JPH0555646A - High sensitivity magnetic field detector - Google Patents

High sensitivity magnetic field detector

Info

Publication number
JPH0555646A
JPH0555646A JP3215599A JP21559991A JPH0555646A JP H0555646 A JPH0555646 A JP H0555646A JP 3215599 A JP3215599 A JP 3215599A JP 21559991 A JP21559991 A JP 21559991A JP H0555646 A JPH0555646 A JP H0555646A
Authority
JP
Japan
Prior art keywords
josephson
magnetic field
coil
etching
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3215599A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shimizu
信宏 清水
Tokuo Chiba
徳男 千葉
Satoru Yabe
悟 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3215599A priority Critical patent/JPH0555646A/en
Publication of JPH0555646A publication Critical patent/JPH0555646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide a high sensitivity by increasing a voltage change with respect to an input magnetic field of a DC-SQUID. CONSTITUTION:A plurality of Josephson junctions of a Josephson device 1 are connected in series with each other. Since the output voltages are increased as much as the number of the junctions connected in series, the change amount of the output voltage with respect to an external magnetic field is increased to improve a sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高感度電磁気センサ、
電流計、変位計、または高周波信号増幅器などに応用す
る直流駆動型超伝導量子干渉素子(DC Superc
onducting Quantum Interfe
rence Device 以下DC−SQUIDと略
す)の回路に関するものである。
This invention relates to a high-sensitivity electromagnetic sensor,
DC drive type superconducting quantum interference device (DC Superc) applied to ammeter, displacement meter, high frequency signal amplifier, etc.
onducing Quantum Interface
The following is a circuit of a "rance device" (abbreviated as DC-SQUID).

【0002】[0002]

【従来技術】従来の回路を図2に示す。ジョセフソン素
子1は1個のジョセフソン接合からなっていた。DC−
SQIUDはバイアス電流17を流し、入力コイル4や
帰還変調コイル6から磁場を印加すると、出力電圧が磁
束量子(Φo )の周期で変化する。出力電圧の変化量△
Vは、ジョセフソン素子1の臨界電流、ギャップ電圧を
各々Ic 、Vg 、またシャント抵抗2をRsとすると△
V<Rs Ic <Vg となる。△Vの値が小さいと外部磁
場に対する電圧の変化量が小さくなり、感度が悪くな
る。またダイナミックレンジも小さくなるので、ロック
インによる信号検出が難しくなる。その結果正確な測定
が出来なかった。
2. Description of the Related Art A conventional circuit is shown in FIG. The Josephson element 1 consisted of one Josephson junction. DC-
When the SQIUD is supplied with a bias current 17 and a magnetic field is applied from the input coil 4 and the feedback modulation coil 6, the output voltage changes in the cycle of the magnetic flux quantum (Φo). Change in output voltage △
V is the critical current of the Josephson device 1, the gap voltage is Ic and Vg, and the shunt resistor 2 is Rs.
V <Rs Ic <Vg. When the value of ΔV is small, the amount of change in voltage with respect to the external magnetic field is small, and the sensitivity is poor. Moreover, since the dynamic range is also reduced, it becomes difficult to detect a signal by lock-in. As a result, accurate measurement was not possible.

【0003】[0003]

【発明が解決しようとする課題】図2の回路はジョセフ
ソン接合がワッシャーコイルの両端に各々1個ずつしか
接続されていないため、出力電圧△Vはジョセフソン接
合1個分の電圧しか出力されなかった。△Vの値が小さ
いと外部磁場に対する電圧の変化量が小さくなり、感度
が悪くなる。またダイナミックレンジも小さくなるの
で、ロックインによる信号検出が難しくなる。その結果
正確な測定が出来ないという課題があった。
In the circuit of FIG. 2, only one Josephson junction is connected to each end of the washer coil, so that the output voltage ΔV is the voltage for one Josephson junction. There wasn't. When the value of ΔV is small, the amount of change in voltage with respect to the external magnetic field is small, and the sensitivity is poor. Moreover, since the dynamic range is also reduced, it becomes difficult to detect a signal by lock-in. As a result, there is a problem that accurate measurement cannot be performed.

【0004】そこで、この発明の目的は、従来のこのよ
うな課題を解決するため、出力電圧の大きなDC−SQ
UIDを得ることである。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to provide a DC-SQ having a large output voltage.
To get the UID.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、従来1個であったジョセフソン接合を
多数直列に接続し、出力電圧が大きくなるようにした。
In order to solve the above-mentioned problems, according to the present invention, a large number of Josephson junctions, which used to be one, are connected in series to increase the output voltage.

【0006】[0006]

【作用】上記のように構成された磁場検出回路において
は、ジョセフソン接合1個に対して外部磁場に対する電
圧の変化量は△V<RsIcとなるから、ジョセフソン接
合を複数個直列に接続すれば電圧がジョセフソン接合の
数だけ加算され大きくなる。
In the magnetic field detection circuit configured as described above, the change amount of the voltage with respect to the external magnetic field is ΔV <RsIc for one Josephson junction, so that a plurality of Josephson junctions should be connected in series. For example, the voltage is increased by adding the number of Josephson junctions.

【0007】[0007]

【実施例】以下に、本発明の実施例を図面に基ずき説明
する。図1は本発明による第1実施例の回路図である。
従来のDC−SQUIDはジョセフソン素子1が1個の
ジョセフソン接合からなっていたが、本発明では直列に
複数個接続している。そのため従来出力△Vが数10μ
V程度しか出なかったが、例えば100個直列に接続す
れば、数mVの出力が得られ信号の検出が容易になる。
つまり△Vの値が大きいと外部磁場に対する電圧の変化
量が大きくなり、感度が良くなる。また、ダイナミック
レンジも大きくなるので、ロックインによる信号検出が
容易になる。また、ジョセフソン接合の容量成分が減少
し、ワッシャーコイル3とジョセフソン素子1による共
振周波数と共振電圧が上昇するため、SQUID動作へ
の影響がなくなり精度の高い計測が可能となる。特に生
体計測では脳磁等微弱な磁場を検出する必要があるの
で、本発明は特に有効である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a first embodiment according to the present invention.
In the conventional DC-SQUID, the Josephson device 1 is composed of one Josephson junction, but in the present invention, a plurality of them are connected in series. Therefore, the conventional output ΔV is tens of μ
Although only about V was output, for example, if 100 units are connected in series, an output of several mV can be obtained and the signal can be detected easily.
That is, when the value of ΔV is large, the amount of change in voltage with respect to the external magnetic field is large, and the sensitivity is improved. Moreover, since the dynamic range is increased, signal detection by lock-in becomes easy. Further, since the capacitance component of the Josephson junction is reduced and the resonance frequency and the resonance voltage of the washer coil 3 and the Josephson element 1 are increased, the SQUID operation is not affected and highly accurate measurement is possible. The present invention is particularly effective because it is necessary to detect a weak magnetic field such as a magnetoencephalography in the biometric measurement.

【0008】図3は本発明の第2実施例で、第1実施例
のワッシャーコイル3に並列にダンピングコイル5を入
れた回路である。一般的に生体計測などに使われる高感
度なDC−SQUIDはワッシャーコイルのインダクタ
ンスが大きく出力電圧の変化が小さいためダンピング抵
抗5を入れて出力電圧を大きくし、安定な動作が得られ
るようにしている。
FIG. 3 shows a second embodiment of the present invention, which is a circuit in which a damping coil 5 is inserted in parallel with the washer coil 3 of the first embodiment. Generally, the highly sensitive DC-SQUID, which is used for biometrics, has a large washer coil inductance and a small change in output voltage. Therefore, insert a damping resistor 5 to increase the output voltage and ensure stable operation. There is.

【0009】図4はジョセフソン素子1とシャント抵抗
2の直列接続方法の例である。本発明では図1、図3の
他にジョセフソン接合1個ずつにシャント抵抗を並列に
接続しても動作は同じである。従って、図1、図3のジ
ョセフソン素子1を図4の回路に変えることも可能であ
る。図5はDC−SQUIDを高感度磁場検出用に本発
明第2実施例(図3)の回路を実際に製作する時の平面
図の例である。製作方法は薄膜をフォトリソ工程でパタ
ーニングする方法で製作する。ジョセフソン素子1はワ
ッシャーコイル3のインダクタンスを大きくしてしまう
のでインダクタンスの影響をなくすためにグランドプレ
ーン7を重ねて覆った方がよい。。
FIG. 4 shows an example of a method of connecting the Josephson element 1 and the shunt resistor 2 in series. In the present invention, the operation is the same even if a shunt resistor is connected in parallel to each Josephson junction in addition to FIGS. Therefore, it is possible to replace the Josephson element 1 of FIGS. 1 and 3 with the circuit of FIG. FIG. 5 is an example of a plan view when actually manufacturing the circuit of the second embodiment (FIG. 3) of the present invention for detecting a DC-SQUID with high sensitivity. The manufacturing method is to pattern the thin film by a photolithography process. Since the Josephson element 1 increases the inductance of the washer coil 3, it is better to cover the ground plane 7 in an overlapping manner in order to eliminate the influence of the inductance. ..

【0010】図6は図3の回路のジョセフソン素子1と
シャント抵抗2の部分を図4の接続に変えた時の製作平
面図である。図7は図6A−A’での断面図であり、こ
の図により製作例を説明する。最初にジョセフソン素子
1の下にくるグランドプレーン7を超伝導材料で形成し
た後層間絶縁膜11を付け、DC−SQUIDをシャン
ト抵抗2及びダンピング抵抗5の抵抗膜を堆積後、層間
絶縁膜11により前記抵抗膜を絶縁し、抵抗を設計値に
する。抵抗膜の例としてはMo,MoN,Pd,Au,
Cu,Al,Pd,Ti等の金属があり、いずれもスパ
ッタや蒸着で堆積可能である。ここではMoをDCマグ
ネトロンスパッタで100nm堆積し、フォトリソ工程
で、設計のサイズにパターニングする。Moのエッチン
グはウエットとドライエッチングの両方が可能である。
ウエットエッチングの例としては硝酸を使った方法があ
る。ドライエッチングの例としてはCF4 やCF4 と酸
素の混合ガスを使った反応性イオンエッチング(RI
E)がある。ここではCF4 と酸素の混合ガスをつかっ
たRIEによりMoをエッチングする。層間絶縁膜11
はSiO2 ,SiO,Si,MgO等がある。どれもス
パッタ、蒸着、CVD等で堆積できる。堆積膜厚は抵抗
膜を完全に絶縁するようにように抵抗膜の1.5倍から
2倍程度にする。ここではRFマグネトロンスパッタ
で、SiO2 を150−200nm堆積し、フォトリソ
工程で抵抗膜5とコンタクトがとれるようにする。Si
2 のエッチングはウエットとドライエッチングの両方
が可能である。ウエットエッチングの例としてはフッ酸
の混合液を使った方法がある。ドライエッチングの例と
してはCF 4 やCHF3 と酸素の混合ガスを使った反応
性イオンエッチング(RIE)がある。ここではCHF
3 と酸素の混合ガスをつかたRIEによりSiO2 をエ
ッチングする。
FIG. 6 shows the Josephson device 1 of the circuit of FIG.
Fabrication when changing the shunt resistor 2 part to the connection shown in Fig. 4.
FIG. FIG. 7 is a cross-sectional view of FIG. 6A-A ′.
A manufacturing example will be described with reference to FIG. First Josephson element
The ground plane 7 under 1 is made of superconducting material
After attaching the interlayer insulating film 11, the DC-SQUID is
After depositing the resistance film of the resistance 2 and the damping resistance 5,
The resistance film is insulated by the insulation film 11, and the resistance is set to the design value.
To do. Examples of resistive films include Mo, MoN, Pd, Au,
There are metals such as Cu, Al, Pd and Ti, all of which are spa
It can be deposited by a sputtering method or vapor deposition. Here, Mo is DC mug
Photolithography process after depositing 100 nm by Netron sputtering
Then, pattern to the design size. Etch of Mo
Both wet and dry etching are possible.
An example of wet etching is the method using nitric acid.
It CF is an example of dry etchingFour And CFFour And acid
Reactive Ion Etching (RI
There is E). CF hereFour With a mixture of oxygen and oxygen
Mo is etched by RIE. Interlayer insulating film 11
Is SiO2 , SiO, Si, MgO and the like. None
It can be deposited by a putter, vapor deposition, CVD or the like. The deposited film thickness is resistance
From 1.5 times the resistance film so that the film is completely insulated
Double the amount. RF magnetron sputtering here
And SiO2 Is deposited to 150-200 nm, and photolithography is performed.
The contact is made with the resistance film 5 in the process. Si
O2 Etching is both wet and dry etching
Is possible. An example of wet etching is hydrofluoric acid.
There is a method using a mixed solution of. An example of dry etching
Then CF Four And CHF3 Reaction using mixed gas of oxygen and oxygen
There is a characteristic ion etching (RIE). CHF here
3 SiO by RIE using mixed gas of oxygen and oxygen2 D
Touch.

【0011】次に下部電極10、障壁層9、上部電極8
からなるジョセフソン素子1を製作するために、各層を
堆積し、上部電極8と障壁層9をフォトリソ工程でエッ
チングする。ジョセフソン素子1の例はNb/Al−o
xide/Nb構造の他にNbN/MgO/NbN,N
b/Si/Nb,Nb/Nb−oxide/Nb等種々
の構造があるが、ここではNb/Al−oxide/N
b構造をスパッタで堆積する。堆積例を以下に示す。1
-5Pa台以下まで高真空に引かれた反応室にArガス
を導入し圧力を0.2から4Paで下部電極10のNb
膜をDCマグネトロンスパッタで堆積する。膜厚は20
0から300nm堆積する。アルゴンガス導入を止め再
び反応室を10-5Pa台以下まで高真空に引いた後、ア
ルゴンガスを導入し圧力を0.2から4PaでAlをD
Cマグネトロンスパッタし、1から20nm堆積する。
ここでAlスパッタ前は特に高真空に排気を行なわなく
ても問題はない。反応室を10-5Pa台以下まで高真空
に引き、酸素ガスまたは酸素とアルゴンの混合ガス等を
導入し圧力を設定値にし、Al表面を酸化してAlOx
/Alの障壁層9を形成する。反応室を10-5Pa台以
下まで高真空に引き上記Nb堆積条件で再び上部電極8
を100から300nm堆積する。次にフォトリソ工程
により上部電極8と障壁層9をエッチングし、ジョセフ
ソン素子1を形成する。エッチング方法は一般的にプラ
ズマによるドライエッチングを使う。上部電極8のNb
はCF4 またはCF4 と酸素の混合ガスを使い反応性イ
オンエッチング(RIE)する。障壁層9のAlは酸を
使ったウエットエッチまたはArガスによるRIEで除
去する。ここで障壁層9はエッチングを行なわなくても
良い。
Next, the lower electrode 10, the barrier layer 9, and the upper electrode 8
In order to manufacture the Josephson device 1 made of, each layer is deposited, and the upper electrode 8 and the barrier layer 9 are etched by a photolithography process. An example of the Josephson device 1 is Nb / Al-o.
In addition to the xide / Nb structure, NbN / MgO / NbN, N
There are various structures such as b / Si / Nb, Nb / Nb-oxide / Nb, but here, Nb / Al-oxide / N.
b structure is sputter deposited. An example of deposition is shown below. 1
Ar gas was introduced into the reaction chamber that was evacuated to a high vacuum of 0 -5 Pa or less, and the pressure of 0.2 to 4 Pa was applied to the Nb of the lower electrode 10.
The film is deposited by DC magnetron sputtering. The film thickness is 20
Deposit from 0 to 300 nm. After the introduction of argon gas was stopped and the reaction chamber was evacuated to a high vacuum of 10 −5 Pa or less again, argon gas was introduced and Al was added at a pressure of 0.2 to 4 Pa.
C magnetron sputter and deposit 1 to 20 nm.
Here, there is no problem even if the gas is not evacuated to a high vacuum before the Al sputtering. The reaction chamber is evacuated to a high vacuum of 10 −5 Pa or less, and oxygen gas or a mixed gas of oxygen and argon is introduced to adjust the pressure to a set value, and the Al surface is oxidized to form AlOx.
A barrier layer 9 of / Al is formed. The reaction chamber was evacuated to a high vacuum of 10 −5 Pa or less, and the upper electrode 8 was re-applied under the above Nb deposition conditions.
Of 100 to 300 nm is deposited. Next, the upper electrode 8 and the barrier layer 9 are etched by a photolithography process to form the Josephson device 1. The etching method generally uses dry etching using plasma. Nb of the upper electrode 8
Is subjected to reactive ion etching (RIE) using CF 4 or a mixed gas of CF 4 and oxygen. Al of the barrier layer 9 is removed by wet etching using acid or RIE using Ar gas. Here, the barrier layer 9 may not be etched.

【0012】次にジョセフソン素子1の下部電極10と
して堆積した超伝導膜をフォトリソ工程でパターニング
して、帰還変調コイル、入力コイルを形成する。エッチ
ング方法は一般的にプラズマによるドライエッチングを
使う。下部電極10のNbはCF4 と酸素の混合ガスを
使いプラズマエッチまたは反応性イオンエッチング(R
IE)する。ここでのエッチングは前記上部電極8のエ
ッチングと異なり、酸素の量を多くして等方性エッチを
するとともに酸素に、よりパターン周辺のレジスト膜を
削りテーパ状にする。具体例としては、プラズマエッチ
ング装置でCF 4 に10パーセントの酸素を添加したガ
スで、圧力133Pa、パワー50wでエッチング可能
である。
Next, the lower electrode 10 of the Josephson device 1 and the
Patterned superconducting film by photolithography process
Then, the feedback modulation coil and the input coil are formed. Etch
Generally, dry etching with plasma is used as the etching method.
use. Nb of the lower electrode 10 is CFFour And a mixed gas of oxygen
Use plasma etch or reactive ion etching (R
IE) The etching here is performed on the upper electrode 8.
Unlike etching, increasing the amount of oxygen for isotropic etching
The resist film around the pattern to oxygen.
Make a shaving taper shape. As a specific example, plasma etch
CF with a ringing device Four Gas with 10% oxygen added to
With a pressure of 133 Pa and power of 50 w
Is.

【0013】次は層間絶縁膜11を堆積後フォトリソ工
程でコンタクトホールを開けた後、超伝導膜を堆積して
フォトリソ工程でワッシャーコイル3と対向電極を形成
する。超伝導膜の例としてはNb、NbNやPb−I
n、Pb−In−Auをスパッタや蒸着で堆積するもの
がある。ここではジョセフソン接合の電極と同様にし
て、Nb膜をDCマグネトロンスパッタで400−60
0nm堆積する。堆積前に超伝導コンタクトになるよう
に基板をArガスで逆スパッタする。この後フォトリソ
工程により、ワッシャーコイル3と対向電極及び他の配
線部分を形成する。エッチングは前記の下部電極10と
同様にプラズマエッチングで行なう。
Next, after depositing the interlayer insulating film 11, a contact hole is opened in a photolithography process, a superconducting film is deposited, and a washer coil 3 and a counter electrode are formed in the photolithography process. Examples of superconducting films include Nb, NbN and Pb-I.
In some cases, n and Pb-In-Au are deposited by sputtering or vapor deposition. Here, in the same manner as the Josephson junction electrode, the Nb film was subjected to 400-60 by DC magnetron sputtering.
Deposit 0 nm. Prior to deposition, the substrate is reverse sputtered with Ar gas into a superconducting contact. After that, a washer coil 3, a counter electrode and other wiring portions are formed by a photolithography process. The etching is performed by plasma etching as in the case of the lower electrode 10.

【0014】上記のようにして本発明の磁場検出回路は
製作可能である。各層の順番は回路が変わらなければ入
れ換えることが可能であり変更できる。図8は本発明の
DC−SQUIDを使って高感度な磁場検出をする時の
システム例であり、従来から使われているFLL(Flux Loc
ked Loop) 回路である。入力コイル4には測定の用途に
応じて検出回路が超伝導接続される。
The magnetic field detection circuit of the present invention can be manufactured as described above. The order of each layer can be changed and can be changed if the circuit does not change. FIG. 8 shows an example of a system for highly sensitive magnetic field detection using the DC-SQUID of the present invention, which is a FLL (Flux Loc) that has been conventionally used.
ked Loop) circuit. A detection circuit is superconductingly connected to the input coil 4 depending on the purpose of measurement.

【0015】[0015]

【発明の効果】この発明は以上説明したようにDC−S
QUIDのジョセフソン接合を複数個直列接合すること
で、磁場に対する出力電圧を大きくすることができ、D
C−SQUIDの高感度化が図れるという効果がある。
As described above, the present invention provides the DC-S.
By connecting a plurality of QUID Josephson junctions in series, the output voltage with respect to the magnetic field can be increased.
This has the effect of increasing the sensitivity of the C-SQUID.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のDC−SQUIDの第1実施例の回路
図である。
FIG. 1 is a circuit diagram of a first embodiment of a DC-SQUID of the present invention.

【図2】従来のDC−SQUIDの回路図である。FIG. 2 is a circuit diagram of a conventional DC-SQUID.

【図3】本発明のDC−SQUIDの第2実施例の回路
図である。
FIG. 3 is a circuit diagram of a second embodiment of the DC-SQUID of the present invention.

【図4】ジョセフソン接合直列接続の回路図である。FIG. 4 is a circuit diagram of a Josephson junction series connection.

【図5】図3の回路(実体)の平面図である。5 is a plan view of the circuit (entity) of FIG. 3. FIG.

【図6】図4の回路(実体)の平面図である。FIG. 6 is a plan view of the circuit (entity) of FIG.

【図7】図6のA−A′断面図である。7 is a cross-sectional view taken along the line AA ′ of FIG.

【図8】本発明を用いたFLL回路のブロック図であ
る。
FIG. 8 is a block diagram of a FLL circuit using the present invention.

【符号の説明】[Explanation of symbols]

1 ジョセフソン素子 2 シャント抵抗 3 ワッシャーコイル 4 入力コイル 5 ダンピング抵抗 6 帰還変調コイル 7 グランドプレーン 8 上部電極 9 障壁層 10 下部電極 11 層間絶縁膜 12 ヘッドアンプ 13 ロックイン検出器 14 発振器 15 積分増幅器 16 超伝導トランス 17 バイアス電流 1 Josephson Element 2 Shunt Resistor 3 Washer Coil 4 Input Coil 5 Damping Resistor 6 Feedback Modulation Coil 7 Ground Plane 8 Upper Electrode 9 Barrier Layer 10 Lower Electrode 11 Interlayer Insulation Film 12 Head Amp 13 Lock-in Detector 14 Oscillator 15 Integral Amplifier 16 Superconducting transformer 17 Bias current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワッシャーコイルの両端に並列接続され
たジョセフソン素子とシャント抵抗とを各々接続して超
伝導リングを形成し、前記ワッシャーコイルと磁気結合
した入力コイルと帰還変調コイルとからなる直流駆動型
超伝導量子干渉素子において、前記ジョセフソン素子が
複数のジョセフソン接合を直列に接続した構成であるこ
とを特徴とする高感度磁場検出回路。
1. A direct current composed of an input coil magnetically coupled to the washer coil and a feedback modulation coil by connecting a Josephson element and a shunt resistor connected in parallel to both ends of the washer coil to form a superconducting ring. In the drive-type superconducting quantum interference device, the Josephson device has a configuration in which a plurality of Josephson junctions are connected in series, and a high-sensitivity magnetic field detection circuit.
JP3215599A 1991-08-27 1991-08-27 High sensitivity magnetic field detector Pending JPH0555646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3215599A JPH0555646A (en) 1991-08-27 1991-08-27 High sensitivity magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3215599A JPH0555646A (en) 1991-08-27 1991-08-27 High sensitivity magnetic field detector

Publications (1)

Publication Number Publication Date
JPH0555646A true JPH0555646A (en) 1993-03-05

Family

ID=16675102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3215599A Pending JPH0555646A (en) 1991-08-27 1991-08-27 High sensitivity magnetic field detector

Country Status (1)

Country Link
JP (1) JPH0555646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106645A (en) * 1993-09-30 1995-04-21 Hitachi Ltd Superconducting quantum interference element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106645A (en) * 1993-09-30 1995-04-21 Hitachi Ltd Superconducting quantum interference element

Similar Documents

Publication Publication Date Title
EP0591641B1 (en) DC superconducting quantum interference device
JP2764115B2 (en) Manufacturing method of high sensitivity magnetic field detector
US20050107261A1 (en) Charge dissipative dielectric for cryogenic devices
US5462762A (en) Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires
Zhang et al. Fabrication and measurement of Nb-based SQUID magnetometer
JPH0555646A (en) High sensitivity magnetic field detector
Radparvar et al. Fabrication and performance of all NbN Josephson junction circuits
Amin et al. Fabrication of three terminal devices via a whole-wafer processing route
Carelli et al. Reliable low noise DC-SQUID
Cao et al. Fabrication and Characterization of SQUIDs With Nb/Nb x Si 1-x/Nb Junctions
Yamasaki et al. Design and fabrication of multichannel dc SQUIDs for biomagnetic applications
US5834794A (en) Superconducting device
JPH04116989A (en) Superconducting quantum interference device and manufacture of the same
JPH0669557A (en) High sensitivity circuit for detecting magnetic field
Shimizu et al. Performance of DC SQUIDs fabricated on 4-inch silicon wafer
JP3267352B2 (en) Superconducting quantum interference device and method of manufacturing the same
Pegrum et al. DC SQUIDs with planar input coils
EP0483741A2 (en) SQUID utilizing polymeric insulation
JP3267353B2 (en) Manufacturing method of weak junction type Josephson device using edge junction of submicron area
JPH07263761A (en) Shielded superconductor circuit
Cyrille et al. Processing of Nb DC SQUIDs for RF amplification
KR960014974B1 (en) Super conducting quantum interference device and manufacturing method thereof
Nishino et al. Josephson current deviation in small area junctions with double insulating layers
Tugwell et al. Fabrication and properties of 1 µm 2 edge junctions
KR960006753B1 (en) Manufacturing method of weak junction type josephson device using edge junction of submicron area

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250