JPH0555704A - Plane emission semiconductor laser, its array, plane emission led, its array & plane emission pnpn element - Google Patents

Plane emission semiconductor laser, its array, plane emission led, its array & plane emission pnpn element

Info

Publication number
JPH0555704A
JPH0555704A JP21252391A JP21252391A JPH0555704A JP H0555704 A JPH0555704 A JP H0555704A JP 21252391 A JP21252391 A JP 21252391A JP 21252391 A JP21252391 A JP 21252391A JP H0555704 A JPH0555704 A JP H0555704A
Authority
JP
Japan
Prior art keywords
emitting
semiconductor laser
substrate
array
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21252391A
Other languages
Japanese (ja)
Other versions
JP3123136B2 (en
Inventor
Fumito Miyasaka
文人 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21252391A priority Critical patent/JP3123136B2/en
Publication of JPH0555704A publication Critical patent/JPH0555704A/en
Application granted granted Critical
Publication of JP3123136B2 publication Critical patent/JP3123136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control polarization direction in a plane emission type semiconductor laser and plane emission type LED utilizing natural ultra-lattice. CONSTITUTION:A GaInP activated layer 3 forming a natural ultralattice is contained on a semiconductor GaAs substrate 1, and a plane light-emitting type semiconductor laser has a resonator in the direction normal to the plane of substrate 1. By this construction, it becomes possible to stably control the polarization direction in [110] direction. Also, in a semiconductor laser array with these elements integrated on the same substrate, it is possible to align the polarization direction of each element in [110] direction. This can be applied not only to semiconductor laser but also to a lightemitting element such as plane light-emitting type LED.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏波方向の制御性が良
くまた安定化された面発光型半導体レーザ及び個々の素
子の偏波方向が揃った半導体レーザアレー及び偏波方向
依存性のある発光ダイオード及び個々の素子の偏波方向
が揃った発光ダイオードアレーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser in which polarization direction controllability is good and stabilized, a semiconductor laser array in which the polarization directions of individual elements are aligned, and polarization direction dependence. The present invention relates to a light emitting diode and a light emitting diode array in which polarization directions of individual elements are aligned.

【0002】[0002]

【従来の技術】近年、光ディスク用光源や光コンピュー
ティング応用など情報処理分野への応用として基板面に
対し垂直方向に光を取り出す面発光型半導体レーザの研
究開発が盛んに行われている。室温で連続動作する面発
光型半導体レーザもジャパニーズジャーナルオブアプラ
イドフィジックス誌(A.Ibarakiet al.
Jpn.J.Appl.Phys.Vol.28(19
89)L667頁)に報告されている。
2. Description of the Related Art In recent years, surface-emitting type semiconductor lasers for extracting light in a direction perpendicular to a substrate surface have been actively researched and developed as applications to information processing fields such as light sources for optical disks and optical computing applications. Surface-emitting type semiconductor lasers that continuously operate at room temperature are also described in Japanese Journal of Applied Physics (A. Ibaraki et al.
Jpn. J. Appl. Phys. Vol. 28 (19
89) L667).

【0003】通常の端面方向より光出力を取り出す半導
体レーザでは導波路構造により端面反射のモード選択性
が顕著であるため、安定にTEモードで発振する。面発
光型半導体レーザでも直線偏波で発振することがジャー
ナルオブクオンタムエレクトロニクス誌(K.Iga
et al.IEEE J.Quantum Elec
tron.Vol.QE−21(1985)663頁)
に報告され、その偏波方向は[110]方向または
[1,−1,0]方向で発信することがジャパニーズジ
ャーナルオブアプライドフィジックス誌(M.Shim
izu et al.Jpn.J.Appl.Phy
s.Vol.27(1989)1774頁)に報告され
ているが、面発光型半導体レーザではビーム垂直方向に
対し等方であるため偏波方向を一義的に定義することは
できず、また、不安定である場合もある。p側反射鏡で
ある誘電体多層膜の一方向側面にSiを蒸着し、損失を
設けることにより偏波方向を制御する試みもなされてい
る(平成3年春季応用物理学関係連合講演会講演予稿集
31a−D−2)。
In a semiconductor laser which normally takes out the optical output from the end face direction, since the mode selectivity of the end face reflection is remarkable due to the waveguide structure, it stably oscillates in the TE mode. Even a surface-emitting type semiconductor laser can oscillate with linearly polarized light by Journal of Quantum Electronics (K. Iga).
et al. IEEE J. Quantum Elec
tron. Vol. QE-21 (1985) p.663)
It is reported that the polarization direction is transmitted in the [110] direction or the [1, -1,0] direction, and the Japanese Journal of Applied Physics (M. Shim).
izu et al. Jpn. J. Appl. Phy
s. Vol. 27 (1989) p. 1774), the surface-emitting type semiconductor laser is isotropic with respect to the beam vertical direction, so that the polarization direction cannot be uniquely defined and is unstable. In some cases. Attempts have also been made to control the polarization direction by depositing Si on one side surface of a dielectric multilayer film, which is a p-side mirror, and by providing a loss (Preliminary lecture at the Joint Symposium on Applied Physics in Spring 1991). Vol. 31a-D-2).

【0004】また、通常の発光ダイオードでは偏波方向
依存性はなく、ランダムな電界ベクトルで発光してい
る。このため、偏波方向を制御するのはかなり困難であ
る。
Further, a normal light emitting diode has no polarization direction dependency and emits light with a random electric field vector. Therefore, it is quite difficult to control the polarization direction.

【0005】[0005]

【発明が解決しようとする課題】従来の面発光型半導体
レーザでは結晶表面の荒さやストレスによる非等方性、
ミラー面の非平行、メサ形状の非等方性、蒸着膜の非等
方性などの複合により偏波方向が決定するため、偏波方
向を制御し、安定化させることは困難であった。[11
0]方向または[1,−1,0]方向のどちらか一方に
損失を設け偏波方向を制御する方法では複雑な工程を必
要とし、また、ビーム形状が円形状より変形する可能性
もある。
In the conventional surface-emitting type semiconductor laser, anisotropy due to roughness of the crystal surface or stress,
It is difficult to control and stabilize the polarization direction because the polarization direction is determined by a combination of non-parallel mirror surfaces, mesa-shaped anisotropy, and vapor-deposited film anisotropy. [11
The method of controlling the polarization direction by providing a loss in either the [0] direction or the [1, -1,0] direction requires complicated steps, and the beam shape may be deformed from the circular shape. ..

【0006】また、従来の発光ダイオードでは放出光の
電界ベクトルはランダムであり、偏波方向は出射光の垂
直方向に対し依存性を持っていない。
Further, in the conventional light emitting diode, the electric field vector of the emitted light is random, and the polarization direction has no dependence on the vertical direction of the emitted light.

【0007】さらに、偏波方向の制御されていない面発
光素子を同一基板上に集積化した面発光素子アレーでは
個々の素子の偏波方向が異なってしまう可能性が高く、
偏波方向がある一方向に揃った面発光素子アレーを提供
することは困難である。
Further, in a surface emitting element array in which surface emitting elements whose polarization directions are not controlled are integrated on the same substrate, there is a high possibility that the polarization directions of the individual elements will be different.
It is difficult to provide a surface emitting element array in which the polarization direction is aligned in one direction.

【0008】本発明の目的は、活性層に偏波方向依存性
のある結晶を用いることにより、偏波方向の制御が容易
であり、素子のある一方向に損失を設けるなど複雑な製
造工程を必要としなく、ビーム形状を変形させる構造を
導入することのない面発光型半導体レーザ及び面発光型
発光ダイオード及びこの面発光型半導体レーザまたは面
発光型発光ダイオードを同一基板上に集積化した偏波方
向の揃った半導体レーザアレー及び発光ダイオードアレ
ーあるいは、面発光型pnpn素子を提供することにあ
る。
The object of the present invention is to use a crystal having polarization direction dependency in the active layer, so that the polarization direction can be easily controlled, and a complicated manufacturing process such as providing a loss in one direction where the element is present can be realized. A surface-emitting type semiconductor laser and a surface-emitting type light-emitting diode that do not require the introduction of a structure that deforms the beam shape and a polarization in which the surface-emitting type semiconductor laser or the surface-emitting type light-emitting diode is integrated on the same substrate. An object of the present invention is to provide a semiconductor laser array and a light emitting diode array or a surface emitting pnpn element whose directions are aligned.

【0009】[0009]

【課題を解決するための手段】本発明の面発光型半導体
レーザは、半導体基板上に、自然超格子を形成した活性
層を含み、基板面に対し垂直方向に共振器を有すること
を特徴とする。
A surface-emitting type semiconductor laser of the present invention is characterized by including an active layer having a natural superlattice formed on a semiconductor substrate and having a resonator in a direction perpendicular to the substrate surface. To do.

【0010】また、本発明の半導体レーザアレーは、上
述の面発光型半導体レーザを同一基板上に集積化するこ
とを特徴とする。
The semiconductor laser array of the present invention is characterized in that the above-mentioned surface-emitting type semiconductor lasers are integrated on the same substrate.

【0011】また、本発明の面発光型発光ダイオード
は、半導体基板上に、自然超格子を形成した活性層を含
み、基板表面または裏面より光を取り出す構造を有する
ことを特徴とする。
Further, the surface emitting light emitting diode of the present invention is characterized in that it has an active layer having a natural superlattice formed on a semiconductor substrate and has a structure for extracting light from the front surface or the back surface of the substrate.

【0012】さらに、本発明の発光ダイオードアレー
は、上述の面発光型発光ダイオードを同一基板上に集積
化することを特徴とする。
Further, the light emitting diode array of the present invention is characterized in that the above-mentioned surface emitting type light emitting diodes are integrated on the same substrate.

【0013】また、面発光型pnpn素子の活性層に自
然超格子を有すること、あるいはそのアレーであること
を特徴とする。
Further, the surface emitting pnpn element is characterized by having a natural superlattice in the active layer or an array thereof.

【0014】[0014]

【作用】GaInP,AlGaInPのエピタキシャル
成長層において[−1,1,1]または[1,−1,
1]方向に秩序性のある周期構造をもった自然超格子が
形成されていることが報告されている(例えば、アプラ
イドフィジックスレターズ誌(Gomyo et a
l.Appl.Phys.Lett.Vol.50(1
987)673頁))。また、自然超格子が形成された
半導体では、最低準位間の発光の電界ベクトルは自然超
格子の形成されている(−1,1,1)または(1,−
1,1)面内に偏っていることがフィジカルレビューレ
ターズ誌(A.Mascarenhas et al.
Phys.Rev.Lett.Vol.63(198
9)2108頁)に報告されている。
In the epitaxial growth layer of GaInP or AlGaInP, [-1, 1, 1] or [1, -1,
It has been reported that a natural superlattice having a periodic structure with an ordered 1] direction is formed (see, for example, Applied Physics Letters (Gomyo et a.
l. Appl. Phys. Lett. Vol. 50 (1
987) p. 673)). Further, in a semiconductor in which a natural superlattice is formed, the electric field vector of light emission between the lowest levels is (-1, 1, 1) or (1,-
1,1) is biased in the plane of Physical Review Letters (A. Mascarenhas et al.
Phys. Rev. Lett. Vol. 63 (198
9) 2108).

【0015】本発明の面発光型半導体レーザは自然超格
子が形成されている活性層を有しており、光出力は基板
面に対し垂直方向に取り出されるため、例えば(00
1)面の基板を用いた場合、発振しきい値以下の自然放
出光の電界成分は[−1,1,0]方向に比べ、[11
0]方向が大きくなる。半導体レーザでは、利得の大き
い方向の偏波で発振するため、本発明の面発光型半導体
レーザは[110]方向の偏波で発信する。また、本発
明の面発光型発光ダイオードでは、[110]方向に偏
波した光の発光効率が高くなる。
The surface-emitting type semiconductor laser of the present invention has an active layer in which a natural superlattice is formed, and the light output is taken out in the direction perpendicular to the substrate surface.
When the substrate of 1) plane is used, the electric field component of the spontaneous emission light below the oscillation threshold is [11,0] compared to [11,0]
0] direction becomes large. Since the semiconductor laser oscillates in the polarized light in the direction of large gain, the surface emitting semiconductor laser of the present invention emits in the polarized light in the [110] direction. Further, in the surface-emitting light emitting diode of the present invention, the luminous efficiency of the light polarized in the [110] direction becomes high.

【0016】また、基板結晶面方位が(001)面から
[−1,1,0]または[1,−1,0]方向に傾いた
半導体基板上に形成したエピタキシャル成長層では自然
超格子の秩序性が高くなり、4°から6°傾いた半導体
基板で最も強く自然超格子が形成される。この(00
1)面より傾きのある基板を用いることにより偏波選択
性がよりいっそう強くなり、面発光型半導体レーザでは
[110]方向の電界ベクトルをもった発光に効率よく
利得が与えられるため、発振しきい値電流の低減にもな
る。また面発光型発光ダイオードや面発光型pnpn素
子では[110]方向への偏波方向依存性がよりいっそ
う高くなる。
Further, in the epitaxial growth layer formed on the semiconductor substrate in which the substrate crystal plane orientation is tilted from the (001) plane in the [-1,1,0] or [1, -1,0] direction, the natural superlattice order is formed. The natural superlattice is formed most strongly on a semiconductor substrate tilted from 4 ° to 6 °. This (00
1) Polarization selectivity is further enhanced by using a substrate that is tilted from the plane, and in surface-emitting type semiconductor lasers, light emission having an electric field vector in the [110] direction is efficiently given a gain, so that oscillation occurs. It also reduces the threshold current. Further, in the surface emitting type light emitting diode and the surface emitting type pnpn element, the polarization direction dependency in the [110] direction is further increased.

【0017】さらに、本発明の面発光型半導体レーザま
たは面発光型発光ダイオードあるいはpnpn素子を同
一基板上に集積化した面発光素子アレーでは、個々の面
発光型素子の偏波方向を[110]方向に揃えることが
できる。
Further, in the surface emitting element array in which the surface emitting type semiconductor laser, the surface emitting type light emitting diode or the pnpn element of the present invention are integrated on the same substrate, the polarization direction of each surface emitting type element is [110]. Can be aligned in any direction.

【0018】[0018]

【実施例】本発明の面発光型半導体レーザの一実施例を
図を用いて説明する。図1は本発明の面発光型半導体レ
ーザの断面図であり、図2にはその製造工程を説明する
ための図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the surface emitting semiconductor laser of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a surface-emitting type semiconductor laser of the present invention, and FIG. 2 is a view for explaining the manufacturing process thereof.

【0019】まず、図2(a)に示すように、n型Ga
As(001)基板1上に2.0μm厚のn型(Al
0 . 7 Ga0 . 3 0 . 5 In0 . 5 Pクラッド層2、
2.0μm厚のアンドープGa0 . 5 In0 . 5 P活性
層3、1.0μm厚のp型(Al0 . 7 Ga0 . 3
0 . 5 In0 . 5 Pクラッド層4、20対のp型(Al
0. 1 Ga0 . 9 0 . 5 In0 . 5 P/(Al0 . 7
Ga0 . 3 0 . 5 In0. 5 P DBR多層膜5、
0.1μm厚のp型Ga0 . 5 In0 . 5 Pヘテロバッ
ファ層6、0.5μm厚のp型GaAsキャップ層7を
積層成長した。p型(Al0 . 1 Ga0 . 9 0 . 5
0 . 5 P/(Al0 . 7 Ga0 . 3 0 . 5 In
0 . 5 P DBR多層膜5の層厚は発振波長に対してλ
/2周期になるようにした。結晶成長は減圧MOVPE
法を用いた。成長条件は、自然超格子が形成されるよう
に、温度660℃、圧力70Torr、V族原料供給量
/III族原料供給量比(V/III比)150とし
た。原料としては、トリメチルアルミニウム(TM
A)、トリエチルガリウム(TEG)、トリメチルイン
ジウム(TMI)、アルシン(AsH3 )、ホスフィン
(PH3 )、n型ドーパントとしてジシラン(Si2
6 )、p型ドーパントとしてジメチルジンク(DMZ)
を用いた。
First, as shown in FIG. 2A, n-type Ga
On an As (001) substrate 1, an n-type (Al
0. 7 Ga 0. 3) 0. 5 In 0. 5 P cladding layer 2,
2.0μm undoped Ga 0 thick. 5 In 0. 5 P active layer 3,1.0μm thickness of p-type (Al 0. 7 Ga 0. 3)
0. 5 In 0. 5 P cladding layer 4, 20 pairs of p-type (Al
0. 1 Ga 0. 9) 0 . 5 In 0. 5 P / (Al 0. 7
Ga 0. 3) 0. 5 In 0. 5 P DBR multi-layer film 5,
0.1μm thick p-type Ga 0. 5 In 0. 5 and the P hetero buffer layer 6,0.5Myuemu p-type GaAs cap layer 7 having a thickness laminated grow. p-type (Al 0. 1 Ga 0. 9) 0. 5 I
n 0. 5 P / (Al 0. 7 Ga 0. 3) 0. 5 In
0.5 The thickness of the P DBR multi-layer film 5 is λ with respect to the oscillation wavelength
/ 2 cycles. Crystal growth is reduced pressure MOVPE
The method was used. The growth conditions were a temperature of 660 ° C., a pressure of 70 Torr, and a group V source supply amount / group III source supply amount ratio (V / III ratio) of 150 so that a natural superlattice was formed. As a raw material, trimethyl aluminum (TM
A), triethylgallium (TEG), trimethylindium (TMI), arsine (AsH 3 ), phosphine (PH 3 ), and disilane (Si 2 H) as an n-type dopant.
6 ), dimethyl zinc (DMZ) as p-type dopant
Was used.

【0020】このウェハ上にリソグラフィ法により直径
7μmのSiO2 マスク12を形成した後、図2(b)
に示すように、p型(Al0 .7 Ga0 . 3 0 . 5
0. 5 Pクラッド層4が0.3μm程度残るように、
ウェットエッチングによりp型GaAsキャップ層7、
p型Ga0 . 5 In0 . 5 Pヘテロバッファ層6、p型
(Al0 . 1 Ga0 . 9 0 . 5 In0 . 5 P/(Al
0 . 7 Ga0 . 3 0. 5 In0 . 5 P DBR多層膜
5、p型(Al0 . 7 Ga0 .3 0 . 5 In0 . 5
クラッド層4を除去した。
After forming a SiO 2 mask 12 having a diameter of 7 μm on this wafer by the lithography method, FIG.
As shown in, p-type (Al 0 .7 Ga 0. 3 ) 0. 5 I
n 0.5 P so that the cladding layer 4 remains about 0.3 μm,
P-type GaAs cap layer 7 by wet etching,
p-type Ga 0. 5 In 0. 5 P hetero buffer layer 6, p-type (Al 0. 1 Ga 0. 9) 0. 5 In 0. 5 P / (Al
0. 7 Ga 0. 3) 0. 5 In 0. 5 P DBR multi-layer film 5, p-type (Al 0. 7 Ga 0 .3 ) 0. 5 In 0. 5 P
The clad layer 4 was removed.

【0021】つぎに、図2(c)に示すように、SiO
2 をマスクとして減圧MOVPE法により、3μm厚の
n型GaAsブロック層8を選択成長した。成長条件
は、温度650℃、圧力70Torr、V/III比4
5とした。原料としては、トリメチルガリウム(TM
G)、アルシン(AsH3 )、n型ドーパントとしてジ
シラン(Si2 6 )、を用いた。n型GaAsブロッ
ク層8を成長後、SiO2 マスク12を除去する。
Next, as shown in FIG. 2 (c), SiO
An n-type GaAs block layer 8 having a thickness of 3 μm was selectively grown by the low pressure MOVPE method using 2 as a mask. The growth conditions are a temperature of 650 ° C., a pressure of 70 Torr, and a V / III ratio of 4
It was set to 5. As a raw material, trimethylgallium (TM
G), arsine (AsH 3 ) and disilane (Si 2 H 6 ) as an n-type dopant were used. After growing the n-type GaAs block layer 8, the SiO 2 mask 12 is removed.

【0022】つぎに、n電極10を形成し、図2(d)
に示すように、n電極上に塗布したレジスト13を、フ
ォトリソグラフィ法を用いてp側の円形メサが中心に位
置するように直径200μmの円形にパターニングした
後、このレジスト13をマスクとしてn電極10とn型
GaAs基板1をウェットエッチングにより除去し、光
出射用の窓とした。レジスト13を除去後、p電極11
を蒸着した。
Next, the n-electrode 10 is formed, and as shown in FIG.
As shown in FIG. 3, the resist 13 applied on the n-electrode is patterned into a circle having a diameter of 200 μm by a photolithography method so that the circular mesa on the p-side is located at the center, and then the resist 13 is used as a mask to form the n-electrode. 10 and n-type GaAs substrate 1 were removed by wet etching to form a window for emitting light. After removing the resist 13, the p-electrode 11
Was vapor-deposited.

【0023】図2(e)に示すようにn型GaAs基板
を取り除いたn型(Al0 . 7 Ga0 . 3 0 . 5 In
0 . 5 Pクラッド層2上に誘電体多層膜反射鏡9を形成
した。この誘電体多層膜反射鏡9とp型(Al0 . 1
0 . 9 0 . 5 In0 . 5 P/(Al0 . 7 Ga
0 . 3 0 . 5 In0 . 5P多層膜5で共振器を形成し
ている。最後に劈開により1つ1つの素子を分離し、p
電極側をヒートシンクに融着して実装した。
[0023] n-type removal of the n-type GaAs substrate as shown in FIG. 2 (e) (Al 0. 7 Ga 0. 3) 0. 5 In
A dielectric multilayer film reflecting mirror 9 was formed on the 0.5 P clad layer 2. This dielectric multilayer mirror 9 and p-type (Al 0.1 G
a 0. 9) 0. 5 In 0. 5 P / (Al 0. 7 Ga
0.3 ) 0.5 In 0.5 P The multilayer film 5 forms a resonator. Finally, each element is separated by cleavage, and p
The electrode side was fused and mounted on a heat sink.

【0024】こうして得られた本実施例の面発光型半導
体レーザの発振時の偏波方向は[110]である。
The polarization direction during oscillation of the surface-emitting type semiconductor laser of this example thus obtained is [110].

【0025】基板面方位が(001)面から[−1,
1,0]方向に6°傾いたn型GaAs基板上に、図1
と同様の構造の面発光型半導体レーザを形成した。この
面発光型半導体レーザは、[110]方向に安定に偏波
しており、(001)基板を用いた面発光型半導体レー
ザに比べ、発振しきい値電流は15%低減された。
The substrate plane orientation is from the (001) plane to [-1,
On the n-type GaAs substrate tilted by 6 ° in the [1,0] direction, as shown in FIG.
A surface-emitting type semiconductor laser having the same structure as the above was formed. This surface-emitting type semiconductor laser was stably polarized in the [110] direction, and the oscillation threshold current was reduced by 15% as compared with the surface-emitting type semiconductor laser using the (001) substrate.

【0026】図3に400μm間隔で9素子の面発光型
半導体レーザを同一基板上に集積した半導体レーザアレ
ーの構造を示す。各面発光型半導体レーザの構造は図1
と同様である。この半導体レーザアレーの個々のレーザ
ビームの偏波方向は[110]方向に揃っている。
FIG. 3 shows the structure of a semiconductor laser array in which 9 surface-emitting type semiconductor lasers are integrated on the same substrate at intervals of 400 μm. The structure of each surface emitting semiconductor laser is shown in FIG.
Is the same as. The polarization directions of the individual laser beams of this semiconductor laser array are aligned in the [110] direction.

【0027】続いて、本発明の面発光型発光ダイオード
の一実施例を図を用いて説明する。図4は本発明の面発
光型発光ダイオードの断面図であり、図5はその製造工
程を示すための図である。
Next, one embodiment of the surface emitting type light emitting diode of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view of a surface emitting light emitting diode according to the present invention, and FIG. 5 is a view showing a manufacturing process thereof.

【0028】まず、図5(a)に示すように、n型Ga
As(001)基板1上に2.0μm厚のn型(Al
0 . 7 Ga0 . 3 0 . 5 In0 . 5 Pクラッド層2、
2.0μm厚のアンドープGa0 . 5 In0 . 5 P活性
層3、5.0μm厚のp型(Al0 . 7 Ga0 . 3
0 . 5 In0 . 5 Pクラッド層4、0.1μm厚のp型
Ga0 . 5 In0 . 5 Pヘテロバッファ層6、0.5μ
m厚のp型GaAsキャップ層7を積層成長した。結晶
成長法、成長条件、原料は上述の面発光型半導体レーザ
と同一である。図5(b)に示すように、このウェハ上
にリソグラフィ法により直径30μmの穴を開けたSi
2 絶縁膜12を形成した。
First, as shown in FIG. 5A, n-type Ga
On an As (001) substrate 1, an n-type (Al
0. 7 Ga 0. 3) 0. 5 In 0. 5 P cladding layer 2,
2.0μm undoped Ga 0 thick. 5 In 0. 5 P active layer 3,5.0μm thickness of p-type (Al 0. 7 Ga 0. 3)
0. 5 In 0. 5 P cladding layer 4,0.1Myuemu p-type Ga 0 thick. 5 In 0. 5 P hetero buffer layer 6,0.5μ
An m-thick p-type GaAs cap layer 7 was grown. The crystal growth method, growth conditions, and raw materials are the same as those of the above-described surface emitting semiconductor laser. As shown in FIG. 5B, Si having a hole with a diameter of 30 μm is formed on this wafer by a lithography method.
The O 2 insulating film 12 was formed.

【0029】つぎに、n電極10を形成し、図2(c)
に示すように、n電極上に塗布したレジスト13を、フ
ォトリソグラフィ法を用いてp側のSiO2絶縁膜12
の円形の穴が中心に位置するように直径200μmの円
形にパターニングした後、このレジスト13をマスクと
してn電極10とn型GaAs基板1をウェットエッチ
ングにより除去し、光出射用の窓とした。図2(d)に
示すように、レジストを除去後、p電極11を蒸着し
た。最後に劈開により1つ1つの素子を分離し、p電極
側をヒートシンクに融着して実装した。
Next, the n-electrode 10 is formed, and as shown in FIG.
As shown in FIG. 3, the resist 13 applied on the n-electrode is formed on the p-side SiO 2 insulating film 12 by photolithography.
After patterning in a circle having a diameter of 200 μm so that the circular hole is located at the center, the n-electrode 10 and the n-type GaAs substrate 1 are removed by wet etching using the resist 13 as a mask to form a window for light emission. As shown in FIG. 2D, the p-electrode 11 was vapor-deposited after removing the resist. Finally, each element was separated by cleavage, and the p-electrode side was fused and mounted on the heat sink.

【0030】こうして得られた本発明の面発光型発光ダ
イオードは偏波方向依存性が高く放出光の65%以上が
[110]方向に偏光している。
The surface emitting light emitting diode of the present invention thus obtained has a high polarization direction dependency and 65% or more of the emitted light is polarized in the [110] direction.

【0031】基板面方位が(001)面から[−1,
1,0]方向に6°傾いたn型GaAs基板上に、図4
と同様の構造の面発光型発光ダイオードを形成した。こ
の面発光型発光ダイオードでは(001)基板を用いた
面発光型発光ダイオードに比べ、さらに偏波方向依存性
が高く放出光の75%以上が[110]方向に偏光して
いる。
The substrate plane orientation is from the (001) plane to [-1,
On the n-type GaAs substrate tilted by 6 ° in the [1,0] direction, as shown in FIG.
A surface-emitting type light emitting diode having the same structure as described above was formed. Compared with the surface emitting light emitting diode using the (001) substrate, this surface emitting light emitting diode has higher polarization direction dependency and 75% or more of the emitted light is polarized in the [110] direction.

【0032】図6には400μm間隔で9素子の面発光
型発光ダイオードを同一基板上に集積した発光ダイオー
ドアレーの構造を示す。各面発光型発光ダイオードの構
造は図4と同様である。この発光ダイオードアレーの個
々の放出光の偏波方向は[110]方向に揃っている。
FIG. 6 shows the structure of a light emitting diode array in which nine surface emitting light emitting diodes are integrated at 400 μm intervals on the same substrate. The structure of each surface emitting light emitting diode is similar to that shown in FIG. The polarization directions of the individual emitted lights of this light emitting diode array are aligned in the [110] direction.

【0033】また変発明の面発光型pnpn素子の一実
施例として、n型GaAs基板上に、n−(Alx Ga
1 - x 0 . 5 In0 . 5 P(0<x<1)、P−(A
Y Ga1 - Y 0 . 5 In0 . 5 P(0<Y<x<
1)、アンドープGa0 . 5 In0 . 5 P活性層、n−
(AlY Ga1 - Y 0 . 5 In0 . 5 P、p−(Al
x Ga1 - x 0 . 5 In0 . 5 P、p−GaAsから
なる半導体層を形成し、前述の面発光型発光ダイオード
と同様に電極を形成し、実装した。このpnpn素子で
も偏波方向依存性の高い発光が得られた。この素子はス
イッチング素子や光機能素子として応用できる。またア
レーにすると、偏波方向のそろったpnpn素子アレー
が、均一良く得られる。
As an embodiment of the surface emitting pnpn element of the modified invention, n- (Al x Ga) is formed on an n-type GaAs substrate.
1-x ) 0.5 In 0.5 P (0 <x <1), P- (A
l Y Ga 1 -.. Y ) 0 5 In 0 5 P (0 <Y <x <
1), an undoped Ga 0. 5 In 0. 5 P active layer, n-
.. (Al Y Ga 1 - Y) 0 5 In 0 5 P, p- (Al
x Ga 1 -.. x) 0 5 In 0 5 P, to form a semiconductor layer made of p-GaAs, to form an electrode in the same manner as described above for the surface-emitting light-emitting diodes, it mounted. Even with this pnpn element, light emission highly dependent on the polarization direction was obtained. This element can be applied as a switching element or an optical functional element. When the array is used, a pnpn element array with uniform polarization directions can be uniformly obtained.

【0034】[0034]

【発明の効果】本発明の面発光型半導体レーザでは、安
定な偏波方向の制御が可能であり、一方向に損失を設け
るなど複雑な製造工程を必要としないため、少ない工程
で製作できる。従って、信頼性の高い偏波面制御型の面
発光型半導体レーザができる。
The surface-emitting type semiconductor laser of the present invention can be manufactured in a small number of steps because it can stably control the polarization direction and does not require a complicated manufacturing step such as providing a loss in one direction. Therefore, a highly reliable polarization plane control type surface emitting semiconductor laser can be obtained.

【0035】また、本発明の面発光型発光ダイオードで
は、偏波方向依存性があり、その方向の制御が可能であ
る。
Further, the surface-emitting type light emitting diode of the present invention has polarization direction dependency, and its direction can be controlled.

【0036】また、これらの素子を同一基板上に集積化
した半導体レーザアレー及び発光ダイオードアレーで
は、集積した全ての素子の偏波方向を一方向に揃えるこ
とが可能である。
Further, in the semiconductor laser array and the light emitting diode array in which these elements are integrated on the same substrate, the polarization directions of all the integrated elements can be aligned in one direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の面発光型半導体レーザの一実施例の断
面図である。
FIG. 1 is a sectional view of an embodiment of a surface emitting semiconductor laser of the present invention.

【図2】本発明の面発光型半導体レーザの製造工程を説
明するための図である。
FIG. 2 is a diagram for explaining a manufacturing process of the surface-emitting type semiconductor laser of the present invention.

【図3】本発明の半導体レーザアレーの一実施例の構造
図である。
FIG. 3 is a structural diagram of an embodiment of a semiconductor laser array of the present invention.

【図4】本発明の面発光型発光ダイオードの一実施例の
断面図である。
FIG. 4 is a cross-sectional view of an embodiment of the surface emitting light emitting diode of the present invention.

【図5】本発明の面発光型発光ダイオードの製造工程を
説明するための図である。
FIG. 5 is a diagram for explaining a manufacturing process of the surface emitting light emitting diode of the present invention.

【図6】本発明の一実施例の発光ダイオードアレーの構
造図である。
FIG. 6 is a structural diagram of a light emitting diode array according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型(Al0 . 7 Ga0 . 3 0 . 5 In0 . 5
クラッド層 3 アンドープGa0 . 5 In0 . 5 P活性層 4 p型(Al0 . 7 Ga0 . 3 0 . 5 In0 . 5
クラッド層 5 p型(Al0 . 1 Ga0 . 9 0 . 5 In0 . 5
/(Al0 . 7 Ga0 . 3 0 . 5 In0 . 5 P DBR多層膜 6 p型Ga0 . 5 In0 . 5 Pヘテロバッファ層 7 p型GaAsキャップ層 8 n型GaAsブロック層 9 誘電体多層膜反射鏡 10 n電極 11 p電極 12 SiO2 絶縁膜 13 レジスト
1 n-type GaAs substrate 2 n-type (Al 0. 7 Ga 0. 3) 0. 5 In 0. 5 P
Cladding layer 3 undoped Ga 0. 5 In 0. 5 P active layer 4 p-type (Al 0. 7 Ga 0. 3) 0. 5 In 0. 5 P
Cladding layer 5 p-type (Al 0. 1 Ga 0. 9) 0. 5 In 0. 5 P
/ (Al 0. 7 Ga 0 . 3) 0. 5 In 0. 5 P DBR multi-layer film 6 p-type Ga 0. 5 In 0. 5 P hetero buffer layer 7 p-type GaAs cap layer 8 n-type GaAs block layer 9 Dielectric multilayer film mirror 10 n electrode 11 p electrode 12 SiO 2 insulating film 13 resist

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、自然超格子を形成した
活性層を含む半導体層を有し、該基板面に対し垂直方向
に共振器を有することを特徴とする面発光型半導体レー
ザ。
1. A surface-emitting type semiconductor laser having a semiconductor layer including an active layer on which a natural superlattice is formed on a semiconductor substrate and having a resonator in a direction perpendicular to the substrate surface.
【請求項2】 半導体基板面方位が(001)面から
[−1,1,0]または[1,−1,0]方向に傾いた
半導体基板上に形成したことを特徴とする請求項1記載
の面発光型半導体レーザ。
2. The semiconductor substrate plane orientation is formed on a semiconductor substrate tilted from the (001) plane in the [-1,1,0] or [1, -1,0] direction. The surface-emitting type semiconductor laser described.
【請求項3】 請求項1または請求項2記載の面発光型
半導体レーザを同一基板上に集積化したことを特徴とす
る面発光型半導体レーザアレー。
3. A surface emitting semiconductor laser array comprising the surface emitting semiconductor laser according to claim 1 or 2 integrated on the same substrate.
【請求項4】 半導体基板上に、自然超格子を形成した
活性層を含む半導体層を有し、該基板表面または裏面よ
り光を取り出す構造を有することを特徴とする面発光型
発光ダイオード。
4. A surface-emitting light-emitting diode having a semiconductor layer including an active layer having a natural superlattice formed on a semiconductor substrate, and having a structure for extracting light from the front surface or the back surface of the substrate.
【請求項5】 半導体基板面方位が(001)面から
[−1,1,0]または[1,−1,0]方向に傾いた
半導体基板上に形成した請求項4の面発光型発光ダイオ
ード。
5. The surface-emitting light-emitting device according to claim 4, wherein the surface orientation of the semiconductor substrate is formed on a semiconductor substrate tilted in the [-1,1,0] or [1, -1,0] direction from the (001) plane. diode.
【請求項6】 請求項4または請求項5記載の面発光型
発光ダイオードを同一基板上に集積化したことを特徴と
する面発光型発光ダイオードアレー。
6. A surface emitting type light emitting diode array comprising the surface emitting type light emitting diodes according to claim 4 or 5 integrated on the same substrate.
【請求項7】 半導体基板上に、自然超格子を形成した
活性層と、pnpn構造の半導体を含み、基板表面また
は裏面から光を取り出す構造を有することを特徴とする
面発光型pnpn素子。
7. A surface-emitting pnpn device comprising a semiconductor substrate, an active layer having a natural superlattice formed thereon, and a semiconductor having a pnpn structure, and having a structure for extracting light from a front surface or a back surface of the substrate.
JP21252391A 1991-08-26 1991-08-26 Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device Expired - Fee Related JP3123136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21252391A JP3123136B2 (en) 1991-08-26 1991-08-26 Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21252391A JP3123136B2 (en) 1991-08-26 1991-08-26 Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device

Publications (2)

Publication Number Publication Date
JPH0555704A true JPH0555704A (en) 1993-03-05
JP3123136B2 JP3123136B2 (en) 2001-01-09

Family

ID=16624084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21252391A Expired - Fee Related JP3123136B2 (en) 1991-08-26 1991-08-26 Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device

Country Status (1)

Country Link
JP (1) JP3123136B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242037A (en) * 1995-03-03 1996-09-17 Nec Corp Planar semiconductor light emitting element
JP2001168461A (en) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and laser array
JP2004031657A (en) * 2002-06-26 2004-01-29 Nobuhiko Sawaki Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting apparatus
JP2004072098A (en) * 2002-07-31 2004-03-04 Osram Opto Semiconductors Gmbh Surface emitting laser chip and its manufacturing method
US6967985B2 (en) 2002-02-12 2005-11-22 Sanyo Electric Co., Ltd. Surface emission semiconductor laser device
JP2008028139A (en) * 2006-07-21 2008-02-07 Ricoh Co Ltd Method for manufacturing semiconductor chip, surface-emitting semiconductor laser, surface-emitting semiconductor laser array, optical scanning apparatus and image forming apparatus
JP2008523608A (en) * 2004-12-08 2008-07-03 韓國電子通信研究院 Silicon-based light emitting diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104292A (en) * 1989-09-19 1991-05-01 Mitsubishi Electric Corp Semiconductor laser
JPH03159289A (en) * 1989-11-17 1991-07-09 Fujitsu Ltd Manufacture of semiconductor laser
JPH04199589A (en) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp Visible light plane emission laser device
JPH04259263A (en) * 1991-02-14 1992-09-14 Toshiba Corp Light-emitting semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104292A (en) * 1989-09-19 1991-05-01 Mitsubishi Electric Corp Semiconductor laser
JPH03159289A (en) * 1989-11-17 1991-07-09 Fujitsu Ltd Manufacture of semiconductor laser
JPH04199589A (en) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp Visible light plane emission laser device
JPH04259263A (en) * 1991-02-14 1992-09-14 Toshiba Corp Light-emitting semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242037A (en) * 1995-03-03 1996-09-17 Nec Corp Planar semiconductor light emitting element
JP2001168461A (en) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd Surface-emitting semiconductor laser and laser array
US6967985B2 (en) 2002-02-12 2005-11-22 Sanyo Electric Co., Ltd. Surface emission semiconductor laser device
JP2004031657A (en) * 2002-06-26 2004-01-29 Nobuhiko Sawaki Semiconductor light emitting element, method of manufacturing the same, and semiconductor light emitting apparatus
JP2004072098A (en) * 2002-07-31 2004-03-04 Osram Opto Semiconductors Gmbh Surface emitting laser chip and its manufacturing method
JP2011066457A (en) * 2002-07-31 2011-03-31 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser chip and method of manufacturing the same
JP2008523608A (en) * 2004-12-08 2008-07-03 韓國電子通信研究院 Silicon-based light emitting diode
JP2008028139A (en) * 2006-07-21 2008-02-07 Ricoh Co Ltd Method for manufacturing semiconductor chip, surface-emitting semiconductor laser, surface-emitting semiconductor laser array, optical scanning apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP3123136B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JPH07297476A (en) Semiconductor laser device
JPH10242584A (en) Semiconductor light-emitting element
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
JPH05299779A (en) Surface light emitting type semiconductor laser
JP3123136B2 (en) Surface emitting semiconductor laser, array thereof, surface emitting light emitting diode, array thereof and surface emitting pnpn device
JP3880683B2 (en) Method for manufacturing gallium nitride based semiconductor light emitting device
JP3246207B2 (en) Manufacturing method of semiconductor laser
US5309466A (en) Semiconductor laser
JPH11340573A (en) Gallium nitride based semiconductor laser element
JP3933637B2 (en) Gallium nitride semiconductor laser device
JPH10256657A (en) Gallium nitride based semiconductor light emitting element and semiconductor laser light source device
JP4623799B2 (en) Semiconductor light emitting device manufacturing method and semiconductor laser
JPH05267797A (en) Light-emitting semiconductor diode
JPH0856055A (en) Semiconductor laser system
JP2751699B2 (en) Semiconductor laser
US5239190A (en) Light emitting device and method for manufacturing the same
JP2674381B2 (en) Semiconductor laser
JP2758597B2 (en) Semiconductor laser device
JPH0555699A (en) Semiconductor laser
JP4221969B2 (en) Method for manufacturing integrated device
JP2556296B2 (en) Semiconductor quantum wire laser
JP3087285B2 (en) Semiconductor laser
JP2730683B2 (en) Semiconductor light emitting device
JP2500588B2 (en) Semiconductor laser and manufacturing method thereof
JPH04101468A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees