JPH0555486B2 - - Google Patents

Info

Publication number
JPH0555486B2
JPH0555486B2 JP56144094A JP14409481A JPH0555486B2 JP H0555486 B2 JPH0555486 B2 JP H0555486B2 JP 56144094 A JP56144094 A JP 56144094A JP 14409481 A JP14409481 A JP 14409481A JP H0555486 B2 JPH0555486 B2 JP H0555486B2
Authority
JP
Japan
Prior art keywords
glandular
group
coli
strains
hairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56144094A
Other languages
Japanese (ja)
Other versions
JPS5781417A (en
Inventor
Shii Burinton Chaarusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bactex Inc
Original Assignee
Bactex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/187,051 external-priority patent/US4454116A/en
Application filed by Bactex Inc filed Critical Bactex Inc
Publication of JPS5781417A publication Critical patent/JPS5781417A/en
Publication of JPH0555486B2 publication Critical patent/JPH0555486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

【発明の詳細な説明】[Detailed description of the invention]

エスケリキア・コリは臨床的にも経済的にも重
大な多種多様の疾病をヒトや動物にもたらすどこ
にでもいる病原菌である。全世界を通じて死亡原
因の主たるものは乳児の死亡であり、衛生状態の
劣悪な地域でのE.コリによる下痢は重大死亡の一
つである。E.コリは旅行者の下痢の約50%の原因
であると推定されている。E.コリはしばしば院内
感染や衰弱性、外傷性全身衰弱のの患者に感染を
おこす原因となる。菌血症や火傷性外傷の感染症
は徐々にしてE.コリによりひきおこされる。E.コ
リは急性、慢性の膀胱炎や腎盂腎炎をひきおこす
尿路感染症の主要原因である。大腸菌による疾病
を予防する方法を開発することにより人間の不幸
を軽減し、ぼう大な経済的損失を防げることは明
らかである。 本出願人はいくつかのヒトの病原菌から採取し
たE.コリ株を多数調べ、その大部分が「E.コリタ
イプ1(大腸菌タイプ1)」腺毛という免疫学上単
一の群に属する腺毛を有していることを立証し
た。 免疫学的に交差反応が可能な腺毛を有する菌の
グループの構成員の間に、定義づけが容易な上
位、下位関係分類を行うことが出来る旨が発見さ
れている。即ち菌が腺毛を有しており、その腺毛
を分離、精製、利用して該腺毛に対する抗体を含
む抗血清を産出できる場合は、かゝる菌を上位下
位関係を有するものとして分類出来るという事で
ある。本研究においてかゝる免疫学上交差反応を
生じるグループ内では、第一の株の抗血清と第二
の株の腺毛との間の交差反応の度合は、該第二の
株の腺毛に対する抗血清と該第一の株に対する抗
体を生じる腺毛との間の交差反応の度合とは同じ
ではないという驚くべき事実を見出した。 この驚くべき相違により明確な順位をつけるこ
との出来る免疫学的グループの構成の仕方が発見
された。 この方法の実施にあたつては腺毛を有する菌グ
ループの腺毛から細胞材料と細胞屑を除去して製
生する。腺毛を次に、例えばマウスや兎の如き免
疫応答生体に与え、該腺毛に対する抗体を含む該
腺毛に対する抗血清を通常のやり方で分離する。 公知の交差反応実験、例えばELISAテストを
腺毛と抗血清について実施する。適当にはこれら
の結果をマトリツクスの形式で表にするが、縦に
は抗血清を、横には対応する腺毛を記入する。
かゝる分類によつて特定の腺毛とこれに対応する
抗血清との同種反応を対角線上に読み取ることが
出来る。対角線上の数字は同じ所定の値に標準化
し、これに従つて各抗血清に対する非対応腺毛全
てについて対応する力価を調整する。その結果を
示す表は段階的関係を示す。 この標準化表を上位から順に書き直すと、抗血
清と腺毛の力価の間に著しく且つ首尾一貫した非
対称が存在することが明らかとなる。より上位の
株の腺毛とより下位の株の腺毛の間に得られる力
価は該上位株のの腺毛と該下位株の腺毛に対する
抗血清の間に得られた力価より常に大きい。この
関係は免疫学的に関連する腺毛の科内でも存在す
る。 この驚くべき結果から得た結論は、かゝるグル
ープ内では上位の菌が分類中同位又は下位にある
全ての微生物に対して免疫応答与える免疫因子を
含み、従つてこれから発生する感染症に対する予
防ワクチンを提供出来るというものである。逆に
言えば、最下位の菌は分類上それより上位にある
全ての菌に共通の要因を含むものであり、従つて
最下位の菌をこれより上位の科に属する抗体を検
出する目的で使用することができる。該方法論は
E.コリタイプ1腺毛科の菌は最も上位のものから
下位のものへと分類可能であることを示した。最
上位の腺毛タイプに対する抗血清は、科の中の他
のメンバーの全てと広範囲にわたつて交差反応を
生じることが出来る。従つて、単一タイプの精製
E.コリタイプ1腺毛から成るワクチンにより、ヒ
トのE.コリによる感染症、即ちタイプ1科の腺毛
を有する株、特にワクチン内の腺毛より下位にあ
る腺毛を有する株によりひきおこされる感染症の
大部分を予防することが出来る。ヒトの病原菌と
なるE.コリ株には他にも免疫学的に関連のある腺
毛の科が存在している。これらの科はタイプ1の
腺毛とは免疫学上無関係であるがNMS腺毛と称
される。NMS由来のワクチンも、E.コリ感染症
の予防に有用である。 本発明は、腺毛を有するE.コリ株の第1のグル
ープの菌によりおこる感染症予防のレベルに迄ヒ
トの抗体レベルを増加させることの出来る a) 第2のグループの株と同じか又は異なる、
又は適宜に下位である株から成る第1のグルー
プの菌の細胞を第2のグループの腺毛に対する
抗体を有する血清と交差反応させる腺毛形成E.
コリ菌の第2のグループ株から得た腺毛と、 b) 薬学的に使用可能な担体 とから成るワクチン組成物を提供するもである。 本出願において単一の所定の株の菌によりおこ
る感染症に対して有効な同一株より得た腺毛を含
有するワクチンの例を示す。タイプ1とNSR腺
毛の両方含むワクチンも本発明の範ちゆう内にあ
るが、但し該腺毛が感染症病原菌の少くとも一つ
と免疫学的に交差反応することを条件とするのは
当然である。 免疫を有しないヒトに接種した時自然発生的疾
病を発現せしめることが立証された重要な腸管毒
性を有するE.コリ株をヒトの下痢患者から分離し
た。このビルレント(発病性)株は腺毛が疎らで
あつたが、これを増殖して、腺毛形成の良好なク
ローンとして選択した。これらのクローンは最少
グルコースベースの寒天培地上で増殖、維持し、
その腺毛を細胞から分離し、水溶性塩化マグネシ
ウム中で結晶化をくりかえした後、低イオン強
度、中性緩衝剤中で再可溶した。 被験者に腺毛を注射した。その後で、免疫力の
ない患者に感染症をを発症せしめる事が知られて
いる量のE.コリを腸内投与した。 免疫効果を得たグループでは下痢の発症はみら
れたが、免疫を有しない同じ投与をうけたグルー
プと比較してこのグループの回復は早やかつた。 E.コリH10407の培養 バングラデツシユの重症下痢患者からE.コリ
H10407(078:H11)の親株の試料を分離した。
試料はスチルブロス(still broth)を通し、そこ
からコロニーを選び、腺毛形成の良いクローンを
得て、E.コリH10407(ATCC31705)と命名した。
それからクローンを最少グルコース寒天培地で培
養した。燐酸緩衝剤等の低イオン強度中性バツフ
アとPH7.0の食塩水中で混合し、遠心分離にかけ
て細胞から腺毛を分離した。緩衝剤へ濃縮塩化マ
グネシウム(水溶性)を添加して、緩衝液の強度
を0.10M迄上げて腺毛を結晶化した。結晶化した
腺毛は0.04M燐酸バツフアPH7.0(食塩水)等の低
イオン強度中性バツフアに投入され、同様に塩化
マグネシウムで再沈降させられる。腺毛の結晶化
サイクルを1回から5回くり返す事が好ましい。
ここで使用した方法はブリントン、Trans.N.Y.
Acad.Sci.27,103(1965年)に記載のものとほぼ
同じである。 腺毛ワクチンの最終精製は再結晶化腺毛を混合
し、マーシオレートの如き適当な殺菌防腐剤と一
緒に滅菌フイルタを通すことにより成る。上記の
様に処理した腺毛の品質は米国連邦食品・薬品局
の応用生物学部の制定した一般安全性、無菌性発
熱原性基準に十分合格する水準のものである。 腺毛は経口投与―例えばカプセルにより―又は
注射―例えば皮下注射、内皮注射、又は筋肉注射
により投与してもよい。注射により投与する場合
は、腺毛が固体であるので、薬学上使用可能の懸
濁剤を使用することが出来る。マーシオレートを
適当に含む燐酸緩衝剤を賦形剤又は懸濁剤として
使用するのが特に有用であることが見出されてい
る。0.005〜0.1%、最適には0.01%のマーシオレ
ートを含むイオン強度が0.005〜0.1、最適には
0.04である燐酸緩衝剤を使用することが好まし
い。賦形剤中の腺毛の濃度は重要でない。腺毛に
ついて唯一の条件は懸濁液が注射器内に注入可能
であるという一般的基準に合格する程度に細かい
ものであること、というだけである。懸濁液10ml
につき濃度が1〜30、好ましくは20gである約20
mgの腺毛蛋白が特に好ましい。 ワクチン組成物は一定時間毎に分服させるのが
一般にはよいとされる。この時間は注射をうけた
被験者内に腺毛に対する適当な抗体価を形成させ
る様に選択する。注射の前に少くとも1回、好ま
しくは60日前と再び30日間にワクチン組成物を投
与することが適当であることが判明した。 ワクチン注射をしても局所性又は全身性の毒性
効果を生じないので、投与量については上限はな
いようである。しかしながら、体重1Kg当り腺毛
1〜100マイクログラム、最適には注射1回当り
体重1Kg当り約20ミログラムを投与するのが適当
であることを見出した。 E.コリ感染症は、株の種類により違う種の哺乳
動物に発現する。タイプ1腺毛を有するE.コリ種
が人間に感染症をおこすことを発見した。従つて
該種のグループの関連株から得た腺毛を投与する
と、そ生体内に感染防御抗体が得られる。 実施例 E.コリ腺毛(タイプ1)の製造 2ブイヨン(バクトトリプトン1%、NaCl0.8
%、酵母抽出物0.1%、グルコース0.1%)液体培
地内の最小グルコース寒天ベース培地上に増殖さ
せた腺毛形成相コロニーを再懸濁させて製造した
培養菌を使用して、寒天で固めた同じ増殖培地を
入れたトレイに接種した。37℃で一晩培養した
後、交会(confluent)細菌増殖を0.01モル燐酸
で緩衝した食塩水PH7.0内に懸濁した。約30cm×
40cmの寸法のトレイの増殖菌を懸濁するのに約20
ミリリツトルの緩衝液を使用した。再懸濁した増
殖菌を一回200ミリリツトルずつ、ソルヴール社
製オムニミキサーの400ミリリツトル入りカツプ
に入れて14000r.p.m.の速度で5分間かく拌し、
細胞から腺毛を分離した。それから細胞を20分間
10000回G遠心分離にかけて除去し、上澄み液を
得た。腺毛は塩化マグネシウム(MgCl2)を添加
して0.1モルの結晶とする。結晶化完了後、60分
にわたつて20000回Gで遠心分離にかけ懸濁液か
ら分離し、ペレツトを得た。結晶状腺毛を含むペ
レツトはPH7.02の0.04燐酸モル緩衝液(食塩水含
有せず)内で再溶解した。懸濁液を60分間20000
回Gの遠心分離にかけ、上澄み液を得た。結晶
化、遠心分離、再溶解、遠心分離のサイクルを2
回から4回繰返して精製腺毛懸濁液を得た。 実施例 ワクチン製造 a) 200ml入カツプ内に100mlアリコオート(部
分標本)を入れ、ソルバオール社製オムニミキ
サーで10分間14000r.p.m.で高速混合し腺毛集
合体をほぐし、杆状体を分割して0.01%マーシ
オレートを添加し、 b) 濃度をUVで測定し、1800mcg/10ml投
与に調整した。 鞭毛の除去 くり返し溶解した腺毛製剤に1水酸ナトリウム
を添加してPHを12.3に調整し、室温で時々かく拌
して30分放置した後、10%(u/v)飽和硫酸ア
ンモニウムを添加して腺毛を沈降させ、30分間に
わたり20000G遠心分離にかけて、上澄み液に分
離した鞭毛サブユニツトを得た。 沈降腺毛を燐酸緩衝液(0.04M)内で再溶解し
た。 実施例 免疫化 3人から6人のボルンテイアのグループ(合計
21人)に順次、精製腺毛ワクチン45,90,900又
は1800mcgを三頭筋に注射して投与した。その
後28日目に21人の内15人に対し腺毛ワクチン
1800mcgを筋肉注射により追加接種した。
1800mcgの初回又は追加接種をうけたボランテ
イアに対し筋注接種自体というよりも腺毛による
局所反応をみるように指示した。ボランテイア
も、診察にあたつた医者も、だれにワクチンを投
与し、だれに食塩水を投与したかは知らされてな
かつた。 ワクチンテストのための攻撃研究 18mcg(マイクログラム)追加接種後約1ケ
月目(第一次接種から2ケ月目)に、タイプ接種
被験者6名、コントロール被験者7名について攻
撃研究を行いワクチンの有効性を評価した。 実施例 接種材料の製造 過去において行つた攻撃研究で使用したE.コリ
H10407親株をZブロス(CAYEおよび無菌水か
らなる水溶液)に接種し、30℃で振とうして4時
間培養し、ジメチルスルホキシド(DMSO)で
−70℃で凍結した。冷凍株を後刻解凍し、カサミ
ノ−イースト抽出物(CAYE)寒天板上に画線培
養した。 接種材料とワクチンテスト 30℃で15時間培養して後、実体顕微鏡で識別し
た腺毛コロニイ16個をCAYE寒天上で画線培養し
た。37℃で12時間培養して後、腺毛コロニイ30個
をCAYE寒天板6枚に載置し、37℃で培養した。
12時間後に、CAYE基天培養物を食塩水(0.85
%)で採取し、食塩水で稀釈した。 実施例 接種材料の投与 NaHCO32gm蒸留水150mlに溶解し、120mlを
ボランテイアに飲ませた。1分後に大腸菌接種材
料(5×108菌)を懸濁した残り30mlを飲ませた。
接種材料の大きさはワクチン投与の前後にレプリ
ケート混釈平板法により定量した。投与菌上のタ
イプ1菌体ならびにNMS腺毛の存在を特定の抗
血清凝集により認めた。 臨床上の観察 免疫化 腺毛ワクチン接種をうけたボランテイアを接種
後2日間にわたつて隔離病棟で観察した。6時間
毎に口腔内体温を検温し、注射個所の紅斑、熱、
硬化、圧痛の有無を調べた。 挑 戦 ビルレント菌摂取に先立つ3日前からボランテ
イアを毎日診察した。6時間毎に口腔内の体温を
はかり、37℃又はそれ以上の場合には5分以内に
もう一度検温した。プラスチツク製のコレラシー
トに大便、吐物を集めて、看護婦又は医者が観察
の上、量を測定した。大便は5段階に分けて評価
した。1度(普通便)と2度(軟便)は正常とみ
なした。3度は濃縮液状便、4度は混濁液状便、
5度は米のとぎ汁様便である。下痢の定義は24時
間以内に3回又はそれ以上の下痢便(第3〜5
度)があつた場合又は24時間以内に250mlを超え
る下痢便が少くとも2度以上あつた場合とした。
退院に先立つてボランテイア全員に対しビルレン
トETEC株の便性保菌を根絶するためネオマイシ
ン(6時間毎に500mg)を5日間にわたつて口腔
投与した。 結 果 臨床上の結果 精製腺毛ワクチン各量(第2表)の第一次接種
をうけたボランテイア21名中紅斑、硬化、熱、圧
痛、発熱、僊怠感を呈したものはなかつた。
1800mcgの追加接種をうけた15名中、全身状態
が悪くなつたものはなかつたが、6名が硬化、熱
又は紅斑等他覚的局所反応をみせた。(第2表)
追加接種の後で局所反応を呈した被験者はワクチ
ンの第一次接種量が45(2)、900(2)、1800(2)mcgで
あつたものであつた。局所反応は接種後24時間目
に明らかとなつたが、1例を除いて48時間後に消
失した。ボランテイアによれば反応は軽いから中
程度とされた。どの場合にも、悪心、嘔吐、下
痢、高熱はみられなかつた。 ワクチンの有効性 臨床上の有効性 1ケ月前に腺毛ワクチン1800mcgを筋肉注射
で追加接種をうけた被験者6名と免疫力のないコ
ントロール7名とが挑戦研究に参加した。5×
108ビルレントE.コリH10407菌を摂取後コントロ
ール7名全員が下痢症状をひきおこした(第1
表)。コントロール3名はおびただしい量の米の
とぎ汁状大便を排便し、コレラ状下痢便の総量は
3.8リツトル、7.5リツトル、9.9リツトルとなつ
た。コントロール2名は脱水状態となるのを防ぐ
ため、静脈内への液体注入を必要とした。これに
くらべて、ワクチン接種被験者6名の内2名だけ
が下痢症状を呈した。(p=0.04フイツシヤー精
密テスト)。コントロール被験者が全身僊怠感
(7人中7人)、嘔吐(7人中6人)経験したのに
対して、ワクチン接種被験者は症状の有無に拘ら
ず、これらの症状を訴えなかつた(第1表)。2
名のワクチン接種被験者の呈した下痢症状は、コ
ントロール群の示した培養、下痢便の総量、下痢
便の続いた期間について同じであつた。
Escherichia coli is a ubiquitous pathogen that causes a wide variety of clinically and economically significant diseases in humans and animals. The main cause of death throughout the world is infant death, and diarrhea caused by E. coli in areas with poor sanitary conditions is one of the major causes of death. E. coli is estimated to be responsible for approximately 50% of traveler's diarrhea. E. coli often causes nosocomial infections and infections in patients with debilitating and traumatic generalized debilitation. Bacteremia and burn trauma infections are gradually caused by E. coli. E. coli is a major cause of urinary tract infections that cause acute and chronic cystitis and pyelonephritis. It is clear that developing methods to prevent diseases caused by E. coli can alleviate human misfortune and prevent huge economic losses. The applicant investigated a large number of E. coli strains collected from several human pathogenic bacteria, and found that most of them belong to a single immunological group called "E. coli type 1" glandular hairs. It has been proven that the company has It has been discovered that an easily defined hierarchy can be established between members of the group of immunologically cross-reactive glandular fungi. In other words, if a bacterium has glandular hairs and the glandular hairs can be isolated, purified, and utilized to produce antiserum containing antibodies against the glandular hairs, such bacteria are classified as having a superior-subordinate relationship. It is possible. Within the groups producing such immunological cross-reactivity in this study, the degree of cross-reactivity between the antiserum of the first strain and the glandular hairs of the second strain was We have found the surprising fact that the degree of cross-reactivity between antisera against the first strain and glandular hairs producing antibodies against the first strain is not the same. This surprising difference led to the discovery of a way to construct immunological groups that can be clearly ranked. In carrying out this method, cell materials and cell debris are removed from the glandular trichomes of a group of bacteria that have glandular trichomes. The glandular hairs are then presented to an immunocompetent organism, such as a mouse or rabbit, and antisera against the glandular hairs containing antibodies against the glandular hairs are isolated in the conventional manner. Known cross-reactivity experiments, such as ELISA tests, are performed on glandular hairs and antisera. Suitably, these results are tabulated in the form of a matrix, with the antisera listed vertically and the corresponding glandular hairs listed horizontally.
By such classification, the homogeneous reaction between a specific glandular hair and its corresponding antiserum can be read diagonally. The numbers on the diagonal are normalized to the same predetermined value and the corresponding titers for all non-paired glands for each antiserum are adjusted accordingly. The table showing the results shows the gradation relationship. Redrawing this standardization table from top to bottom, it becomes clear that there is a significant and consistent asymmetry between antiserum and glandular hair titers. The titer obtained between the glandular trichomes of a higher-ranking strain and the glandular trichomes of a lower-ranking strain is always greater than the titer obtained between the antiserum against the glandular trichomes of the superior strain and the glandular trichomes of the subordinate strain. big. This relationship also exists within the immunologically related family of glandular hairs. The conclusion drawn from this surprising result is that within such a group, the higher ranked microorganisms contain immune factors that provide an immune response against all microorganisms at the same or lower rank in the classification, and therefore provide protection against future infections. This means that vaccines can be provided. Conversely, the bacteria at the lowest rank contain factors that are common to all bacteria that are higher in the classification, and therefore the lowest rank bacterium is used for the purpose of detecting antibodies belonging to higher families. can be used. The methodology is
It was shown that E. coli type 1 bacteria of the family Adenophyllaceae can be classified from the highest to the lowest. Antisera directed against the top glandular hair type can produce extensive cross-reactivity with all other members of the family. Therefore, a single type of purification
Vaccines consisting of E. coli type 1 glandular trichomes may cause infections caused by E. coli in humans, i.e. strains with glandular trichomes of the type 1 family, especially strains with glandular trichomes that are subordinate to the glandular trichomes in the vaccine. Most infections can be prevented. There are other immunologically related glandular families among E. coli strains that are pathogenic to humans. Although these families are immunologically unrelated to type 1 glandular hairs, they are referred to as NMS glandular hairs. Vaccines derived from NMS are also useful in preventing E. coli infections. The present invention is capable of increasing antibody levels in humans to the level of prevention of infections caused by bacteria of the first group of glandular E. coli strains; different,
or glandular trichome formation by cross-reacting cells of a first group of bacteria consisting of strains that are appropriately subordinate to a serum having antibodies against glandular trichomes of a second group.
The present invention provides a vaccine composition comprising: b) glandular hairs obtained from a second group strain of B. coli; and b) a pharmaceutically acceptable carrier. In this application, examples are given of vaccines containing glandular hairs obtained from the same strain that are effective against infections caused by a single given strain of bacteria. Vaccines containing both Type 1 and NSR glandular hairs are also within the scope of the present invention, provided that the glandular hairs immunologically cross-react with at least one infectious disease agent. It is. An E. coli strain with significant enterotoxicity that has been shown to cause spontaneous disease when inoculated into non-immune humans was isolated from a human patient with diarrhea. Although this virulent strain had sparse glandular hairs, it was propagated and selected as a clone with good glandular hair formation. These clones were grown and maintained on minimal glucose-based agar;
The glandular hairs were separated from the cells, repeatedly crystallized in aqueous magnesium chloride, and then resolubilized in a low ionic strength, neutral buffer. Subjects were injected with glandular hairs. They were then given enteral doses of E. coli at doses known to cause infections in immunocompromised patients. Although the immunized group developed diarrhea, they recovered more quickly than the non-immunized group who received the same treatment. Culture of E. coli H10407 from a patient with severe diarrhea in Bangladesh.
A sample of the parent strain H10407(078:H11) was isolated.
The sample was passed through still broth, a colony was selected from it, and a clone with good glandular hair formation was obtained and named E. coli H10407 (ATCC31705).
Clones were then cultured on minimal glucose agar. The glandular hairs were separated from the cells by mixing with a low ionic strength neutral buffer such as phosphate buffer and saline at pH 7.0 and centrifuging. Glandular hairs were crystallized by adding concentrated magnesium chloride (water soluble) to the buffer to increase the strength of the buffer to 0.10M. The crystallized glandular hairs are placed in a low ionic strength neutral buffer such as 0.04M phosphate buffer PH 7.0 (saline) and reprecipitated with magnesium chloride as well. Preferably, the glandular hair crystallization cycle is repeated one to five times.
The method used here is from Brinton, Trans.NY
It is almost the same as that described in Acad.Sci.27, 103 (1965). Final purification of the glandular trichome vaccine consists of mixing the recrystallized glandular trichomes and passing through a sterile filter with a suitable sterile preservative such as merthiolate. The quality of the glandular hairs treated as described above is of a level that satisfactorily passes the general safety, sterility and pyrogenicity standards established by the Department of Applied Biology of the United States Federal Food and Drug Administration. Glandular hairs may be administered orally, such as by capsule, or by injection, such as subcutaneously, intradermally, or intramuscularly. When administering by injection, pharmaceutically acceptable suspensions can be used since the glandular hairs are solid. It has been found to be particularly useful to use a phosphate buffer suitably containing merthiolate as an excipient or suspending agent. Ionic strength of 0.005 to 0.1, optimally with 0.005 to 0.1%, optimally 0.01% merthiolate
Preference is given to using a phosphate buffer that is 0.04. The concentration of glandular hairs in the vehicle is not critical. The only requirement for the glandular hairs is that they be fine enough to pass the general criteria that the suspension can be injected into a syringe. 10ml suspension
about 20 with a concentration of 1 to 30, preferably 20 g per
mg of glandular hair protein is particularly preferred. It is generally considered best to administer the vaccine composition in portions at regular intervals. This time period is selected to allow the formation of appropriate antibody titers against glandular hairs in the injected subject. It has been found appropriate to administer the vaccine composition at least once before injection, preferably 60 days and again 30 days. There appears to be no upper limit to the dosage since vaccination does not produce local or systemic toxic effects. However, we have found it appropriate to administer between 1 and 100 micrograms of glandular hair per kilogram of body weight, optimally about 20 micrograms per kilogram of body weight per injection. E. coli infections occur in different species of mammals depending on the strain. We discovered that E. coli species with type 1 glandular hairs can cause infections in humans. Therefore, when glandular hairs obtained from related strains of this species group are administered, infection-protective antibodies are obtained in the body. Example Production of E. coli glandular hairs (type 1) 2 broths (Bactotryptone 1%, NaCl 0.8
%, yeast extract 0.1%, glucose 0.1%) using a culture prepared by resuspending glandular trichoform phase colonies grown on minimal glucose agar-based medium in liquid medium and solidified with agar. Trays containing the same growth medium were inoculated. After overnight incubation at 37°C, confluent bacterial growth was suspended in 0.01 molar phosphate buffered saline pH 7.0. Approximately 30cm×
Approximately 20 to suspend the grown bacteria in a tray with dimensions of 40 cm
Milliliters of buffer were used. Add 200 ml of the resuspended proliferating bacteria to a 400 ml cup of Sorveur Omnimixer at a time and stir for 5 minutes at a speed of 14,000 rpm.
Glandular hairs were separated from the cells. Then cells for 20 minutes
It was removed by centrifugation at 10,000 G to obtain a supernatant. The glandular hairs are made into 0.1 mol crystals by adding magnesium chloride (MgCl 2 ). After the crystallization was completed, the pellet was separated from the suspension by centrifugation at 20,000 G for 60 minutes to obtain a pellet. The pellet containing crystalline glandular hairs was redissolved in 0.04 molar phosphate buffer (no saline) at pH 7.02. Suspension 20,000 for 60 minutes
The mixture was centrifuged twice to obtain a supernatant. 2 cycles of crystallization, centrifugation, redissolution, and centrifugation
The procedure was repeated 4 to 4 times to obtain a purified glandular hair suspension. Example Vaccine production a) Place 100ml aliquot (partial specimen) in a 200ml cup and mix at high speed at 14000rpm for 10 minutes using a Solvaall Omnimixer to loosen the glandular hair aggregates and divide the rods. b) The concentration was measured by UV and adjusted to a dose of 1800mcg/10ml. Removal of flagella The pH was adjusted to 12.3 by repeatedly adding sodium monohydroxide to the dissolved glandular hair preparation, and after leaving it for 30 minutes at room temperature with occasional stirring, 10% (u/v) saturated ammonium sulfate was added. The glandular trichomes were sedimented and centrifuged at 20,000 G for 30 minutes to obtain flagellar subunits separated in the supernatant. The precipitated glandular hairs were redissolved in phosphate buffer (0.04M). Examples Immunization Groups of 3 to 6 volunteers (total
21 patients) were sequentially administered 45, 90, 900, or 1800 mcg of purified glandular hair vaccine by injection into the triceps muscle. Then, on the 28th day, 15 of the 21 patients received the glandular hair vaccine.
A booster dose of 1800 mcg was given by intramuscular injection.
Volunteers who received the 1800mcg initial or booster vaccination were instructed to watch for local reactions caused by glandular hairs rather than the intramuscular injection itself. Neither the volunteers nor the doctors who examined them were told who had been given the vaccine and who had been given the saline solution. Challenge research for vaccine testing Approximately 1 month after the additional 18mcg (microgram) vaccination (2 months after the first vaccination), challenge research was conducted on 6 type-vaccinated subjects and 7 control subjects to evaluate the effectiveness of the vaccine. was evaluated. Example Production of inoculum E. coli used in past challenge studies
The H10407 parent strain was inoculated into Z broth (an aqueous solution consisting of CAYE and sterile water), cultured for 4 hours with shaking at 30°C, and frozen at -70°C with dimethyl sulfoxide (DMSO). Frozen stocks were later thawed and streaked onto Casamino-Yeast Extract (CAYE) agar plates. Inoculum and Vaccine Test After 15 hours of incubation at 30°C, 16 glandular hair colonies identified under a stereomicroscope were streaked on CAYE agar. After culturing at 37°C for 12 hours, 30 glandular hair colonies were placed on 6 CAYE agar plates and cultured at 37°C.
After 12 hours, the CAYE basal culture was dissolved in saline (0.85
%) and diluted with saline. EXAMPLE Administration of inoculum 2 gm of NaHCO 3 was dissolved in 150 ml of distilled water and 120 ml was given to volunteers to drink. One minute later, the remaining 30 ml of suspended E. coli inoculum (5 x 10 8 bacteria) was allowed to drink.
The size of the inoculum was determined by replicate pour plate method before and after vaccination. The presence of type 1 bacterial cells and NMS glandular hairs on the treated bacteria was confirmed by specific antiserum agglutination. Clinical Observations Immunization Volunteers vaccinated with the glandular hair vaccine were observed in an isolation ward for 2 days after vaccination. The temperature in the oral cavity is measured every 6 hours, and erythema, fever, and
The presence or absence of hardness and tenderness was examined. Challenge Volunteers were examined daily for 3 days prior to ingestion of virulent bacteria. Oral body temperature was measured every 6 hours, and if the temperature was 37°C or higher, the temperature was taken again within 5 minutes. Feces and vomit were collected on a plastic cholera sheet, and a nurse or doctor observed and measured the amount. Stool was evaluated in five stages. Grades 1 (normal stool) and 2 (soft stool) were considered normal. 3rd degree is concentrated liquid stool, 4th degree is cloudy liquid stool,
5 degrees is a stool that resembles rice soup. Diarrhea is defined as 3 or more diarrheal stools within 24 hours (3rd to 5th stool).
The condition was defined as a case where the patient had diarrhea of more than 250 ml at least twice within a 24-hour period.
Prior to discharge, all volunteers received neomycin (500 mg every 6 hours) orally for 5 days to eradicate fecal carriage of virulent ETEC strains. Results Clinical results None of the 21 volunteers who received the primary vaccination with each dose of purified glandular hair vaccine (Table 2) developed erythema, induration, fever, tenderness, fever, or malaise.
Of the 15 people who received the 1800mcg booster shot, none of them had a worsening of their general condition, but 6 people showed objective local reactions such as induration, fever, or erythema. (Table 2)
Subjects who developed local reactions after booster vaccination had primary doses of vaccine of 45(2), 900(2), and 1800(2) mcg. Local reactions became evident 24 hours after inoculation, but disappeared after 48 hours in all but one case. Volunteers described the reaction as mild to moderate. No nausea, vomiting, diarrhea, or high fever was observed in any case. Vaccine Efficacy Clinical Efficacy Six subjects who had received an intramuscular booster injection of 1800mcg of glandular hair vaccine one month earlier and seven immunocompromised controls participated in the challenge study. 5×
10 All seven controls developed diarrheal symptoms after ingesting the virulent E. coli H10407 bacteria (first
table). The three control subjects defecated copious amounts of rice-squeezed stool, and the total amount of cholera-like diarrhea stool was
It became 3.8 liters, 7.5 liters, and 9.9 liters. Two controls required intravenous fluid infusions to prevent dehydration. In comparison, only two of the six vaccinated subjects developed diarrheal symptoms. (p=0.04 Fisher Precision Test). Control subjects experienced general malaise (7 out of 7 subjects) and vomiting (6 out of 7 subjects), whereas vaccinated subjects did not complain of these symptoms, regardless of whether they had the symptoms or not. (Table 1). 2
The diarrheal symptoms exhibited by the vaccinated subjects were similar to those of the control group in terms of culture, total amount of diarrheal stool, and duration of diarrheal stool.

【表】 * 陽性数/投与数
+ リツトル
** 〓範囲〓
[Table] * Number of positive cases / number of doses + Little ** 〓Range〓

【表】 * 反応を示した数/免疫を受けた数
実施例 本出願人の係属中の出願(米国特許出願第
187049号)は、免疫学的に関連のある腺毛を有す
る菌のグループ内の株の段階的分類概念を開示し
ている。該出願においてグループ中の上位菌の識
別の仕方を示し、又該上位菌が下位菌による感染
症の防御を行うのを示す。該出願の開示はここに
言及して包含する。従つてE.コリワクチンについ
ては上位株から得た組成により下位株による感染
症の防御を行うものである。 第3表において該共願の原理にもとずいて標準
化した交差反応表を示す。即ちE25
(ATCC31706)腺毛から得たワクチンがH10407
(ATCC31705)を含むこれより下位にある株のひ
きおこす感染症を予防する事になる。 タイプ1の腺毛について下記の通り原理を示し
たが、NMS腺毛についても同じ様に適用可能で
あり、これから得たワクチンも本発明の範疇に明
らかに含まれる。
[Table] * Number of people who showed a reaction/number of people who received immunization Example
No. 187049) discloses a concept for the gradation of strains within a group of immunologically related glandular fungi. This application shows how to identify the superior bacteria in a group, and also shows how the superior bacteria protect against infections caused by the inferior bacteria. The disclosure of that application is hereby incorporated by reference. Therefore, the E. coli vaccine protects against infections caused by lower-ranking strains by using the composition obtained from higher-ranking strains. Table 3 shows a cross-reactivity table standardized based on the principles of the joint application. i.e. E25
(ATCC31706) Vaccine obtained from glandular hairs is H10407
(ATCC31705) and other lower-ranking strains can be prevented. Although the principle is shown below for type 1 glandular hairs, it is similarly applicable to NMS glandular hairs, and vaccines obtained therefrom are also clearly included in the scope of the present invention.

【表】 実施例 a) 腺毛形成相E.コリ(NMS腺毛)の分離と
特性 原初のH10407親培養をカサミノ酸−酵母エキ
ス(CAYE)寒天に移し、その結果得たコロニー
を、D−マンノース(NMS=マンノース非感性)
の抑制に対して感性を有しないヒトの赤血球の血
球凝集反応をみるため、スクリーニングを行つ
た。かゝるクローンを検出すると、引続きCAYE
寒天に移した。腺毛形成を電子顕微鏡検査により
確認し、同じ親から分離したH10407のタイプ1
腺毛形成クローンとは形態学上区別されうる事が
みられた。NMS腺毛はタイプ1腺毛と同様に直
径50−60Aの杆状であるが、より柔軟性に富み、
ばらばらになつて細いせんいを形成する(10−
20A直径)。 NMSコロニイ・タイプは該条件で増殖させる
とタイプ1の腺毛形成又は非形成コロニイよりも
小型で色素もうすい。NMSクローンをCAYE板
に継続して通過させると37℃で10〜14時間放置し
た後では復帰変更はわずかであつた。 H10407は2種の異なる血球凝集反応呈する。
1つはタイプ1腺毛であるが、モルモツトと人間
の赤血球を使つたマノース非感性血球凝集反応に
加わり、タイプ1腺毛であることが立証された。
他の血球凝集素は人間の赤血球とのマノース非感
性血球凝集反応をおこすが、モルモツトの赤血球
ではおこさない。後者の要素を有するクローンは
NMSP+と称する。 b) 増殖 NMSコロニイの形態学上のわずかな相違が一
番よく見られるのは10時間〜14時間培養基なの
で、クローンをCAYE寒天上に12時間ずゝ連続継
代培養して維持した。非定型変異株を選択するの
を避けるために5個から6個のコロニイをえらん
だ。更に液体培地内での増殖がNMS−腺毛形成
細胞の培養基をひどく枯渇させた。従つて大型の
増殖トレイ(10−1/2×15 1/2×1インチ)の接
種用の培養基はCAYE寒天を使用した固体培地で
調製しなければならなかつた。接種用の増殖はペ
トリ皿に0.7%カサミノ酸を使用し、曲つたガラ
ス棒で寒天表面をかきおとして採取した。懸濁増
殖物を皿からピペツトでとり、トレイ当り2〜3
mlずつ大型の増殖用トレイに接種するのに使用し
た。接種後トレイにきつちりとしたアルミニウム
製のふたをし、37℃で19〜21時間、隣室においた
床置タイプ加湿式恒温器内で70%相対湿度内で培
養した。 接種後、増殖用トレイを菌採取のためワクチン
装置に戻し、トレイの汚染の有無を目視で調べ
た。培養基に5〜8ml集菌用緩衝液を加え、清潔
なガラス板を使つて寒天表面から増殖菌をかきお
とした。懸濁培養基を滅菌フラスコに吸引し、一
日分の集菌が済む迄氷上に保持した。プールした
菌を以下の通りに処理した。 c) NMS腺毛の分離 細胞から腺毛を除去するために、採取した懸濁
物ソルボール型オムニミキサーを使用して、氷で
冷したコツプの中で200mlずつ混合した。各200ml
をタコメーターで3度から4度読み取りを行い
11700〜13000r.p.m.の速度で5′混合した。80トレ
イ採集物の内約半分を混合し、残りの半分を混合
する前に遠心分離した。混合した採取菌を25分間
にわたつて15380gで遠心分離にかけ細胞を除去
した。細胞ペレツトは廃棄した。 混合培養基の上澄み液をプールして容積を測つ
た。結晶性硫酸アンモニウムをかく拌し続けなが
ら徐々に添加して20%飽和状態に到達させた。
(タイプ1腺毛とは違つて、NMS腺毛はMg++
によつては結晶化出来なかつた。)流動複屈折が
直ちに目に見える様になつた。精製品は冷気下で
一晩放置し結晶化させた。NMS腺毛結晶を60分
間にわたつて30050gでペレツト化し、上澄み液
を廃棄した。結晶腺毛のペレツトを約1時間にわ
たり磁気かく拌を行つて溶解し、その後溶解化緩
衝液内に入れて一晩冷気下で放置した。80トレイ
採集物1バツチ当り1リツトルの溶解化緩衝液を
使用した。溶解した調剤を60分間30000gでの遠
心分離にかけ、清澄液を得た。 結晶化/溶解化のサイクルを、清澄した上澄液
の正確な量を計量し、結晶硫酸アンモニウムを徐
徐に、かく拌しながら20%飽和化する迄添加して
もう一度くりかえした。調剤を冷気下に一晩放置
しておき、30050gで遠心分離にかけ腺毛結晶を
ペレツト化した。前と同じ様に溶解化、清澄化を
くりかえした。 精製の第三のサイクルは第二のサイクルと同じ
であつたが、結晶を溶解するのに緩衝液をわずか
500mlしか使用しなかつた。調剤は全て暗視野顕
微鏡とSDS−PAGEで精製工程中にモニターし
た。 腺毛調剤は約20分間にわたつて室温に達する迄
平衡させた。0.2N HClを使つて急速かく拌しな
がらPHを2.5に調整した。PHを調整した溶液を5
〜8分間室温で放置した後、直ちに30050gで60
分間遠心分離にかけた。腺毛を含む上澄み液を傾
瀉し、直ちに0.2N NaOHでPHを7.0〜7.2に再調
整した。ペレツト内の茶色の鞭毛は廃棄した。硫
酸アンモニウム結晶を上澄み液に添加して20%飽
和となし、冷気下で一晩結晶化を行わせた。この
時点で、精製度合が同じ調剤をプールし、取扱い
を容易にするためNMS腺毛のプールを2個形成
した。鞭毛除去工程をSDS−PAGEにより測定し
た鞭毛の量が1%以下になる迄これら2個のプー
ルについてくりかえした。 実施例 ワクチン製造 調製試料を0.5mg/m/迄膨張させ、2リツト
ル容量のシリンダー付142mmミリポアデイスク−
過ユニツトを使用して45μゲルマン・フイルタ
ーで一度過した。最終濃度は0.01%ヘマーシオ
レートを添加し、最終ワクチン材料を滅菌ユニツ
トに正圧を通して一度に充てんし、過滅菌を行
い、滅菌びんに採取した。 腺毛ワクチンは体重1Kgにつき約1μgの割合
で投与すると兎に適正な抗原を与えることが示さ
れている。体重150lbの平均的成人男子では濃度
0.5mg/mlのワクチン約1.0mlの注射を必要とす
る。
[Table] Examples a) Isolation and characterization of glandular trichome-forming phase E. coli (NMS glandular trichomes) The original H10407 parental culture was transferred to Casamino Acid-Yeast Extract (CAYE) agar and the resulting colonies were transferred to D- Mannose (NMS = Mannose insensitivity)
A screening was conducted to examine the hemagglutination reaction of human red blood cells, which are not sensitive to the inhibition of erythrocytes. If such a clone is detected, CAYE continues.
Transferred to agar. Glandular hair formation was confirmed by electron microscopy, and type 1 of H10407 was isolated from the same parent.
It was observed that they could be morphologically distinguished from the glandular hair-forming clones. NMS glandular hairs are rod-shaped with a diameter of 50-60A like type 1 glandular hairs, but they are more flexible and
It breaks apart to form a thin fiber (10−
20A diameter). When grown under these conditions, NMS colony types are smaller and less pigmented than Type 1 glandular or nonpiliated colonies. Continuous passage of NMS clones through CAYE plates resulted in little reversion after 10-14 hours at 37°C. H10407 exhibits two different hemagglutination reactions.
One type is a type 1 glandular hair, and it was confirmed that it is a type 1 glandular hair by participating in a mannose-insensitive hemagglutination reaction using guinea pig and human red blood cells.
Other hemagglutinins cause mannose-insensitive hemagglutination with human but not guinea pig red blood cells. Clones with the latter element are
It is called NMSP+. b) Proliferation Clones were maintained by serial subculturing on CAYE agar for 12 hours, as slight morphological differences in NMS colonies are best seen on 10- to 14-hour cultures. Five to six colonies were selected to avoid selecting atypical mutants. In addition, growth in liquid media severely depleted the culture medium of NMS-glandular trichome cells. Therefore, the culture medium for inoculating large growth trays (10-1/2 x 15 1/2 x 1 inch) had to be prepared on a solid medium using CAYE agar. Growth for inoculation was collected using 0.7% casamino acids in Petri dishes by scraping the agar surface with a bent glass rod. Pipette the suspended growth from the dishes, 2-3 per tray.
ml was used to inoculate large multiplication trays. After inoculation, the tray was covered with a tight aluminum lid and incubated at 37°C for 19 to 21 hours at 70% relative humidity in a floor-standing humidified incubator placed in an adjacent room. After inoculation, the multiplication tray was returned to the vaccine device for bacterial collection, and the tray was visually inspected for contamination. 5 to 8 ml of bacterial collection buffer was added to the culture medium, and grown bacteria were scraped off the agar surface using a clean glass plate. The suspension culture was aspirated into a sterile flask and kept on ice until one day's worth of bacteria had been harvested. The pooled bacteria were treated as follows. c) Isolation of NMS glandular hairs To remove glandular hairs from the cells, the collected suspension was mixed in 200 ml portions in an ice-cold cup using a Sorbol type omnimixer. 200ml each
Read it 3 to 4 times with a tachometer.
5′ mixing was performed at a speed of 11,700-13,000 r.pm. Approximately half of the 80 tray collection was mixed and the other half was centrifuged before mixing. The mixed collected bacteria were centrifuged at 15,380 g for 25 minutes to remove cells. The cell pellet was discarded. The supernatant of the mixed culture medium was pooled and the volume measured. Crystalline ammonium sulfate was slowly added with continued stirring to reach 20% saturation.
(Unlike type 1 glandular hairs, NMS glandular hairs contain M++
In some cases, crystallization could not be achieved. ) Flow birefringence became immediately visible. The purified product was allowed to stand overnight under cold air to crystallize. NMS glandular crystals were pelleted at 30,050 g for 60 minutes and the supernatant liquid was discarded. The crystalline hair pellet was dissolved by magnetic stirring for about 1 hour, then placed in solubilization buffer and left in the cold overnight. One liter of lysis buffer was used per batch of 80 trays. The dissolved preparation was centrifuged at 30000 g for 60 minutes to obtain a clear solution. The crystallization/dissolution cycle was repeated once more by weighing the correct amount of clarified supernatant and adding crystalline ammonium sulfate slowly with stirring until 20% saturation. The preparation was left in the cold overnight and centrifuged at 30,050 g to pellet the glandular hair crystals. Solubilization and clarification were repeated as before. The third cycle of purification was the same as the second cycle, but with a small amount of buffer added to dissolve the crystals.
I only used 500ml. All preparations were monitored during the purification process by dark field microscopy and SDS-PAGE. The gland preparation was allowed to equilibrate for approximately 20 minutes to reach room temperature. The pH was adjusted to 2.5 using 0.2N HCl with rapid stirring. 5 PH adjusted solution
After leaving at room temperature for ~8 minutes, immediately add 30,050 g to 60
Centrifuged for minutes. The supernatant containing glandular hairs was decanted and the pH was immediately readjusted to 7.0-7.2 with 0.2N NaOH. The brown flagella in the pellet were discarded. Ammonium sulfate crystals were added to the supernatant to achieve 20% saturation, and crystallization was allowed to occur overnight under cold air. At this point, preparations with the same degree of purification were pooled to form two pools of NMS glandular hairs for ease of handling. The flagellar removal step was repeated on these two pools until the amount of flagella was less than 1% as determined by SDS-PAGE. Example: Vaccine production Expand the prepared sample to 0.5 mg/m/142 mm Millipore disk with a 2 liter capacity cylinder.
Passed once through a 45μ Gelman filter using a filter unit. Hemerthiolate was added to a final concentration of 0.01%, and the final vaccine material was filled at once into a sterilization unit under positive pressure, over-sterilized, and collected into sterile bottles. Glandular hair vaccine has been shown to provide appropriate antigen to rabbits when administered at a rate of approximately 1 μg per kg of body weight. For an average adult male weighing 150 lbs.
Approximately 1.0 ml of 0.5 mg/ml vaccine is required.

【表】 実施例 乳児における新生児E.コリ感染症の予防 妊娠した母親に上述したE.コリ腺毛ワクチンを
適当には分べん前60日前、好ましくは30日前にも
う一度接種する。新生児は分べん後直ちに母親か
ら授乳をうけさせるか、又は初乳を母親から採集
して新生児に与えて防御を得る。初乳内に抗体が
存在しているので授乳をしている免疫力のある母
親から他人の新生児へも防御を与えることが出来
る旨を留意すべきである。 比較例 1 抗原と抗血清の生成 抗血清の生成にまじりけのない腺毛を使用する
ため、精製メニンゴコツカス腺毛をCsCl密度勾
配遠心法の最終精製工程にかけた。この高品質精
製品を体重3ポンドから5ポンドのニユージーラ
ンドホワイトラビツトを前もつて採血した上で、
首の背後に皮下注射で投与した。兎には腺毛とフ
ロインド不全アジユバント(デイフイコ社)1:
1の懸濁液中に約300〜500μgの腺毛蛋白質を入
れたものを投与した。注射は約10日間の間隔をお
いて3度繰返した。最後の注射の後で耳から採血
した。 兎には麻酔をかけずに耳の中心動脈から採血し
た。耳の後ろの毛をそり、皮膚をキシレンでこす
り動脈を一時的に拡張させた。血液を25ゲージ針
を装着した消毒済注射器にとつたが、このやり方
では10〜20mlの血液の採取が可能であつた。 それから血液を滅菌遠心分離用管に移し、30分
間室温で凝集させた。凝塊を崩して容器の壁面か
ら除去し、全試料を4℃で一晩冷蔵した。それか
らチユーブを4000gで30分スピンし、血清を除去
した。 この抗血清製剤を少量ずつに分け、液体窒素で
凍結し、−20℃で貯蔵した。
[Table] Example: Prevention of neonatal E. coli infection in infants Pregnant mothers are vaccinated once again with the E. coli glandular vaccine described above, suitably 60 days before distribution, preferably 30 days. The neonate may be breastfed by the mother immediately after separation, or colostrum may be collected from the mother and given to the neonate for protection. It should be noted that the presence of antibodies in the colostrum can confer protection to newborn infants from immunocompetent mothers who are breastfeeding. Comparative Example 1 Production of Antigen and Antiserum In order to use pure glandular hairs for the production of antiserum, purified Meningococcus glandular hairs were subjected to the final purification step of CsCl density gradient centrifugation. This high-quality purified product is placed in front of a New Zealand White Rabbit weighing 3 to 5 pounds to collect blood.
It was administered by subcutaneous injection into the back of the neck. Rabbits have glandular hair and Freund's insufficiency adjuvant (Deifico) 1:
Approximately 300 to 500 μg of glandular hair protein was administered in a suspension of No. 1. Injections were repeated three times at intervals of approximately 10 days. Blood was drawn from the ear after the last injection. The rabbits were not anesthetized and blood was collected from the central ear artery. The hair behind the ears was shaved and the skin was rubbed with xylene to temporarily dilate the arteries. The blood was drawn into a sterile syringe fitted with a 25-gauge needle, and it was possible to collect 10-20 ml of blood in this manner. The blood was then transferred to sterile centrifuge tubes and allowed to aggregate for 30 minutes at room temperature. The coagulum was broken up and removed from the walls of the container, and all samples were refrigerated at 4° C. overnight. The tubes were then spun at 4000g for 30 minutes to remove serum. This antiserum preparation was divided into small portions, frozen in liquid nitrogen, and stored at -20°C.

Claims (1)

【特許請求の範囲】 1 腺毛を有するE.コリの第1の株グループ構成
員による感染症を防ぐめに十分なレベルに迄人間
の抗体レベルを増加させることができる、 (a) タイプ1腺毛である菌のグループとNMS腺
毛のグループとから選んだ腺毛を有するE.コリ
株の第2のグループの少なくとも一つの構成員
から得た、該第1のグループの菌の細胞が該第
2のグループの腺毛に対する抗体を含む血清に
より凝集可能であり、該第1のグループが該第
2のグループの株と同じか又は異なる株からな
る腺毛と、 (b) 薬学的に使用可能の担体と から成るワクチン組成物。 2 該第2のグループの該構成員の各々がその存
在下に該第1のグループの少なくとも一つの構成
員の細胞を凝集させる抗体を生成することが可能
である第2の株のグループの一つ以上の構成要素
から得た腺毛から成る特許請求の範囲第1項に記
載の組成物。 3 第2のグループの株がE.コリH10407
(ATCC31705)又はE−25(ATCC31706)である
ことを特徴とする特許請求の範囲第1項に記載の
組成物。 4 注射可能の賦形剤が10ml当たり第2のグルー
プの腺毛1〜30mgからなることを特徴とする特許
請求の範囲第1項ないし第3項のいずれか一つに
記載の組成物。 5 賦形剤が生理学的に受容可能な食塩水である
ことを特徴とする特許請求の範囲第4項に記載の
組成物。 6 該第1のグループの株が該第2のグループの
株と同位又は下位にある特許請求の範囲第1項に
記載のワクチン組成物。
Claims: 1. capable of increasing antibody levels in humans to levels sufficient to prevent infection by members of the first strain group of glandular E. coli, (a) type 1; cells of the first group obtained from at least one member of the second group of glandular E. coli strains selected from the group of glandular trichomes and the group of NMS glandular trichomes; glandular hairs that can be agglutinated by serum containing antibodies against the glandular hairs of the second group, and wherein the first group consists of a strain that is the same as or different from the strains of the second group; A vaccine composition comprising a usable carrier. 2. A member of a second group of strains, each of said members of said second group being capable of producing antibodies that aggregate cells of at least one member of said first group in the presence of said members of said second group. A composition according to claim 1, consisting of glandular hairs obtained from more than one component. 3 The second group of strains is E. coli H10407
(ATCC31705) or E-25 (ATCC31706). 4. Composition according to any one of claims 1 to 3, characterized in that the injectable excipient consists of 1 to 30 mg of glandular hairs of the second group per 10 ml. 5. Composition according to claim 4, characterized in that the excipient is a physiologically acceptable saline solution. 6. The vaccine composition according to claim 1, wherein the strains of the first group are at the same level or lower than the strains of the second group.
JP56144094A 1980-09-15 1981-09-14 Human immunity effect imparting vaccine against escherichia coli infectious desease Granted JPS5781417A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/187,051 US4454116A (en) 1977-11-23 1980-09-15 Immunization of humans against enterotoxogenic infection by Escherichia coli

Publications (2)

Publication Number Publication Date
JPS5781417A JPS5781417A (en) 1982-05-21
JPH0555486B2 true JPH0555486B2 (en) 1993-08-17

Family

ID=22687411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56144094A Granted JPS5781417A (en) 1980-09-15 1981-09-14 Human immunity effect imparting vaccine against escherichia coli infectious desease

Country Status (1)

Country Link
JP (1) JPS5781417A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ205392A (en) * 1982-09-02 1987-03-06 Unilever Plc Preparation of immunoglobulins against e.coli pili

Also Published As

Publication number Publication date
JPS5781417A (en) 1982-05-21

Similar Documents

Publication Publication Date Title
US4454116A (en) Immunization of humans against enterotoxogenic infection by Escherichia coli
Punsalang Jr et al. Role of pili in the virulence of Neisseria gonorrhoeae
Gilman et al. Evaluation of a UDP-glucose-4-epimeraseless mutant of Salmonella typhi as a live oral vaccine
Sack et al. Progressive changes of Vibrio serotypes in germ-free mice infected with Vibrio cholerae
JP3601602B2 (en) Non-toxic microorganisms and their use: Salmonella
US4971794A (en) Production of antibodies using a mixture of strains of E. coli collectively expressing type I pili, CFA I pili, CFA II pili and K88 pili
CA1219806A (en) Production of antibodies
EP0048881B1 (en) Immunization of humans against enterotoxogenic infection by escherichia coli
Gerber et al. Attempts to transmit infectious mononucleosis to rhesus monkeys and marmosets and to isolate herpes-like virus
TW403655B (en) Novel attenuated pseudomonas aeruginosa strains
EP0100710B1 (en) Vaccine for the immunization of animals and men against toxoplasma gondii
Clarke et al. Galactose epimeraseless mutants of Salmonella typhimurium as live vaccines for calves.
KR910004868B1 (en) Human monoclonal antibody and drug for prophylaxis and treatment of infectious diseases comprising same as effective ingredient
US4454117A (en) Immunization against infection by Escherichia coli
EP0249739B1 (en) Vaccine composition for immunization against urinary tract infection caused by e. coli
JPH0555486B2 (en)
WO1989012460A1 (en) Haemophilus influenzae pilus vaccines
EP0107845A2 (en) Vaccine for immunizing cattle against infectious bovine keratoconjunctivitis by Moraxella Bovis
EP0114684A2 (en) Toxoplasmosis factor and production of same
JPH08188515A (en) Production of toxoplasmagondibradezoid vaccine being effective for tissue culture article
EP0081575A1 (en) Anaplasma antigen
Jansson et al. Search for mycoplasma in rheumatoid arthritis.
Cann et al. Epidemic Dysentery in the Nursing Staff due to Bacillus dysenteriae (Sonne)
Friedman Absence of agglutinin formation in spleen cell cultures from immunologically tolerant mice
Darke et al. Fulminating staphylococcal pneumonia associated with influenza virus C