JPH0555075B2 - - Google Patents

Info

Publication number
JPH0555075B2
JPH0555075B2 JP19579186A JP19579186A JPH0555075B2 JP H0555075 B2 JPH0555075 B2 JP H0555075B2 JP 19579186 A JP19579186 A JP 19579186A JP 19579186 A JP19579186 A JP 19579186A JP H0555075 B2 JPH0555075 B2 JP H0555075B2
Authority
JP
Japan
Prior art keywords
conductive layer
dielectric layer
layer
water
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19579186A
Other languages
Japanese (ja)
Other versions
JPS6350847A (en
Inventor
Hideo Kawaguchi
Takeshi Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP19579186A priority Critical patent/JPS6350847A/en
Publication of JPS6350847A publication Critical patent/JPS6350847A/en
Publication of JPH0555075B2 publication Critical patent/JPH0555075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は静電記録用フイルムに関するものであ
る。最近CAD,CAMの発展にともないそのアウ
トプツトを静電記録で行う事が増々多くなつてき
た。本発明はプラスチツクフイルムを支持体とす
る静電記録用フイルムに関するものである。 〔従来の技術〕 静電記録フイルムは支持体、導電層、誘電層の
3層より構成されるが、導電層は従来、カチオン
系ポリマー、アニオン系ポリマーなど高分子電解
質や、イオン性の界面活性剤あるいは、吸湿性ポ
リマーに無機イオンを添加したものであつた。 しかしこれらのイオン系の素材では導電性は湿
度依存性があり、低湿になると導電性は低下し、
十分に導電層としての作用をしなくなり、静電記
録像は不鮮明となる。 このため導電層に湿度変化に依存しない電子伝
導系の素材が検討された。特開昭55−133455号に
はポリアニリン系素材を使用することが開示され
ているが、このものは着色があり好ましくはな
い。特開昭51−25140号、特開昭52−113224号、
特開昭53−85590号には導電性金属酸化物粒子を
バインダー中に分散し、紙等に塗布することが記
載されている。しかし上記特許における導電性金
属酸化物粒子は微μの大きさがあり光散乱を生じ
透明フイルムには適用できない。これを改良し
て、特開昭56−143443号には0.5μ以下の導電性金
属酸化物粒子を導電層として使用することにより
導電性と透明性の両者を満足させられる事が記載
されている。 しかしながら導電層に微粒子の導電性金属酸化
物をバインダーに分散して用いる場合、誘電体層
塗布時の影響をうけて導電性が低下することがし
ばしばある。即ち導電体層の塗布溶媒が導電層の
バインダーと相互作用がある時、誘電体層を塗布
すると塗布液中の溶媒が導電層へ浸透していき導
電層の導電性を初期の値より減少してしまうこと
がしばしばある。特に導電性金属酸化物が微粒子
になるに従いこの傾向は著しい。 〔発明の目的〕 本発明は上記の欠点である誘電体層塗布時の導
電層の導電性の低下を防止することを目的とする
ものである。 〔問題点を解決するための手段〕 導電層のバインダーに水溶性高分子を用い、誘
電体層に有機溶剤可溶性のポリマーを用いること
により上記問題点が解決されることがわかつた。
即ち誘電体層を有機溶剤系で塗布する時有機溶剤
の浸透を防げるような水溶性ポリマーをバインダ
ーとして用いた導電層にすることにより解決でき
ることがわかつた。 本発明の水溶性ポリマーは特公昭58−27494に
記載されているようなイオン導電性を有している
必要は全くなく、水溶性ポリマー層へは塩などの
電解質を添加する必要はない。逆に塩などの電解
質を多量に入れることは分散微粒子の安定性を劣
化させ好ましくはない。 本発明に使用する水溶性ポリマーはゼラチンも
しくは水溶性ポリエステルである。これらの水溶
性の中には架橋剤を添加してもよい。 本発明の導電層に使用する導電性物質は導電性
の結晶性金属酸化物がよく、透明性を保つため平
均粒径0.5μ以下、好ましくは0.2μ以下がよい。導
電性の結晶性金属酸化物としてはZnO,SiO2
SnO2,TiO2,Al2O3,In2O3,MgO,BaO,
MoO3などあるいはこれらの複合酸化物である。 本発明に使用する支持体は透明なプラスチツク
フイルムであり例えばポリエチレンテレフタレー
ト、ポリカーボネート、三酢酸セルロース、ポリ
エーテルサルホン、ポリ塩化ビニル、ポリスチレ
ン、ポリエチレン、ポリプロピレンなどをあげる
ことができる。 上記導電層は直接支持体に塗布してもよいし、
支持体表面をコロナ放電処理、グロー放電処理、
火焔処理、紫外線処理してもよく、又導電層と支
持体層の間に接着層として例えば塩化ビニリデン
系共重合体、スチレン−ブタヂエン系共重合体、
塩化ビニル系共重合体、酢酸ビニル系共重合体、
アクリル酸エステル系共重合体、ポリエステル、
ポリウレタン、ゼラチンなどの層を設けてもよ
い。 誘電体層は絶縁性を有することが条件であるた
め、イオン性のポリマーや、吸湿して解離するよ
うなポリマーは好ましくなく、又イオン性物質を
多量に含まないことが必要であり有機溶剤可溶性
ポリマーが好ましい。 有機溶剤可溶性ポリマーとしては、塩化ビニ
ル、塩化ビニリデン、スチレン、メチルスチレ
ン、ブタジン、アクリル酸のアルキルエステル
(C1からC4までのアルキル基)、メタアクリル酸
のアルキルエステル(C1からC4までのアルキル
基)、酢酸ビニル、アクリロニトリル、イソブチ
レン、酢酸アリルなどのホモポリマー又はコポリ
マーや可溶性ポリエステル、ポリカーボネート、
エチルセルロース、セルロースアセテート、セル
ロースプロピオネートなどのセルロース誘導体、
ポリビニルブチラール、ポリビニルホルマールな
どをあげることが出来る。 塗布溶剤としては例えばアセトン、メチルエチ
ルケトン、メチルイソブチルケトン、シクロヘキ
サノンなどのケトン類、テトラヒドロフラン、ジ
オキサンなどのエーテル類、酢酸メチル、酢酸エ
チル、酢酸プロピル、酢酸ブチルなどのエステル
類、ジクロルメタン、ジクロルエタンなどの塩素
化炭化水素、メタノール、エタノール、プロパノ
ールなどのアルコールなどをあげることができ
る。 誘電体層の暑さは1μから5μ程度が好ましく3μ
から10μ程度のマツト剤を添加することが好まし
い。 以下に実施例を記述するが表面抵抗率の測定は
平行電極を用いケースレー社製のエレクトロメタ
ーを使用し、23℃で相対湿度50%の雰囲気中で測
定した。 又誘電体を塗布する時は導電層の両サイドが約
10m/m残るように塗布し、この部分を利用し
て、誘電体層を塗布したさいの導電層の抵抗率が
変化するかどうかしらべた。 実施例 1 ニ軸延伸熱固定した100μ厚さのポリエチレン
テレフタレートフイルムにグロー放電処理を施し
導電層として次の組成の液を塗布し、130℃で10
分間乾燥した。 ゼラチン 15(重量部) 平均粒径0.2μのアンチモンドをドープした酸化
スズ(アンチモン量は酸化スズに対して5%)
55( 〃 ) 2,4−ジクロル−6−ヒドロキシ−s−トリ
アジンのナトリウム塩 0.03( 〃 ) 水 1000( 〃 ) この層の上に誘電体層として次の組成の液を乾
燥膜が2.5μになるように塗布し120℃で10分乾燥
した。 バイロン(東洋紡製) 50(部重部) ロジンエステル(荒川化学製) 20 〃 エチルエチルケトン 700 〃 シクロヘキサノン 100 〃 酢酸エチル 200 〃 表面抵抗率については第1表に示した。 実施例 2 二軸延伸熱固定した100μ厚さのポリエチレン
テレフタレートフイルムにコロナ放電処理し下引
層として次の組成の液を塗布し130℃で10分間乾
燥した。 塩化ビニリデン/エチルアクリレート/アクリ
ル酸・共重合体ラテツクス(共重合比85/10/
5、固型分25%) 20(重量部) 水 1000( 〃 ) 次いで導電層更に誘電体層と順次実施例1と同
様に塗布した。 表面抵抗率については第1表に示した。 比較例 二軸延伸熱固定した100μ厚さのポリエチレン
テレフタレートフイルムにコロナ放電処理し導電
層として次の組成の液を塗布し130℃で10分間乾
燥した。 塩化ビニリデン/エチルアクリレート/アクリ
ル酸共重合体ラテツクス(共重合比85/10/
5、固型分25%) 40(重量部) 平均粒径0.2μのアンチモンをドープした酸化ス
ズ(アンチモン量は酸化スズに対して5%)
50( 〃 ) 水 1000 次いで実施例1と同様な誘電体層を塗布した。 表面抵抗率の変化を第1表に示した。
[Industrial Field of Application] The present invention relates to an electrostatic recording film. Recently, with the development of CAD and CAM, the output is increasingly being recorded using electrostatic recording. The present invention relates to an electrostatic recording film using a plastic film as a support. [Prior Art] An electrostatic recording film is composed of three layers: a support, a conductive layer, and a dielectric layer. Conventionally, the conductive layer is made of a polymer electrolyte such as a cationic polymer or anionic polymer, or an ionic surfactant. It was a hygroscopic polymer with inorganic ions added to it. However, the conductivity of these ionic materials is dependent on humidity, and when the humidity is low, the conductivity decreases.
It no longer functions sufficiently as a conductive layer, and the electrostatically recorded image becomes unclear. For this reason, an electron conductive material that does not depend on humidity changes was considered for the conductive layer. JP-A-55-133455 discloses the use of a polyaniline material, but this material is not preferred because it is colored. JP-A-51-25140, JP-A-52-113224,
JP-A-53-85590 describes dispersing conductive metal oxide particles in a binder and applying it to paper or the like. However, the conductive metal oxide particles in the above patent have a microscopic size and cause light scattering, making them unsuitable for use in transparent films. By improving this, JP-A-56-143443 describes that both conductivity and transparency can be satisfied by using conductive metal oxide particles of 0.5μ or less as a conductive layer. . However, when fine particles of a conductive metal oxide are dispersed in a binder and used in the conductive layer, the conductivity is often lowered due to the effect of coating the dielectric layer. In other words, when the coating solvent of the conductive layer interacts with the binder of the conductive layer, when the dielectric layer is coated, the solvent in the coating solution permeates into the conductive layer, reducing the conductivity of the conductive layer from its initial value. It often happens. This tendency is particularly remarkable as the conductive metal oxide becomes finer particles. [Object of the Invention] It is an object of the present invention to prevent the above-mentioned drawback from decreasing the conductivity of the conductive layer during application of the dielectric layer. [Means for Solving the Problems] It has been found that the above problems can be solved by using a water-soluble polymer as a binder for the conductive layer and using an organic solvent-soluble polymer for the dielectric layer.
That is, it has been found that when the dielectric layer is coated with an organic solvent, the problem can be solved by using a water-soluble polymer as a binder for the conductive layer, which can prevent penetration of the organic solvent. The water-soluble polymer of the present invention does not need to have ionic conductivity as described in Japanese Patent Publication No. 58-27494, and there is no need to add an electrolyte such as a salt to the water-soluble polymer layer. On the other hand, it is not preferable to add a large amount of electrolyte such as salt because it deteriorates the stability of the dispersed fine particles. The water-soluble polymer used in the present invention is gelatin or water-soluble polyester. A crosslinking agent may be added to these water-soluble materials. The conductive substance used in the conductive layer of the present invention is preferably a conductive crystalline metal oxide, and in order to maintain transparency, the average particle size is preferably 0.5 μm or less, preferably 0.2 μm or less. Examples of conductive crystalline metal oxides include ZnO, SiO 2 ,
SnO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , MgO, BaO,
MoO 3 etc. or composite oxides thereof. The support used in the present invention is a transparent plastic film, and examples thereof include polyethylene terephthalate, polycarbonate, cellulose triacetate, polyether sulfone, polyvinyl chloride, polystyrene, polyethylene, polypropylene, and the like. The conductive layer may be applied directly to the support, or
Corona discharge treatment, glow discharge treatment,
Flame treatment or ultraviolet treatment may be performed, and an adhesive layer between the conductive layer and the support layer may be made of, for example, vinylidene chloride copolymer, styrene-butadiene copolymer,
Vinyl chloride copolymer, vinyl acetate copolymer,
Acrylic ester copolymer, polyester,
A layer of polyurethane, gelatin, etc. may also be provided. Since the dielectric layer must have insulating properties, it is not preferable to use ionic polymers or polymers that dissociate upon absorption of moisture, and it is necessary that the dielectric layer does not contain large amounts of ionic substances and is soluble in organic solvents. Polymers are preferred. Examples of organic solvent-soluble polymers include vinyl chloride, vinylidene chloride, styrene, methylstyrene, butazine, alkyl esters of acrylic acid (alkyl groups from C 1 to C 4 ), and alkyl esters of methacrylic acid (alkyl groups from C 1 to C 4 ). (alkyl group), homopolymers or copolymers such as vinyl acetate, acrylonitrile, isobutylene, allyl acetate, soluble polyesters, polycarbonates,
Cellulose derivatives such as ethylcellulose, cellulose acetate, cellulose propionate,
Examples include polyvinyl butyral and polyvinyl formal. Examples of coating solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ethers such as tetrahydrofuran and dioxane, esters such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, and chlorinated dichloromethane and dichloroethane. Examples include hydrocarbons and alcohols such as methanol, ethanol, and propanol. The heat of the dielectric layer is preferably about 1μ to 5μ and 3μ
It is preferable to add a matting agent of about 10 μm. Examples will be described below, and the surface resistivity was measured using parallel electrodes and an electrometer manufactured by Keithley in an atmosphere of 23° C. and 50% relative humidity. Also, when applying the dielectric, both sides of the conductive layer should be approximately
It was coated so that a thickness of 10 m/m remained, and this part was used to determine whether the resistivity of the conductive layer would change when the dielectric layer was coated. Example 1 A biaxially stretched and heat-set polyethylene terephthalate film with a thickness of 100μ was subjected to glow discharge treatment, a liquid with the following composition was applied as a conductive layer, and the film was heated at 130℃ for 10 minutes.
Dry for a minute. Gelatin 15 (parts by weight) Antimony-doped tin oxide with an average particle size of 0.2μ (the amount of antimony is 5% based on tin oxide)
55 (〃) Sodium salt of 2,4-dichloro-6-hydroxy-s-triazine 0.03 (〃) Water 1000 (〃) On top of this layer, as a dielectric layer, apply a liquid with the following composition to a dry film thickness of 2.5μ. It was applied and dried at 120℃ for 10 minutes. Vylon (manufactured by Toyobo) 50 (manufactured by Toyobo) Rosin ester (manufactured by Arakawa Chemical) 20 Ethyl ethyl ketone 700 Cyclohexanone 100 Ethyl acetate 200 The surface resistivity is shown in Table 1. Example 2 A biaxially stretched and heat-set polyethylene terephthalate film with a thickness of 100 μm was subjected to a corona discharge treatment, and a liquid having the following composition was applied as an undercoat layer, followed by drying at 130° C. for 10 minutes. Vinylidene chloride/ethyl acrylate/acrylic acid copolymer latex (copolymerization ratio 85/10/
5. Solid content 25%) 20 (parts by weight) Water 1000 (〃) Next, a conductive layer and a dielectric layer were sequentially coated in the same manner as in Example 1. The surface resistivity is shown in Table 1. Comparative Example A biaxially stretched and heat-set polyethylene terephthalate film with a thickness of 100 μm was subjected to corona discharge treatment, and a liquid having the following composition was applied as a conductive layer, followed by drying at 130° C. for 10 minutes. Vinylidene chloride/ethyl acrylate/acrylic acid copolymer latex (copolymerization ratio 85/10/
5. Solid content 25%) 40 (parts by weight) Tin oxide doped with antimony with an average particle size of 0.2μ (the amount of antimony is 5% relative to tin oxide)
50 (〃) Water 1000 Next, a dielectric layer similar to that in Example 1 was applied. Table 1 shows the changes in surface resistivity.

【表】 第1表からわかるように、水溶性ポリマーをバ
インダーとした場合は誘電体層塗布後も表面抵抗
率の変化は殆んどみられなかつたが塩化ビニリデ
ン系共重合体使用した場合は約4桁の上昇があり
その効果が認められた。
[Table] As can be seen from Table 1, when a water-soluble polymer was used as a binder, there was almost no change in surface resistivity even after coating the dielectric layer, but when a vinylidene chloride copolymer was used, The effect was recognized, with an increase of approximately 4 digits.

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも実質的に透明な支持体、導電層及び
誘電体層よりなる静電記録用フイルムにおいて、
導電層が平均粒径0.5μ以下の導電性金属酸化物粒
子と、ゼラチンもしくは水溶性ポリエステルから
選ばれる水溶性高分子よりなり誘電体層が有機溶
剤可溶性の高分子よりなることを特徴とする静電
記録用フイルム。
1. In an electrostatic recording film comprising at least a substantially transparent support, a conductive layer, and a dielectric layer,
A static electrostatic device characterized in that the conductive layer is made of conductive metal oxide particles with an average particle size of 0.5μ or less and a water-soluble polymer selected from gelatin or water-soluble polyester, and the dielectric layer is made of an organic solvent-soluble polymer. Film for electronic recording.
JP19579186A 1986-08-21 1986-08-21 Electrostatic recording film Granted JPS6350847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19579186A JPS6350847A (en) 1986-08-21 1986-08-21 Electrostatic recording film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19579186A JPS6350847A (en) 1986-08-21 1986-08-21 Electrostatic recording film

Publications (2)

Publication Number Publication Date
JPS6350847A JPS6350847A (en) 1988-03-03
JPH0555075B2 true JPH0555075B2 (en) 1993-08-16

Family

ID=16347034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19579186A Granted JPS6350847A (en) 1986-08-21 1986-08-21 Electrostatic recording film

Country Status (1)

Country Link
JP (1) JPS6350847A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761875B (en) * 2015-04-16 2016-12-07 顾玉奎 A kind of polybutylene terephthalate (PBT) composite and preparation method thereof

Also Published As

Publication number Publication date
JPS6350847A (en) 1988-03-03

Similar Documents

Publication Publication Date Title
US4394441A (en) Photographic sensitive materials
JPS6049894B2 (en) photographic material
US4078935A (en) Support member
DE69825956T2 (en) Image recording element with an electrically conductive layer
JPS626505B2 (en)
US4301239A (en) Antistatic backing layer for unsubbed polyester film
US4702980A (en) Conductive sheet and electrostatic recording medium formed therefrom
JP3279660B2 (en) Polyethylene-2,6-naphthalate film capacitor
US5681687A (en) Imaging element comprising an electrically-conductive layer formed by a glow discharge process
JPH0555075B2 (en)
JPS6360452A (en) Electrostatic recording film
JPS6350846A (en) Electrostatic recording film
JPH02173651A (en) Electrostatic recording film
US2584337A (en) Antistatic treating composition for photographic film supports
JPS6328452B2 (en)
JPS62270337A (en) Transparent conductive plastic film
JPH11202107A (en) Light diffusion plate
JPH0619578B2 (en) Electrostatic recording sheet
JP2781565B2 (en) Electrostatic recording film
JPS588498B2 (en) Photographic recording materials
US20060222759A1 (en) Plastic film and manufacturing method thereof
JPH09325453A (en) Image forming element with conductive layer
JP2003043722A (en) Electrophotographic transparent film
JPS60258541A (en) Photosensitive material
JPS582848A (en) Electrostatic recording material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees