JPH0555441B2 - - Google Patents

Info

Publication number
JPH0555441B2
JPH0555441B2 JP57093971A JP9397182A JPH0555441B2 JP H0555441 B2 JPH0555441 B2 JP H0555441B2 JP 57093971 A JP57093971 A JP 57093971A JP 9397182 A JP9397182 A JP 9397182A JP H0555441 B2 JPH0555441 B2 JP H0555441B2
Authority
JP
Japan
Prior art keywords
sodium
alcohols
hydride
aluminum
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57093971A
Other languages
Japanese (ja)
Other versions
JPS58213630A (en
Inventor
Reiji Hirai
Kyoshi Yamamura
Yukio Nishida
Hidetaka Sakimoto
Seijiro Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9397182A priority Critical patent/JPS58213630A/en
Publication of JPS58213630A publication Critical patent/JPS58213630A/en
Publication of JPH0555441B2 publication Critical patent/JPH0555441B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は共に有用な還元剤であるホウ水素化ナ
トリウム(以下SBHと略記する)と置換アルミ
ニウム水素化物(以下SAHと略記する)の併産
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the co-production of sodium borohydride (hereinafter abbreviated as SBH) and substituted aluminum hydride (hereinafter abbreviated as SAH), both of which are useful reducing agents. It is about law.

〔従来技術〕[Prior art]

SBHはアルデヒド、ケトンなどをアルコール
に還元し、叉SAHはアルデヒド、ケトンおよび
有機酸のエステルをアルコールに還元したり、ニ
トロ化合物をアミンに還元することができる。こ
れらの化合物の製造法としては、従来、種々の方
法が記載されている。例えば、SBHはナトリウ
ム水素化物とホウ酸トリメチルとを高沸点溶媒
中、240〜260℃の高温下で反応させる方法があ
る。一方、SAHは六水素化アルミニウム三ナト
リウムとアルミニウムアルコールとを反応させる
方法が知られている。これらは何れもSBHと
SAHのそれぞれ個別の製造方法である。
SBH can reduce aldehydes, ketones, etc. to alcohols, and SAH can reduce aldehydes, ketones, and esters of organic acids to alcohols, and nitro compounds to amines. Various methods have been conventionally described for producing these compounds. For example, SBH can be produced by reacting sodium hydride and trimethyl borate in a high boiling point solvent at a high temperature of 240 to 260°C. On the other hand, SAH is known to be produced by reacting trisodium aluminum hexahydride with aluminum alcohol. Both of these are SBH
Each SAH has its own manufacturing method.

一方、SBHとSAHの両方をホウ素原料として
トリメトキシエトキシボロン(B(−O−C2H4
O−CH33)を用いて併産する方法が提案されて
いる。(チエコスロバキア国特許CS187046) 〔発明が解決しようとする課題〕 しかしながら、上記の併産法において提案され
ているホウ素の原料は、トリメトキシエトキシボ
ロン、一般的に言えばトリアルコキシボロンのみ
である。
On the other hand, trimethoxyethoxyboron (B(-O-C 2 H 4 -
A method of co-production using O-CH 3 ) 3 ) has been proposed. (Ciechoslovakia Patent CS187046) [Problems to be Solved by the Invention] However, the boron raw material proposed in the above-mentioned co-production method is only trimethoxyethoxyboron, generally speaking, trialkoxyboron.

SAHとSBHを併産する方法を企業化する為に
は、更に安価な、反応を完結するに必要な時間の
短い原料が求められていた。
In order to commercialize the method of co-producing SAH and SBH, there was a need for cheaper raw materials that required less time to complete the reaction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記要求に応えるべく鋭意研究を
行なつた結果、本発明を完成した。
The present inventors have completed the present invention as a result of intensive research in order to meet the above requirements.

即ち、本発明は (a) NaBZ4、NaBHyZ4-y、BHZ2およびBH2Z
(但しyは1乃至3の整数、Zは下記化合物類、
すなわち アルコール類またはフエノール類 テトラヒドロフルフリールアルコール類 ジオール類の1個の水酸基をアルキル化し
て得られるエーテルアルコール類 ポリエーテルアルコール類 から選ばれる化合物から活性水素原子を取り除
いて得られる有機残基である)から選ばれた少
なくとも1種のホウ素化合物と、 (b) 少なくともナトリウムおよびナトリウム水素
化物のいずれか1種の化合物と、アルミニウム
と水素とを反応させることを特徴とするホウ水
素化ナトリウムと一般式NaAlHxZ4-x(但しx
は1乃至3の整数、Zは前記の定義に同じ)で
示される置換アルミニウム水素化物を併産する
新規な方法、 である。以下、本発明を詳細に説明する、この反
応において使用される特定のホウ素化合物として
は、具体的には、テトラメトキシホウ素ナトリウ
ム、テトラメトキシエトキシホウ素ナトリウム、
トリメトキシ水素化ホウ素ナトリウム、トリメト
キシエトキシ水素化ホウ素ナトリウム、ジメトキ
シ水素化ホウ素、メトキシ二水素化ホウ素、ジエ
トキシ水素化ホウ素、ジブトキシ水素化ホウ素等
が挙げられる。
That is, the present invention provides (a) NaBZ 4 , NaBH y Z 4-y , BHZ 2 and BH 2 Z
(However, y is an integer from 1 to 3, Z is the following compounds,
That is, alcohols or phenols, tetrahydrofurfuryl alcohols, ether alcohols obtained by alkylating one hydroxyl group of diols, and organic residues obtained by removing active hydrogen atoms from a compound selected from polyether alcohols. ) at least one boron compound selected from (b) at least one compound of sodium and sodium hydride, and sodium borohydride characterized by reacting aluminum and hydrogen with the general formula NaAlH x Z 4-x (However, x
is an integer from 1 to 3, Z is the same as defined above) A novel method for co-producing a substituted aluminum hydride. Hereinafter, the present invention will be explained in detail. Specific boron compounds used in this reaction include sodium tetramethoxyboronate, sodium tetramethoxyethoxyboronate,
Examples include sodium trimethoxyborohydride, sodium trimethoxyethoxyborohydride, dimethoxyborohydride, methoxyborohydride, diethoxyborohydride, dibutoxyborohydride, and the like.

特にトリメトキシエトキシ水素化ホウ素ナトリ
ウムやテトラメトキシエトキシホウ素ナトリウム
が用いられる。本発明の反応は通常は上記のホウ
素化合物とナトリウムまたはナトリウム水素化物
及びアルミニウムなど反応物質を溶媒に溶解ない
し懸濁させ、水素を吹き込むことにより行なうこ
とが好都合である。
In particular, sodium trimethoxyethoxyborohydride and sodium tetramethoxyethoxyborohydride are used. The reaction of the present invention is usually conveniently carried out by dissolving or suspending the above-mentioned boron compound and reactants such as sodium or sodium hydride and aluminum in a solvent and blowing hydrogen into the solution.

これに使用する溶媒としてはヘキサン、シクロ
ヘキサン、オクタン等の炭化水素類、ベンゼン、
トルエン等の芳香族炭化水素類、ジエチルエーテ
ル、ジブチルエーテル、ジオキサン、テトラヒド
ロフラン、ジエチレングリコールジメチルテーテ
ル等のエーテル類、イソプロピルアミン、エチレ
ンジアミンなどのアミン類およびこれらの混合物
があげられ、特にテトラヒドロフラン、ジエチレ
ングリコールジメチルエーテルなどのエーテル系
溶媒およびベンゼン、トルエンなどの芳香族炭化
水素系溶媒が好ましい。
Solvents used for this include hydrocarbons such as hexane, cyclohexane, and octane, benzene,
Examples include aromatic hydrocarbons such as toluene, ethers such as diethyl ether, dibutyl ether, dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, amines such as isopropylamine, ethylene diamine, and mixtures thereof, particularly tetrahydrofuran, diethylene glycol dimethyl ether, etc. Ether solvents and aromatic hydrocarbon solvents such as benzene and toluene are preferred.

本発明の実施においてZ基のモル数に対するア
ルミニウムの使用量は1/5〜5倍量、特に1/3〜2
倍量が好ましく同様にナトリウムまたはナトリウ
ム水素化物の使用量は2/5〜10倍量、特に2/3〜4
倍量が好ましい。
In carrying out the present invention, the amount of aluminum used is 1/5 to 5 times the number of moles of the Z group, particularly 1/3 to 2 times the number of moles of the Z group.
Similarly, the amount of sodium or sodium hydride used is preferably 2/5 to 10 times, especially 2/3 to 4 times the amount.
Double doses are preferred.

水素は加圧して用いる方がよくその圧力として
は10Kg/cm2以上、特に50〜200Kg/cm2が有利であ
る。又、反応温度としては100〜200℃でよい。か
くしてホウ水素化ナトリウムおよび置換アルミニ
ウム水素化物が同時に生成する。これらの化合物
は、濾過などの方法により容易に分離される。置
換アルミニウム水素化物は反応溶媒中に溶けてお
り瀘液として分離され、ホウ水素化ナトリウムは
固形物として濾別され、これは公知の方法により
溶媒抽出される。即ち濾別されたホウ水素化ナト
リウムを含む固形物にイソプロピルアミン、エチ
レンジアミンなどのアミン系溶媒を加えて抽出
し、ついで溶媒を蒸発させてホウ水素化ナトリウ
ムを得ることができる。
Hydrogen is preferably used under pressure, and the pressure is preferably 10 Kg/cm 2 or more, particularly 50 to 200 Kg/cm 2 . Further, the reaction temperature may be 100 to 200°C. Sodium borohydride and substituted aluminum hydride are thus formed simultaneously. These compounds are easily separated by methods such as filtration. The substituted aluminum hydride is dissolved in the reaction solvent and separated as a filtrate, and the sodium borohydride is filtered off as a solid, which is solvent extracted by known methods. That is, sodium borohydride can be obtained by adding an amine solvent such as isopropylamine or ethylenediamine to the filtered solid containing sodium borohydride for extraction, and then evaporating the solvent.

以上のように本発明によれば、特定のホウ素化
合物にナトリウム、アルミニウムおよび水素とか
ら直接ホウ水素化ナトリウムおよび置換アルミニ
ウム化合物を同時に製造することができ、工業的
に実施する上で極めて簡単かつ経済的な方法であ
る。また、ホウ水素化ナトリウムが穏和な条件で
生成し、複雑な精製法を必要としないで高純度品
が得られることは大きな特徴である。
As described above, according to the present invention, sodium borohydride and substituted aluminum compounds can be simultaneously produced directly from a specific boron compound, sodium, aluminum, and hydrogen, which is extremely easy and economical to implement industrially. This is a typical method. Another major feature is that sodium borohydride is produced under mild conditions and a highly purified product can be obtained without the need for complicated purification methods.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明す
るが、本発明の範囲はそれによつて限定されるも
のではない。
The present invention will be explained in more detail with reference to Examples below, but the scope of the present invention is not limited thereby.

実施例 1 0.5電磁撹拌式オートクレーブに、NaB(−O
−C2H4−O−CH3427.8g、ナトリウム3.8g、
アルミニウム粉4.5g、トルエン200mlを装入し
た。
Example 1 NaB (-O
-C2H4 - O- CH3 ) 4 27.8g, sodium 3.8g,
4.5 g of aluminum powder and 200 ml of toluene were charged.

次に温度を140℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら3時間反応さ
せ、その後冷却し、内容物を取り出してガラスフ
イルターで濾過した。濾別された固形物をイソプ
ロピルアミンで抽出した結果、ホウ水素化ナトリ
ウム3.1gを得た。収率は95%、純度は97%であ
つた。
Next, the temperature was maintained at 140° C., hydrogen was introduced under pressure at 100 kg/cm 2 and the reaction was allowed to proceed for 3 hours while maintaining this pressure. Thereafter, the mixture was cooled, and the contents were taken out and filtered through a glass filter. The filtered solid was extracted with isopropylamine to obtain 3.1 g of sodium borohydride. The yield was 95% and the purity was 97%.

一方、始めに濾過された透明瀘液からトルエン
を除去して、ナトリウム水素化ビス(2−メトキ
シエトキシ)アルミニウム(NaAl(−O−C2H4
−O−CH32H2)32.7gを得た、収率は97%であ
つた。
On the other hand, toluene was removed from the initially filtered clear filtrate and sodium bis(2-methoxyethoxy)aluminum hydride (NaAl(-O-C 2 H 4
-O-CH 3 ) 2 H 2 ) 32.7 g was obtained, the yield was 97%.

実施例 2 実施例1と同様の装置に、ジメトキシ水素化ホ
ウ素(B(−O−CH32H)12.3g、ナトリウム
7.7g、アルミニウム粉末4.6gと、テトラヒドロ
フラン200mlを装入した。
Example 2 Into the same apparatus as in Example 1, 12.3 g of dimethoxyborohydride (B(-O-CH 3 ) 2 H) and sodium
7.7 g of aluminum powder, 4.6 g of aluminum powder, and 200 ml of tetrahydrofuran were charged.

次に温度を140℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら1.5時間反応さ
せ、そのあと実施例1と同様の操作を行つた結
果、ホウ水素化ナトリウム5.9g(収率89%、純
度95%)とナトリウム水素化ビスメトキシアルミ
ニウム(NaAl(−O−C2H32H2)17.3g(収率
91%)を得た。
Next, the temperature was maintained at 140°C, hydrogen was pressurized at 100 kg/cm 2 , and while this pressure was maintained, the reaction was carried out for 1.5 hours. After that, the same operation as in Example 1 was carried out, and as a result, sodium borohydride 5.9 g (yield 89%, purity 95%) and sodium bismethoxyaluminum hydride (NaAl(-O - C2H3 ) 2H2 ) 17.3g (yield
91%).

実施例 3 実施例1と同様の装置に、トリ−2−メトキシ
エトキシホウ素ナトリウム(NaB(−O−C2H4
−O−CH33H)43.3g、ナトリウム3.8g、アル
ミニウム粉末4.6g、トルエン200mlを装入した。
Example 3 In an apparatus similar to Example 1, sodium tri-2-methoxyethoxyboronate (NaB(-O-C 2 H 4
-O-CH 3 ) 3 H) 43.3 g, sodium 3.8 g, aluminum powder 4.6 g, and toluene 200 ml were charged.

次に温度を130℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら2時間反応さ
せ、そのあと実施例1と同様の操作を行つた結果
ホウ水素化ナトリウム5.8g(収率89%、純度97
%)とナトリウム水素化トリ(2−メトキシエト
キシ)アルミニウム(NaAl(−O−C2H4−O−
CH33H)44.2g(収率96%)を得た。
Next, the temperature was maintained at 130°C, hydrogen was pressurized at 100 kg/cm 2 and the reaction was carried out for 2 hours while maintaining this pressure. After that, the same operation as in Example 1 was carried out, resulting in 5.8 g of sodium borohydride. (yield 89%, purity 97
%) and sodium tri(2-methoxyethoxy)aluminum hydride (NaAl(-O-C 2 H 4 -O-
44.2 g (96% yield) of CH 3 ) 3 H) was obtained.

実施例 4 実施例1と同様の装置にブトキシ水素化ホウ素
(B(−O−C4H9)H2)14.3g、ナトリウム3.8
g、ナトリウムハイライド2.0g、アルミニウム
粉末2.3g、テトラヒドロフラン200mlを装入し
た。
Example 4 Into the same apparatus as in Example 1, 14.3 g of butoxyborohydride (B(-O-C 4 H 9 )H 2 ) and 3.8 g of sodium were added.
g, 2.0 g of sodium hydride, 2.3 g of aluminum powder, and 200 ml of tetrahydrofuran were charged.

次に温度を150℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら1.5時間反応さ
せ、そのあと実施例1と同様の操作を行つた結
果、ホウ水素化ナトリウム5.8g(収率88%、純
度96%)とナトリウム水素化ビスブトキシアルミ
ニウム(NaAl(−O−C4H92H2)15.7g(収率
95%)を得た。
Next, the temperature was maintained at 150°C, hydrogen was injected under pressure at 100 kg/cm 2 , and the reaction was carried out for 1.5 hours while maintaining this pressure. After that, the same operation as in Example 1 was performed, and as a result, sodium borohydride 5.8 g (yield 88%, purity 96% ) and sodium bisbutoxyaluminum hydride (NaAl(-O- C4H9 ) 2H2 ) 15.7g (yield
95%).

実施例 5 実施例1と同様の装置に、テトラメトキシホウ
素ナトリウム(NaB(−O−CH34)26.3g、ナ
トリウム7.7g、アルミニウム粉末9.0g、テトラ
ヒドロフラン200mlを装入した。
Example 5 A device similar to Example 1 was charged with 26.3 g of sodium tetramethoxyboronate (NaB(-O-CH 3 ) 4 ), 7.7 g of sodium, 9.0 g of aluminum powder, and 200 ml of tetrahydrofuran.

次に温度を135℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら3時間反応さ
せ、そのあと実施例1と同様の操作を行つた結
果、ホウ水素化ナトリウム6.1g(収率94%、純
度97%)とナトリウム水素化ビスメトキシアルミ
ニウム(NaAl(−O−CH32H2)36.9g(収率97
%)を得た。
Next, the temperature was maintained at 135°C, hydrogen was pressurized at 100 kg/cm 2 and the reaction was carried out for 3 hours while maintaining this pressure. After that, the same operation as in Example 1 was carried out, and as a result, sodium borohydride 6.1 g (94% yield, 97% purity) and 36.9 g (yield 97%) of sodium bismethoxyaluminum hydride (NaAl( -O - CH3 )2H2).
%) was obtained.

比較例 1 実施例1と同様の装置に、トリ−2−メトキシ
エトキシホウ素(B(−O−C2H4−O−CH33
39.3g、ナトリウム9.6g、アルミニウム粉末6.8
gテトラヒドロフラン200mlを装入した。
Comparative Example 1 Tri-2-methoxyethoxyboron (B(-O-C 2 H 4 -O-CH 3 ) 3 ) was added to the same apparatus as in Example 1.
39.3g, sodium 9.6g, aluminum powder 6.8
200 ml of tetrahydrofuran was charged.

次に温度を135℃に保持し、水素を100Kg/cm2
圧入してこの圧力を保持しながら反応させた、水
素の吸収がなくなる反応終了まで6時間を要し
た、そのあと実施例1と同様の操作を行つた結
果、ホウ水素化ナトリウム6.0g(収率90%、純
度95%)とナトリウム水素化ビス−2−メトキシ
エトキシアルミニウム(NaAl(−O−C2H4−O
−CH32H2)48.5g(収率96%)を得た。
Next, the temperature was maintained at 135°C, and hydrogen was pressurized at 100 kg/cm 2 and the reaction was carried out while maintaining this pressure. It took 6 hours until the reaction was completed until the absorption of hydrogen stopped. After that, Example 1 was carried out. As a result of the same operation, 6.0 g of sodium borohydride (yield 90%, purity 95%) and sodium bis-2-methoxyethoxyaluminum hydride (NaAl(-O-C 2 H 4 -O
-CH3 ) 2H2 ) 48.5g ( yield 96%) was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、SAHとSBHを併産す
るにおいて、合成反応に要する時間が大幅に短縮
され、更にNaBZ4やNaBHyZ4-yを原料とするこ
とでは高価のNaメタルの使用量が減少出来、反
応に使用される原料の総量を低下させることが出
来る、又NaBZ4は製造コストが安価であり経済
的に有利である。
According to the method of the present invention, when co-producing SAH and SBH, the time required for the synthesis reaction is significantly shortened, and furthermore, using NaBZ 4 and NaBH y Z 4-y as raw materials eliminates the need for expensive Na metal. The total amount of raw materials used in the reaction can be reduced, and NaBZ 4 is economically advantageous because its production cost is low.

Claims (1)

【特許請求の範囲】 1 (a) NaBZ4、NaBHyZ4-y、BHZ2および
BH2Z(但しyは1乃至3の整数、Zは下記化
合物類、すなわち アルコール類またはフエノール類 テトラヒドロフルフリールアルコール類 ジオール類の1個の水酸基をアルキル化し
て得られるエーテルアルコール類 ポリエーテルアルコール類 から選ばれる化合物から活性水素原子を取り除
いて得られる有機残基である)から選ばれた少
なくとも1種のホウ素化合物と、 (b) 少なくともナトリウムおよびナトリウム水素
化物のいずれか1種の化合物と、アルミニウム
と水素を反応させることを特徴とするホウ水素
化ナトリウムと一般式NaAlHxZ4-x(但しxは
1乃至3の整数、Zは前記の定義に同じ)で示
される置換アルミニウム水素化物を併産する新
規な方法。
[Claims] 1 (a) NaBZ 4 , NaBH y Z 4-y , BHZ 2 and
BH 2 Z (where y is an integer from 1 to 3, Z is the following compounds, namely alcohols or phenols Tetrahydrofurfuryl alcohols Ether alcohols obtained by alkylating one hydroxyl group of diols Polyether alcohols (b) at least one compound of sodium and sodium hydride; Sodium borohydride, which is characterized by reacting aluminum and hydrogen, and a substituted aluminum hydride represented by the general formula NaAlH x Z 4-x (where x is an integer from 1 to 3, and Z is the same as the above definition) A new way to co-produce.
JP9397182A 1982-06-03 1982-06-03 Novel process for producing sodium borohydride in combination with substituted aluminum hydride Granted JPS58213630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9397182A JPS58213630A (en) 1982-06-03 1982-06-03 Novel process for producing sodium borohydride in combination with substituted aluminum hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9397182A JPS58213630A (en) 1982-06-03 1982-06-03 Novel process for producing sodium borohydride in combination with substituted aluminum hydride

Publications (2)

Publication Number Publication Date
JPS58213630A JPS58213630A (en) 1983-12-12
JPH0555441B2 true JPH0555441B2 (en) 1993-08-17

Family

ID=14097286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9397182A Granted JPS58213630A (en) 1982-06-03 1982-06-03 Novel process for producing sodium borohydride in combination with substituted aluminum hydride

Country Status (1)

Country Link
JP (1) JPS58213630A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767716B2 (en) * 1988-10-31 1998-06-18 三井化学株式会社 Method for producing organic substituted sodium aluminum hydride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605094B2 (en) * 2004-06-09 2009-10-20 Samsung Electronics Co., Ltd. Method of forming metal oxide using an atomic layer deposition process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605094B2 (en) * 2004-06-09 2009-10-20 Samsung Electronics Co., Ltd. Method of forming metal oxide using an atomic layer deposition process

Also Published As

Publication number Publication date
JPS58213630A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
JPH03321B2 (en)
EP0348223B1 (en) Novel process for the preparation of serinol
JPH0555441B2 (en)
SU679144A3 (en) Method of producing aluminium hydride oligomeric derivatives
EP0044650B1 (en) Aldehyde adducts and a process for separating aldehydes involving them
CN111533745A (en) Process for preparing tert-butyl-3- (aminomethyl) dihydro-5H-triazolodiazepine-8 (9H) -carboxylic acid ester
US3029128A (en) Preparation of sodium or potassium borohydride
JP4722327B2 (en) Method for producing acetylenic diol compound
JPS6039253B2 (en) Method for producing polyol ether
JPS6217596B2 (en)
EP0246504A2 (en) Process for the preparation of a mixture of an aldehyde with the corresponding alcohol
US4288381A (en) Method for the synthesis of alkoxyalanates of alkaline-earth metals
JPH069610A (en) Production of substituted 1,3-dioxolan-2-one derivative
JP2788555B2 (en) Method for producing sodium borohydride
JP2809667B2 (en) New production method of sodium borohydride
Causey et al. A Practical Synthesis of Azetidine
JPS6252751B2 (en)
Fréchet et al. Use of Polymers as Protecting Groups in Organic Synthesis. VII. Preparation of Monobenzoates of Acyclic Triols
US2681939A (en) Production of chlokomethwl methyl
Reese Facile preparation of acetals and enol ethers derived from 1-arylpiperidin-4-ones
US4313891A (en) Process for synthesizing mixed alkoxy hydride derivatives of aluminium and alkaline earth metals
US3026329A (en) Mono-and di-chloroborane etherates
US3105746A (en) Purification of sodium borohydride
Rengaraju et al. Mechanism of decomposition of a phosphorylated triazoline: Evidence for a 3, 2-endo, endo methyl migration in a norbornyl system
US3534109A (en) Processes for the production of 1,4-hydroxy - 1,2,3,4 - tetrahydronaphthalene and derivatives thereof