部が実質的にエポキシ樹脂及び/又はアミノ系
樹脂よりなる乾性皮膜が形成されてなる摩擦板を
備えることを特徴とする摩擦多板式差動制限装
置。
1 Contains 40 to 55% by weight of molybdenum disulfide and tetrafluoroethylene resin as a solid lubricant, and 5 to 15% by weight of carbon fiber as a friction modifier,
1. A friction multi-plate differential limiting device comprising a friction plate on which a dry film is formed, the remainder of which is substantially made of epoxy resin and/or amino resin.
JP3216489A 1989-02-10 1989-02-10 Friction multiplate type differential controller Granted JPH02212633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3216489A JPH02212633A (en) 1989-02-10 1989-02-10 Friction multiplate type differential controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216489A JPH02212633A (en) 1989-02-10 1989-02-10 Friction multiplate type differential controller

Publications (2)

Publication Number Publication Date
JPH02212633A JPH02212633A (en) 1990-08-23
JPH0555732B2 true JPH0555732B2 (en) 1993-08-17

Family

ID=12351301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216489A Granted JPH02212633A (en) 1989-02-10 1989-02-10 Friction multiplate type differential controller

Country Status (1)

Country Link
JP (1) JPH02212633A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165125A (en) * 1990-10-26 1992-06-10 Matsushita Electric Ind Co Ltd Electromagnetic clutch
JP2851225B2 (en) * 1993-06-30 1999-01-27 大同メタル工業株式会社 Friction material
WO2003029685A1 (en) 2001-09-27 2003-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho High friction sliding member

Also Published As

Publication number Publication date
JPH02212633A (en) 1990-08-23

Similar Documents

Publication Publication Date Title
US5453317A (en) Friction material comprising powdered phenolic resin and method of making same
JP4182978B2 (en) Electric power steering device and resin gear used therefor
KR101290416B1 (en) Composition for sliding member and sliding member coated with the composition
KR100350332B1 (en) Unsaturated friction materials containing powdered silicone resins and powdered phenolic resins and methods for preparing the same
EP0372559B1 (en) Coating composition for lubrication
US4501676A (en) Polytetrafluoroethylene solid lubricant materials
JPH08100227A (en) Sintered sliding member
JP7240424B2 (en) Friction material composition, friction material and friction member
JPH0555732B2 (en)
JP2762616B2 (en) Friction multi-plate differential limiter
US10494544B2 (en) Coating composition and washer for vehicle drive shafts manufactured therefrom
US5173202A (en) Lubricant coating material: its characteristics and method of manufacture
JP2857946B2 (en) Friction member
CN111621108B (en) Polymer composite material and preparation method of metal-based net filled polymer soft belt
JP7186772B2 (en) Sliding spline shaft device
CN114030248A (en) Metal reinforced composite material with elastic layer and preparation method thereof
US5830309A (en) Resin-based friction material
JPH0384249A (en) Multidisc type limited slip differential
JPS62129387A (en) Inhibitor against sound of automobile belt
JP3665684B2 (en) Eccentric ring of variable speed pulley
JPS5948861B2 (en) differential pinion shaft
JP3550934B2 (en) Hybrid brake material
KR101066777B1 (en) Brake Friction Material
JPS6234262B2 (en)
JP3886676B2 (en) Sliding receiving member and manufacturing method of molding material for sliding receiving member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees