JPH0554583B2 - - Google Patents

Info

Publication number
JPH0554583B2
JPH0554583B2 JP14346385A JP14346385A JPH0554583B2 JP H0554583 B2 JPH0554583 B2 JP H0554583B2 JP 14346385 A JP14346385 A JP 14346385A JP 14346385 A JP14346385 A JP 14346385A JP H0554583 B2 JPH0554583 B2 JP H0554583B2
Authority
JP
Japan
Prior art keywords
speed
gear ratio
oil
line pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14346385A
Other languages
Japanese (ja)
Other versions
JPS624641A (en
Inventor
Hiroshi Tanaka
Yoshihiko Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14346385A priority Critical patent/JPS624641A/en
Publication of JPS624641A publication Critical patent/JPS624641A/en
Publication of JPH0554583B2 publication Critical patent/JPH0554583B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車両用のベルト式無段変速機におい
て、変速速度を制御対象として電子的に変速制御
する制御装置に関し、詳しくは、キツクダウン時
の補正に関する。
TECHNICAL FIELD The present invention relates to a control device for electronically controlling a shift speed in a belt-type continuously variable transmission for a vehicle, and specifically relates to correction during kickdown.

【従来の技術】[Conventional technology]

この種の無段変速機の変速制御に関しては、例
えば特開昭55−65755号公報に示す基本的なもの
があり、アクセル開度とエンジン回転数の信号の
バランスにより、変速比を制御対象として機械的
に変速制御することが示されている。ところでこ
の変速制御方式では、変速速度、即ち変速比の変
化速度が各変速比やプライマリ圧等により機構上
決定され、変速速度を直接制御できないため、過
渡時の応答性に限界があり、収束の際にオーバシ
ユートやハンチングを生じ易い。そこで近年、
種々の情報、要件を電気的に処理し、変速速度を
制御対象として無段変速機を電子的に変速制御す
ることが提案されている。 従来、上記無段変速機の変速速度制御に関して
は、例えば特開昭59−159456号公報の先行技術が
あり、変速制御として変速比変化方向切換弁装置
と変速比変速度制御弁装置を有する。そして変化
方向切換弁装置を給油または排油の一方に切換え
た状態で、変化速度制御弁装置において電磁弁に
よりスプール弁を所定のデユーテイ比で動作し
て、変速比の変化速度を制御することが示されて
いる。 また加速時の補正に関しては、例えば特開昭59
−205053号公報の先行技術があり、加速時に変速
速度をスロツトル開度またはその開度変化に応じ
て大きくするように設定することが示されてい
る。
Regarding the speed change control of this type of continuously variable transmission, for example, there is a basic one shown in Japanese Patent Application Laid-Open No. 55-65755. It is shown that the speed change is controlled mechanically. However, in this shift control method, the shift speed, that is, the rate of change of the gear ratio, is mechanically determined by each gear ratio, primary pressure, etc., and the shift speed cannot be directly controlled, so there is a limit to responsiveness during transients, and it is difficult to converge. Overshoot and hunting are likely to occur. Therefore, in recent years,
It has been proposed to electrically process various information and requirements and electronically control the speed change of a continuously variable transmission by controlling the speed change. Conventionally, regarding the speed change control of the above-mentioned continuously variable transmission, there is a prior art, for example, disclosed in Japanese Patent Application Laid-Open No. 159456/1983, which includes a speed ratio change directional switching valve device and a speed ratio change control valve device as the speed change control. Then, with the changing direction switching valve device switched to either oil supply or oil draining, the changing speed control valve device operates the spool valve at a predetermined duty ratio using a solenoid valve to control the changing speed of the gear ratio. It is shown. Regarding correction during acceleration, for example, JP-A-59
There is a prior art disclosed in Japanese Patent No. 205053, which teaches that during acceleration, the speed change speed is set to increase according to the throttle opening or a change in the opening.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで上記先行技術の前者によれば、変速制
御に2種類の弁装置を用いるので、必然的に構造
が複雑になる。また先行技術の後者によれば、急
加速の場合ほど変速速度が速くなつて応答性が向
上するという利点を有する。しかしキツクダウン
時のような全開加速の場合にも同様に変速速度を
設定すると、変速速度の値が非常に大きくなつて
急激にシフトダウンする。そして変速シヨツクの
増大を招き、極端な場合はエンジン動力がエンジ
ン回転数の上昇にのみ使用され、車体の加速を損
という問題がある。 本発明は、このような点に鑑み、開ループの簡
単な制御により変速速度を制御対象にして電子的
に変速制御し、且つキツクダウン時の変速を円滑
化できる無段変速機の制御装置を提供することを
目的とする。
However, according to the former of the above-mentioned prior art, since two types of valve devices are used for speed change control, the structure is inevitably complicated. Furthermore, the latter prior art has the advantage that the faster the acceleration occurs, the faster the shift speed becomes, and the responsiveness improves. However, if the shift speed is set in the same way in the case of full-throttle acceleration such as during a kickdown, the value of the shift speed becomes very large and a sudden downshift occurs. This results in an increase in shift shock, and in extreme cases, the engine power is used only to increase the engine speed, resulting in a loss of acceleration of the vehicle body. In view of these points, the present invention provides a control device for a continuously variable transmission that is capable of electronically controlling the shift speed using simple open-loop control and smoothing the shift during a downturn. The purpose is to

【課題を解決するための手段】[Means to solve the problem]

この目的を達成するため本発明は、変速速度制
御弁23が給油位置と排油位置に切換え動作する
制御ポート23a,23bとスプリング23cと
を有し、ライン圧油路21から流量制限手段32
aを介して分岐する油路26がソレノイド弁28
に連通して制御ユニツト40の電気信号に応じた
信号油圧を生成し、この信号油圧を油路34によ
り変速速度制御弁23の制御ポート23aに導入
して変速制御するように構成する。 また制御ユニツト40はプライマリプーリ回転
数とセカンダリプーリ回転数により実変速比を算
出する手段45と、スロツトル開度とセカンダリ
プーリ回転数により目標変速比を定める手段46
と、加速状態に応じた係数を設定する手段47
と、目標変速比と実変速比の偏差が設定値以上の
場合にその係数を減少補正する手段52と、目標
変速比と実変速比の偏差及び補正した係数により
目標とする変速速度を算出する手段48と、目標
とする変速速度と実変速比の関係で操作量を定め
この操作量の電気信号を出力する手段49とを備
えることを特徴とする。
In order to achieve this object, the present invention has a variable speed control valve 23 having control ports 23a, 23b and a spring 23c that operate to switch between an oil supply position and an oil drain position, and a flow rate restriction means 32 from a line pressure oil path 21.
The oil passage 26 that branches through the solenoid valve 28
The control unit 40 generates a signal hydraulic pressure according to an electric signal from the control unit 40, and this signal hydraulic pressure is introduced into the control port 23a of the speed change control valve 23 through an oil passage 34 to control the speed change. The control unit 40 also includes means 45 for calculating the actual gear ratio based on the primary pulley rotation speed and secondary pulley rotation speed, and means 46 for determining the target gear ratio based on the throttle opening and the secondary pulley rotation speed.
and means 47 for setting a coefficient according to the acceleration state.
, means 52 for reducing the coefficient when the deviation between the target gear ratio and the actual gear ratio is equal to or greater than a set value, and calculating a target gear change speed from the deviation between the target gear ratio and the actual gear ratio and the corrected coefficient. It is characterized by comprising means 48 and means 49 for determining a manipulated variable based on the relationship between the target gear change speed and the actual gear ratio and outputting an electrical signal of this manipulated variable.

【作用】[Effect]

上記構成による本発明では、無段変速機が基本
的には、制御ユニツト40の電気信号によりソレ
ノイド弁28で信号油圧に変換され、この信号油
圧が変速速度制御弁23の制御ポート23aに導
入して給油と排油の2位置に繰返し動作する。そ
して電気信号の操作量により変速スピードを変化
しながらプライマリ圧が増減して電子的に変速制
御される。 制御ユニツト40では、運転、走行状態に応じ
て目標変速比が設定され、この目標変速比と実変
速比の偏差及び係数により目標とする変速速度が
算出され、変速速度の正負によりシフトアツプま
たはシフトダウンが判別される。そしてシフトア
ツプとシフトダウンでそれぞれ目標とする変速速
度と実変速比により操作量が設定され、この操作
量の電気信号が出力して開ループ制御される。 そこで電気信号の操作量によりシフトダウンま
たはシフトアツプし、このとき目標変速比に対し
て実変速比が、両者の偏差の変速速度に応じた傾
きで変速スピードを変化しながら迅速に追従し、
且つ滑らかに収束される。こうして変速全域で変
速速度を制御対象として応答良く無段階に変速制
御される。 また加速時には目標変速比と実変速比の偏差と
設定値が比較され、偏差が設定値以上の場合に全
開加速のキツクダウンが判断される。そしてキツ
クダウン時には係数が減少補正されることで、目
標とする変速速度が一時的に小さくなる。このた
め遅い変速スピードでシフトダウンが滑らかに開
始して、変速シヨツクが回避され、エンジン動力
がエンジン回転数の上昇と車体の加速に適度に分
配して良好に加速される。
In the present invention having the above configuration, the continuously variable transmission basically converts an electric signal from the control unit 40 into a signal oil pressure by the solenoid valve 28, and introduces this signal oil pressure into the control port 23a of the variable speed control valve 23. It operates repeatedly in two positions: oil supply and oil drain. Then, the primary pressure is increased or decreased while changing the speed change speed according to the manipulated variable of the electric signal, and the speed change is controlled electronically. In the control unit 40, a target gear ratio is set according to driving and running conditions, and a target gear shift speed is calculated based on the deviation between the target gear ratio and the actual gear ratio and a coefficient, and a shift up or a downshift is performed depending on the sign of the gear shift speed. is determined. Then, the manipulated variables for upshifting and downshifting are set based on the target shift speed and actual gear ratio, respectively, and electrical signals of these manipulated variables are output for open-loop control. Therefore, the shift is down or up depending on the operating amount of the electric signal, and at this time, the actual gear ratio quickly follows the target gear ratio while changing the gear shift speed with a slope according to the shift speed of the deviation between the two.
Moreover, it is smoothly converged. In this way, the shift speed is controlled in a stepless manner with good response throughout the entire shift range. Also, during acceleration, the deviation between the target gear ratio and the actual gear ratio is compared with a set value, and if the deviation is greater than the set value, it is determined that the full-throttle acceleration should be reduced. At the time of kickdown, the coefficient is corrected to decrease, so that the target shift speed becomes temporarily smaller. Therefore, downshifting starts smoothly at a slow shift speed, avoiding a shift shock, and the engine power is appropriately distributed between the increase in engine speed and the acceleration of the vehicle body, resulting in good acceleration.

【実施例】【Example】

以下、本発明の実施例を図面に基づいて説明す
る。 第1図において、本発明が適用される無段変速
機と、油圧制御系の概略について説明する。先
ず、駆動系について説明すると、エンジン1がク
ラツチ2,前後進切換装置3を介して無段変速機
4の主軸5に連結される。 無段変速機4は、主軸5に対して副軸6が平行
配置され、主軸5にプライマリプーリ7が設けら
れ、副軸6にセカンダリプーリ8が設けられ、両
プーリ7,8に駆動ベルト11が巻付けられる。
両プーリ7,8は、固定側と油圧シリンダ9,1
0を備えて軸方向移動可能に設けられる可動側と
によりプーリ間隔可変に構成され、セカンダリシ
リンダ10に対してプライマリシリンダ9の方が
受圧面積が大きく形成される。そしてセカンダリ
シリンダ10のライン圧により適正にベルトクラ
ンプし、プライマリシリンダ9のプライマリ圧に
より駆動ベルト11のプーリ7,8に対する巻付
け径の比を変えて無段変速するように構成され
る。 また副軸6は、1組のリダクシヨンギヤ12を
介して出力軸13に連結される。そして出力軸1
3がフアイナルギヤ14、デイフアレンシヤルギ
ヤ15を介して駆動輪16に伝動構成されてい
る。 次に、無段変速機4の油圧制御系について説明
する。先ず、エンジン1により駆動されるオイル
ポンプ20を有し、オイルポンプ20の吐出側の
ライン圧油路21が、セカンダリシリンダ10、
ライン圧制御弁22及び変速速度制御弁23に連
通され、変速速度制御弁23が油路24を介して
プライマリシリンダ9に連通される。 ライン圧油路21は更に流量制限するオリフイ
ス32aを介し油路26に連通して、ライン圧の
一部が取出される。油路26はレギユレータ弁2
5を有して一定なレギユレータ圧PR発生され、
このレギユレータ圧PRの油路26がオリフイス
32bを介してライン圧制御用ソレノイド弁27
に連通される。また油路26はオリフイス32c
を有する油路35に連通され、オリフイス32d
を介して変速速度制御用ソレノイド弁28に連通
される。 ソレノイド弁27は、制御ユニツト40からの
デユーテイ信号のオンの場合に排油する構成であ
り、このソレノイド弁27により生じたパルス状
のデユーテイ圧Pdをアキユムレータ30により
平滑化して油路33によりライン圧制御弁22に
供給する。ソレノイド弁28も同様の構成であ
り、このソレノイド弁28により生じたパルス状
のデユーテイ圧Pdを油路34によりそのまま変
速速度制御弁23に供給する。 ライン圧制御弁22は、初期設定するスプリン
グと油路33のデユーテイ圧Pdの関数によりラ
イン圧PLを制御するように構成される。 変速速度制御弁23は、一方の制御ポート23
bに油路35の一定なレギユレータ圧PRが作用
し、他方の制御ポート23aにスプリング23c
が付勢され、且つ油路34のデユーテイ圧Pdが
作用する。そしてデユーテイ圧Pdのオン、オフ
によりライン圧油路21を油路24に接続する給
油位置と、油路24をドレン油路29に接続する
排油位置とに繰返して切換え動作するように構成
される。そして例えばデユーテイ比を増大してデ
ユーテイ圧Pdの零時間を長くすると、給油量>
排油量の関係になつてシフトアツプする。逆にデ
ユーテイ比を減少してデユーテイ圧Pdの一定圧
時間を長くすると、給油量<排油量の関係になつ
てシフトダウンするように設定される。 ここで変速速度制御の制御原理について説明す
る。 先ず、プライマリシリンダ9の必要油量Vは、
変速比iとの関係で機械的に構成上決まるもの
で、 V=f1(i) となり、流量Qは油量Vを時間で微分したもので
あるから、 Q=dv/dt={df1(i)/di}・(di/dt) となり、流量Qと変速速度di/dtは、変速比iを
パラメータとして対応している。従つて、次式に
なる。 di/dt=f2(Q,i) またプライマリ圧Pp、ライン圧PL、流量係数
c、動力加速度g、油比重量γ、弁の給油ポート
開口面積Si、排油ポート開口面積SDとすると、
給油流量Qi、排油流量QDは、 QD=c・SD[2g Pp)/γ]1/2 =a・SD(Pp)1/2 Qi=a・Si(PL−Pp)1/2 [a=c(2g/γ)1/2] で表わせる。 そこでデユーテイ比をDとすると、デユーテイ
作動信号1サイクルの平均流量Q(給油を正とす
る)は、 Q=aA{D・Si(PL−Pp)1/2−(1−D) ×SD(Pp)1/2} となり、a,Si,SDを定数とすると、次式にな
る。 Q=f3(D,PL,Pp) ここでライン圧PLは変速比i、エンジントル
クTにより制御される。プライマリ圧Ppは変速
比iとライン圧PLで決まるものであるから、T
を一定と仮定すると、 Q=f4(D,i) となり、次式が成立する。 di/dt=f5(D,i) このため、Dについて解くと、 D=f6(di/dt,i) となる。以上により変速速度di/dtは、デユーテ
イ比Dと対応することがわかる。そしてデユーテ
イ比Dは、変速速度di/dtと変速比iで決まるこ
とになる。 一方、変速速度di/dtは、定常での目標変速比
isと実際の変速比iとの偏差に基づくものである
から、次式が成立する。 di/dt=k(is−i) 以上により目標変速比isと実際の変速比iとの
偏差により変速速度di/dtが算出され、この変速
速度di/dtに応じたデユーテイ比Dが設定され
る。またシフトアツプの場合は、is<iで変速速
度di/dtの値が負になり、シフトダウンの場合
は、is>iで変速速度di/dtの値が正になる。 従つて、変速速度di/dtが負の場合は、デユー
テイ比Dを大きくし、デユーテイ比Dの大きい方
向でdi/dtに応じた値を設定する。変速速度di/
dtが正の場合は、逆にデユーテイ比Dを小さく
し、デユーテイ比Dの小さい方向でdi/dtに応じ
た値を設定する。これにより電気信号のデユーテ
イ比Dの値によりシフトアツプまたはシフトダウ
ンし、且つdi/dtに応じて変速速度を制御するこ
とが可能となる。 また(is−i)はエンジントルクの変化ΔTeに
対応するもので、係数kはドライバの加速意志を
表わす。従つて、係数kをエンジン負荷の変化に
より可変にすることで、加速時の変速速度di/dt
が適切に算出される。更に、定常、加速時以外の
過渡状態や種々の運転状態では、定常時をベース
とする変速速度を補正することで、対処すること
が可能となる。 そこで第2図の電気制御系では、上述の原理に
基づいて構成されており、以下に説明する。 先ず、プライマリプーリ回転数Npを検出する
プライマリプーリ回転数センサ41、セカンダリ
プーリ回転数Nsを検出するセカンダリプーリ回
転数センサ42、エンジン回転数Neを検出する
エンジン回転数センサ43及びスロツトル開度θ
を検出するスロツトル開度センサ44を有する。
これらセンサ信号はユニツト40に入力する。 制御ユニツト40において、変速速度制御系に
ついて説明する。プライマリプーリ回転数Npと
セカンダリプーリ回転数Nsが入力する実変速比
算出手段45を有し、実変速比iを、i=Np/
Nsにより算出する。またセカンダリプーリ回転
数Nsとスロツトル開度θは目標変速比検索手段
46に入力し、第3図aの変速パターンに基づく
同図bのNs−θのテーブルにより目標変速比is
を検索する。 一方、スロツトル開度θは加速検出手段51に
入力して、dθ/dtによりスロツトル開度変化を算
出する。このスロツトル開度変化dθ/dtは係数設
定手段47に入力し、係数kをスロツトル開度変
化dθ/dtの増大関数として設定する。 そして実変速比i、定常での目標変速比is及び
係数kは、変速速度算出手段48に入力して、目
標とする変速速度di/dtを、 di/dt=k(is−i) により算出する。また変速速度di/dtの符号が正
の場合はシフトダウン、負の場合はシフトアツプ
に定める。 キツクダウン時の補正として、係数設定手段4
7の出力側に係数補正手段55が付設され、目標
変速比isと実変速比iが入力する。係数補正手段
55は加速時の目標変速比と実変速比との偏差
(is−i)と設定値Aを比較して、全開加速のキ
ツクダウンの有無を判断する。そしてis−i>A
のキツクダウンの場合は、係数kを数パーセント
減少補正する。 目標とする変速速度di/dtと実変速比iは更に
デユーテイ比検索手段49に入力して、第3図c
のdi/dt−iのテーブルから操作量としてのデユ
ーテイ比Dを検索する。 テーブルにおいて、変速速度di/dtが正の場合
は、di/dtが大きいほどデユーテイ比Dの値が小
さく設定され、変速速度di/dtが負の場合は、
di/dtの絶対値が大きいほどデユーテイ比Dの値
が大きく設定される。またdi/dtが負の場合は、
実変速比iが大きいほどデユーテイ比Dの値が小
さく設定され、di/dtが正の場合は、実変速比i
が大きいほどデユーテイ比Dの値が大きく設定さ
れている。こうしてdi/dt、i及びDの三次元テ
ーブルによりデユーテイ比Dが検索される。 そしてデユーテイ比検索手段49で検索したデ
ユーテイ比Dの電気信号が、駆動手段50を介し
てソレノイド弁28に出力する。 続いて、ライン圧制御系について説明する。先
ず、エンジン回転数Ne、スロツトル開度θ及び
実変速比iが目標ライン圧算出手段52に入力
し、エンジン回転数Neとスロツトル開度θによ
るエンジントルクTと実変速比iにより目標ライ
ン圧PLtを算出する。目標ライン圧PLtはデユー
テイ比設定手段53に入力し、目標ライン圧PLt
が大きいほどデユーテイ比Dの大きい値に設定す
る。そしてデユーテイ比Dの電気信号が駆動手段
54を介してソレノイド弁27に出力する。 次に、この実施例の作用について説明する。 先ず、エンジン1の運転によりオイルポンプ2
1が駆動し、油路21のライン圧PLはセカンダ
リシリンダ10にのみ供給されて、変速比最大の
低速段になる。このときライン圧PLのオイルが
オリフイス32aにより流量制限して油路26に
取出され、レギユレータ弁25により調圧してレ
ギユレータ圧PRを生じ、このレギユレータ圧PR
がソレノイド弁27,28等に導かれて、電子的
にライン圧及び変速制御することが可能になる。 またプライマリプーリ回転数Np,セカンダリ
プーリ回転数Ns,スロツトル開度θ及びエンジ
ン回転数Neの信号が制御ユニツト40に入力す
る。そしてライン圧制御系では、プライマリプー
リ回転数Npとセカンダリプーリ回転数Nsにより
算出される実変速比i,エンジン回転数Neとス
ロツトル開度θによるエンジントルクTにより目
標ライン圧PLt算出され、この目標ライン圧PLt
に応じたデユーテイ比Dが設定される。 そこで発進や加速時にエンジントルクTが大き
くなると、目標ライン圧PLtが大きく算出され、
大きいデユーテイ比Dの信号がソレノイド弁27
に出力する。このためソレノイド弁27の排油量
が多くなつて低いデユーテイ圧Pdに変換され、
このデユーテイ圧Pdがライン圧制御弁22に導
入して、ライン圧PLは高く制御される。 更に、車速の上昇により変速制御が開始して実
変速比iが小さくなり、エンジントルクTも小さ
くなると、デユーテイ比Dが小さくなる。このた
めソレノイド弁27では排油量の減少でデユーテ
イ圧Pdが高くなり、ライン圧制御弁22におい
てライン圧PLは順次低く制御される。 こうしてライン圧PLは、実変速比iが小さい
ほど低く、エンジントルクTが大きいほど高く連
続的に電子制御される。このライン圧PLが常に
セカンダリシリンダ10に導入して作用すること
により、常にベルトスリツプを生じない必要最小
限のプーリ押付け力が付与される。 一方、変速速度制御系では、スロツトル開度θ
とセカンダリプーリ回転数Nsにより目標変速比
isが設定される。そして目標変速比isと実変速比
iの偏差と係数kにより目標とする変速速度di/
dtが算出され、目標とする変速速度di/dtと実変
速比iとの関係でデユーテイ比Dが設定される。
デユーテイ比Dの電気信号はソレノイド弁28に
出力してデユーテイ圧Pdに変換され、このデユ
ーテイ圧Pdが変速速度制御弁23の制御ポート
23aに導入して、デユーテイ圧Pdのオン、オ
フにより給油と排油の2位置に繰返し動作する。 ここで車速の低下やアクセル踏込みによりis>
iになると、デユーテイ比Dが小さい方向に設定
される。このため変速速度制御弁23は排油位置
での動作時間の方が長くなり、プライマリシリン
ダ9は給油以上に排油され、プライマリ圧Ppが
低下してシフトダウンする。 このとき目標変速比isと実変速比iの偏差によ
り算出される変速速度di/dtに応じたデユーテイ
比Dが順次設定され、デユーテイ比Dにより排油
量が可変される。このため大きい値に設定される
目標変速比isに対して大きい実変速比iが、変速
速度di/dtに応じた傾きで追従する。即ち、初期
の偏差が大きい場合は大きい傾きの速い変速スピ
ードで実変速比iが迅速に追従し、偏差が順次小
さくなるほど傾きが小さくなり、変速スピードが
遅くなつてオーバシユートを生じないように滑ら
かに収束する。 逆に車速の上昇やアクセル開放によりis<iに
なると、デユーテイ比Dが大きい方向に設定され
る。このため変速速度制御弁23は給油位置での
動作時間の方が長くなり、プライマリシリンダ9
は排油以上に給油され、プライマリ圧Ppが増大
してシフトアツプする。この場合は小さい値に設
定される目標変速比isに対して大きい実変速比i
が、上述と同様に変速スピードを変化して迅速に
追従し滑らかに収束する。 またシフトアツプとシフトダウンのいずれも、
実変速比iに応じたデユーテイ比Dにより高速段
ほど多く給排油して、常にプライマリシリンダ9
が実変速比iに見合つた油量になる。 こうして運転、走行状態に応じて目標とする変
速速度di/dtが算出され、この変速速度di/dtと
実変速比iによるデユーテイ比Dの電気信号が出
力して閉ループ制御される。そしてデユーテイ信
号により変速速度di/dtを制御対象として可変し
ながら変速全域でシフトアツプまたはシフトダウ
ンして電子的に変速制御される。 一方、アクセル踏込みの加速時には、スロツト
ル開度変化dθ/dtにより加速状態が検出され、ス
ロツトル開度変化dθ/dtに応じて係数kが設定さ
れる。そこで急加速時には、係数kが大きい値に
なつて変速速度di/dtの値も正の大きい値にな
る。そこで上述のシフトダウンで、目標変速比is
に実変速比iが追従する際の変速スピードが一層
速くなり、迅速にシフトダウンする。 この加速時において、実変速比iに比べて目標
変速比isの値が非常に大きく設定され、is−i>
Aの条件を満たすと、係数補正手段55で全開加
速するキツクダウンが判断される。そしてキツク
ダウンの場合には、係数kが小さい値に補正され
ることで、変速速度di/dtの値も小さくなる。そ
こで第3図aの破線のように、is−iの偏差が大
きいにもかかわらず、遅い変速スピードで滑らか
にシフトダウンを開始して、エンジン回転数と車
体の加速が略一緒に増大される。 そして低速段に向つてシフトダウンする過程に
おいて、is−i<Aになると、それ以降は加速状
態に応じた本来の係数kが出力する。そのため変
速速度di/dtの値も大きくなつて、迅速にシフト
ダウンする。 以上、本発明の一実施例について説明したが、
上記実施例のみに限定されるものではなく、マイ
コンでソフト的にも処理し得るのは勿論である。
Embodiments of the present invention will be described below based on the drawings. Referring to FIG. 1, an outline of a continuously variable transmission and a hydraulic control system to which the present invention is applied will be explained. First, the drive system will be described. An engine 1 is connected to a main shaft 5 of a continuously variable transmission 4 via a clutch 2 and a forward/reverse switching device 3. In the continuously variable transmission 4, a subshaft 6 is arranged parallel to a main shaft 5, a primary pulley 7 is provided on the main shaft 5, a secondary pulley 8 is provided on the subshaft 6, and a drive belt 11 is provided on both pulleys 7, 8. is wrapped.
Both pulleys 7 and 8 are connected to the fixed side and the hydraulic cylinders 9 and 1.
0 and a movable side that is movable in the axial direction, the pulley interval is variable, and the primary cylinder 9 has a larger pressure receiving area than the secondary cylinder 10. The belt is properly clamped by the line pressure of the secondary cylinder 10, and the ratio of the winding diameter of the drive belt 11 to the pulleys 7 and 8 is changed by the primary pressure of the primary cylinder 9, thereby continuously changing the speed. Further, the subshaft 6 is connected to an output shaft 13 via a set of reduction gears 12 . and output shaft 1
3 is configured to be transmitted to drive wheels 16 via a final gear 14 and a differential gear 15. Next, the hydraulic control system of the continuously variable transmission 4 will be explained. First, it has an oil pump 20 driven by an engine 1, and a line pressure oil passage 21 on the discharge side of the oil pump 20 is connected to a secondary cylinder 10,
It communicates with a line pressure control valve 22 and a speed change control valve 23 , and the speed change control valve 23 communicates with the primary cylinder 9 via an oil passage 24 . The line pressure oil passage 21 further communicates with an oil passage 26 via an orifice 32a that restricts the flow rate, and a portion of the line pressure is taken out. The oil passage 26 is connected to the regulator valve 2
5, a constant regulator pressure PR is generated,
The oil passage 26 for this regulator pressure PR is connected to the line pressure control solenoid valve 27 via the orifice 32b.
will be communicated to. Also, the oil passage 26 has an orifice 32c.
The oil passage 35 has an orifice 32d.
The solenoid valve 28 is connected to the solenoid valve 28 for controlling the speed change speed. The solenoid valve 27 is configured to drain oil when the duty signal from the control unit 40 is on, and the pulsed duty pressure Pd generated by the solenoid valve 27 is smoothed by the accumulator 30, and the line pressure is restored by the oil path 33. It is supplied to the control valve 22. The solenoid valve 28 has a similar configuration, and the pulsed duty pressure Pd generated by the solenoid valve 28 is directly supplied to the speed change control valve 23 through the oil passage 34. The line pressure control valve 22 is configured to control the line pressure PL by a function of the initially set spring and the duty pressure Pd of the oil passage 33. The speed change control valve 23 has one control port 23
A constant regulator pressure PR of the oil passage 35 acts on b, and a spring 23c acts on the other control port 23a.
is energized, and the duty pressure Pd of the oil passage 34 acts. The system is configured to repeatedly switch between an oil supply position where the line pressure oil passage 21 is connected to the oil passage 24 and an oil drain position where the oil passage 24 is connected to the drain oil passage 29 by turning on and off the duty pressure Pd. Ru. For example, if the duty ratio is increased and the zero time of the duty pressure Pd is lengthened, the oil supply amount>
Shifts up depending on the amount of oil discharged. On the other hand, if the duty ratio is decreased and the constant pressure time of the duty pressure Pd is lengthened, the oil supply amount is set to less than the oil displacement amount, so that a downshift is performed. Here, the control principle of shift speed control will be explained. First, the required oil amount V of the primary cylinder 9 is
It is determined mechanically in relation to the gear ratio i, and V=f1(i), and the flow rate Q is the oil amount V differentiated with respect to time, so Q=dv/dt={df1(i) )/di}·(di/dt), and the flow rate Q and the gear change speed di/dt correspond to each other using the gear ratio i as a parameter. Therefore, the following equation is obtained. di/dt=f2(Q,i) Also, if primary pressure Pp, line pressure PL, flow coefficient c, power acceleration g, oil specific weight γ, valve oil supply port opening area Si, and oil drain port opening area SD are:
The oil supply flow rate Qi and the oil drain flow rate QD are: QD=c・SD[2g Pp)/γ] 1/2 =a・SD(Pp) 1/2 Qi=a・Si(PL−Pp) 1/2 [a = c(2g/γ) 1/2 ]. Therefore, if the duty ratio is D, the average flow rate Q for one cycle of the duty operation signal (assuming lubrication is positive) is: Q=aA{D・Si(PL−Pp) 1/2 −(1−D) ×SD( Pp) 1/2 }, and if a, Si, and SD are constants, the following formula is obtained. Q=f3 (D, PL, Pp) Here, the line pressure PL is controlled by the gear ratio i and the engine torque T. Since the primary pressure Pp is determined by the gear ratio i and the line pressure PL, T
Assuming that is constant, Q=f4(D,i), and the following equation holds true. di/dt=f5(D,i) Therefore, when solving for D, we get D=f6(di/dt,i). From the above, it can be seen that the shift speed di/dt corresponds to the duty ratio D. The duty ratio D is determined by the speed change speed di/dt and the speed change ratio i. On the other hand, the gear shift speed di/dt is the target gear ratio in steady state.
Since it is based on the deviation between is and the actual gear ratio i, the following equation holds true. di/dt=k(is-i) As described above, the shift speed di/dt is calculated from the deviation between the target gear ratio is and the actual gear ratio i, and the duty ratio D is set according to this shift speed di/dt. Ru. Further, in the case of an upshift, the value of the shift speed di/dt becomes negative when is<i, and in the case of a downshift, the value of the shift speed di/dt becomes positive when is>i. Therefore, when the shift speed di/dt is negative, the duty ratio D is increased, and a value corresponding to di/dt is set in the direction where the duty ratio D is large. Shift speed di/
When dt is positive, conversely, the duty ratio D is decreased, and a value corresponding to di/dt is set in the direction of decreasing the duty ratio D. This makes it possible to shift up or down according to the value of the duty ratio D of the electric signal, and to control the speed change according to di/dt. Further, (is-i) corresponds to the change ΔTe in the engine torque, and the coefficient k represents the driver's intention to accelerate. Therefore, by making the coefficient k variable according to changes in engine load, the shift speed di/dt during acceleration can be
is calculated appropriately. Furthermore, transient states and various operating states other than steady state and acceleration can be dealt with by correcting the shift speed based on the steady state. Therefore, the electrical control system shown in FIG. 2 is constructed based on the above-mentioned principle, and will be explained below. First, the primary pulley rotation speed sensor 41 detects the primary pulley rotation speed Np, the secondary pulley rotation speed sensor 42 detects the secondary pulley rotation speed Ns, the engine rotation speed sensor 43 detects the engine rotation speed Ne, and the throttle opening θ.
It has a throttle opening sensor 44 that detects.
These sensor signals are input to unit 40. The transmission speed control system in the control unit 40 will be explained. It has an actual gear ratio calculation means 45 which inputs the primary pulley rotation speed Np and the secondary pulley rotation speed Ns, and calculates the actual gear ratio i by i=Np/
Calculated by Ns. Further, the secondary pulley rotation speed Ns and the throttle opening θ are input to the target gear ratio search means 46, and the target gear ratio is
Search for. On the other hand, the throttle opening degree θ is input to the acceleration detecting means 51, and a change in the throttle opening degree is calculated by dθ/dt. This throttle opening change dθ/dt is input to the coefficient setting means 47, and a coefficient k is set as an increasing function of the throttle opening change dθ/dt. The actual gear ratio i, the target gear ratio is at steady state, and the coefficient k are input to the gear shifting speed calculation means 48, and the target shifting speed di/dt is calculated by di/dt=k(is-i). do. Further, if the sign of the shift speed di/dt is positive, it is determined to be a downshift, and if it is negative, it is determined to be a shift up. Coefficient setting means 4 is used for correction at the time of kickdown.
A coefficient correction means 55 is attached to the output side of 7, and the target gear ratio is and the actual gear ratio i are input thereto. The coefficient correction means 55 compares the deviation (is-i) between the target gear ratio and the actual gear ratio during acceleration with a set value A, and determines whether there is a kickdown in full-throttle acceleration. and is-i>A
In the case of a knockdown, the coefficient k is corrected by decreasing it by several percent. The target speed change speed di/dt and actual speed change ratio i are further inputted into the duty ratio search means 49, and the results are shown in FIG. 3c.
The duty ratio D as the manipulated variable is searched from the di/dt-i table. In the table, when the shift speed di/dt is positive, the larger di/dt is, the smaller the value of the duty ratio D is set, and when the shift speed di/dt is negative,
The larger the absolute value of di/dt is, the larger the value of duty ratio D is set. Also, if di/dt is negative,
The larger the actual gear ratio i, the smaller the value of the duty ratio D is set, and if di/dt is positive, the actual gear ratio i
The larger the value of the duty ratio D is set, the larger the value of the duty ratio D is set. In this way, the duty ratio D is searched using the three-dimensional table of di/dt, i, and D. Then, the electric signal of the duty ratio D searched by the duty ratio search means 49 is outputted to the solenoid valve 28 via the drive means 50. Next, the line pressure control system will be explained. First, the engine speed Ne, throttle opening θ, and actual gear ratio i are input to the target line pressure calculation means 52, and the target line pressure PLt is calculated based on the engine speed Ne, the engine torque T based on the throttle opening θ, and the actual gear ratio i. Calculate. The target line pressure PLt is input to the duty ratio setting means 53, and the target line pressure PLt
The larger the value, the larger the duty ratio D is set. Then, an electric signal with a duty ratio D is outputted to the solenoid valve 27 via the driving means 54. Next, the operation of this embodiment will be explained. First, the oil pump 2 is activated by the operation of the engine 1.
1 is driven, the line pressure PL of the oil passage 21 is supplied only to the secondary cylinder 10, and the gear ratio is set to the maximum low gear. At this time, the oil at the line pressure PL is taken out into the oil passage 26 with the flow rate restricted by the orifice 32a, and the pressure is regulated by the regulator valve 25 to generate the regulator pressure PR.
is guided to solenoid valves 27, 28, etc., making it possible to electronically control line pressure and speed change. Further, signals of the primary pulley rotation speed Np, the secondary pulley rotation speed Ns, the throttle opening θ, and the engine rotation speed Ne are input to the control unit 40. Then, in the line pressure control system, the target line pressure PLt is calculated from the actual gear ratio i calculated from the primary pulley rotation speed Np and the secondary pulley rotation speed Ns, the engine torque T from the engine rotation speed Ne and the throttle opening θ, and this target Line pressure PLt
The duty ratio D is set accordingly. Therefore, if the engine torque T increases during starting or acceleration, the target line pressure PLt will be calculated to be large.
A signal with a large duty ratio D is sent to the solenoid valve 27.
Output to. Therefore, the amount of oil discharged from the solenoid valve 27 increases and is converted to a lower duty pressure Pd.
This duty pressure Pd is introduced into the line pressure control valve 22, and the line pressure PL is controlled to be high. Furthermore, as the vehicle speed increases, shift control is started and the actual gear ratio i becomes smaller, and when the engine torque T also becomes smaller, the duty ratio D becomes smaller. Therefore, in the solenoid valve 27, the duty pressure Pd increases as the amount of discharged oil decreases, and in the line pressure control valve 22, the line pressure PL is sequentially controlled to be lower. In this way, the line pressure PL is continuously electronically controlled to be lower as the actual gear ratio i is smaller, and higher as the engine torque T is larger. By constantly introducing this line pressure PL into the secondary cylinder 10 and acting on it, the minimum necessary pulley pressing force that does not cause belt slip is always applied. On the other hand, in the speed change control system, the throttle opening θ
The target gear ratio is determined by the and secondary pulley rotation speed Ns.
is is set. Then, the target gear speed di/
dt is calculated, and the duty ratio D is set based on the relationship between the target speed change speed di/dt and the actual speed change ratio i.
The electric signal of the duty ratio D is output to the solenoid valve 28 and converted into duty pressure Pd, and this duty pressure Pd is introduced into the control port 23a of the speed change control valve 23, and the lubrication is performed by turning the duty pressure Pd on and off. Operates repeatedly in two positions for draining oil. At this point, by decreasing the vehicle speed or stepping on the accelerator,
When it reaches i, the duty ratio D is set in the smaller direction. For this reason, the shift speed control valve 23 operates for a longer time in the oil draining position, and the primary cylinder 9 is drained of more oil than it is filled with oil, and the primary pressure Pp decreases, resulting in a downshift. At this time, the duty ratio D is sequentially set according to the shift speed di/dt calculated from the deviation between the target gear ratio is and the actual gear ratio i, and the amount of oil discharged is varied by the duty ratio D. For this reason, the actual gear ratio i, which is larger than the target gear ratio is, which is set to a large value, follows the target gear ratio is with a slope corresponding to the gear shift speed di/dt. In other words, if the initial deviation is large, the actual gear ratio i will quickly follow the shifting speed with a large slope, and as the deviation gradually decreases, the slope will become smaller, and the shifting speed will slow down and shift smoothly so that overshoot does not occur. Converge. Conversely, when is < i due to an increase in vehicle speed or release of the accelerator, the duty ratio D is set toward a larger value. Therefore, the shift speed control valve 23 operates for a longer time in the refueling position, and the primary cylinder 9
is filled with more oil than the drained oil, increasing the primary pressure Pp and shifting up. In this case, the actual gear ratio i is larger than the target gear ratio is, which is set to a smaller value.
However, in the same way as described above, the shift speed is changed to quickly follow and converge smoothly. Also, both upshifting and downshifting,
According to the duty ratio D according to the actual gear ratio i, the higher the speed, the more oil is supplied and drained, and the primary cylinder 9 is always maintained.
becomes the oil amount commensurate with the actual gear ratio i. In this way, the target shift speed di/dt is calculated according to the driving and running conditions, and an electric signal with a duty ratio D based on this shift speed di/dt and the actual speed ratio i is output for closed loop control. Then, the shift speed di/dt is varied as a control target by the duty signal, and the shift is controlled by shifting up or down over the entire shift range. On the other hand, when accelerating by pressing the accelerator, the acceleration state is detected based on the throttle opening change dθ/dt, and the coefficient k is set according to the throttle opening change dθ/dt. Therefore, during sudden acceleration, the coefficient k becomes a large value and the value of the shift speed di/dt also becomes a large positive value. Therefore, by downshifting as described above, the target gear ratio is
The shift speed when the actual gear ratio i follows becomes even faster, and the downshift is performed quickly. During this acceleration, the value of the target gear ratio is is set to be very large compared to the actual gear ratio i, and is−i>
When the condition A is satisfied, the coefficient correcting means 55 determines that the kickdown is full throttle acceleration. In the case of a kickdown, the coefficient k is corrected to a smaller value, so that the value of the shift speed di/dt also becomes smaller. Therefore, as shown by the broken line in Figure 3a, even though the deviation of is-i is large, downshifting is started smoothly at a slow shift speed, and the engine speed and acceleration of the vehicle body increase almost simultaneously. . In the process of downshifting toward a low speed gear, when is-i<A, the original coefficient k corresponding to the acceleration state is output from then on. Therefore, the value of the shift speed di/dt also increases, resulting in a rapid downshift. Although one embodiment of the present invention has been described above,
It goes without saying that the process is not limited to the above embodiment, and can also be processed using software using a microcomputer.

【発明の効果】【Effect of the invention】

以上に説明したように本発明によると、無段変
速機で電子的に変速制御する制御装置において、
制御ユニツトは目標変速比と実変速比の偏差に基
づいて目標とする変速速度を算出し、この目標と
する変速速度と実変速比により電気信号の操作量
を設定して開ループ制御する構成であるから、変
速速度を直接制御対象として、迅速に追従し滑ら
かに収束するように変速制御できる。このため過
渡時の応答性が向上し、オーバシユートが少なく
なる。また制御も非常に簡単になる。 電気信号による信号油圧を変速速度制御弁の制
御ポートに導入して給油と排油の2位置に繰返し
て動作する構成であるから、電気信号の操作量に
より変速スピードを変化しながらプライマリ圧を
増減して、適確に変速速度を制御できる。 全開加速のキツクダウン時には、変速速度が減
少補正されて滑らかにシフトダウンするので、変
速シヨツクが回避され、エンジン回転数のみの急
激な上昇が抑制されて加速性能が向上する。加速
状態に応じて設定される係数を減少補正するの
で、制御が容易であり、加速状態の変速制御に容
易に復帰できる。変速速度の補正は、キツクダウ
ン直後の一時的なものであり、それ以降は速い変
速スピードでシフトダウンするので、全開加速の
性能を損うことはない。
As explained above, according to the present invention, in a control device that electronically controls speed change in a continuously variable transmission,
The control unit is configured to calculate a target gear shift speed based on the deviation between the target gear ratio and the actual gear ratio, and to perform open loop control by setting the manipulated variable of the electrical signal based on the target gear shift speed and the actual gear ratio. Therefore, it is possible to directly control the speed change so that it follows quickly and converges smoothly. This improves responsiveness during transients and reduces overshoot. Control is also much easier. Since the signal oil pressure generated by the electric signal is introduced into the control port of the speed change control valve and operates repeatedly between the two positions of oil supply and oil drain, the primary pressure can be increased or decreased while changing the speed change depending on the amount of operation of the electric signal. Therefore, the speed change speed can be controlled accurately. During full-throttle acceleration, the shift speed is corrected to decrease and the shift down is performed smoothly, thereby avoiding a shift shock and suppressing a sudden increase in engine speed alone, improving acceleration performance. Since the coefficient set according to the acceleration state is corrected to decrease, control is easy and it is possible to easily return to the speed change control in the acceleration state. The shift speed correction is temporary immediately after the shift down, and since the shift speed is shifted down at a faster shift speed thereafter, the performance of full-throttle acceleration is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の無段変速機と制御装置の油圧
制御系の実施例を示す構成図、第2図は本発明の
無段変速機の制御装置の電気制御系の実施例を示
ブロツク図、第3図aは変速パターンを、bは目
標変速比のテーブルを、cはデユーテイ比のテー
ブルを示す図である。 4……無段変速機、5……主軸、11……駆動
ベルト、6……副軸、7……プライマリプーリ、
8……セカンダリプーリ、9……プライマリシリ
ンダ、10……セカンダリシリンダ、21,26
……油路、22……ライン圧制御弁、23……変
速速度制御弁、23a,23b……制御ポート、
23c……スプリング、32a……オリフイス、
28……ソレノイド弁、40……制御ユニツト、
45……実変速比算出手段、46……目標変速比
検索手段、47……係数設定手段、48……変速
速度算出手段、49……デユーテイ比検索手段、
55……係数補正手段。
FIG. 1 is a block diagram showing an embodiment of the hydraulic control system of the continuously variable transmission and control device of the present invention, and FIG. 2 is a block diagram showing an embodiment of the electrical control system of the control device of the continuously variable transmission of the present invention. FIG. 3A is a diagram showing a shift pattern, b is a table of target gear ratios, and c is a diagram showing a table of duty ratios. 4...Continuously variable transmission, 5...Main shaft, 11...Drive belt, 6...Subshaft, 7...Primary pulley,
8... Secondary pulley, 9... Primary cylinder, 10... Secondary cylinder, 21, 26
... Oil passage, 22 ... Line pressure control valve, 23 ... Speed change control valve, 23a, 23b ... Control port,
23c... Spring, 32a... Orifice,
28... Solenoid valve, 40... Control unit,
45...actual gear ratio calculation means, 46...target gear ratio search means, 47...coefficient setting means, 48...shift speed calculation means, 49...duty ratio search means,
55... Coefficient correction means.

Claims (1)

【特許請求の範囲】 1 エンジン側の主軸にプーリ間隔可変のプライ
マリプーリが設けられ、主軸に平行配置される車
輪側の副軸にプーリ間隔可変のセカンダリプーリ
が設けられ、両プーリの間に駆動ベルトが巻回さ
れ、油圧源からの油路にライン圧を制御してその
ライン圧をセカンダリプーリのシリンダに供給し
てプーリ押付け力を付与するライン圧制御弁が設
けられ、プライマリプーリのシリンダへの油路に
ライン圧を給排油してプライマリ圧を変化する変
速速度制御弁が設けられ、プライマリ圧により両
プーリに対する駆動ベルトの巻付け径の比を変化
して無段階に変速する無段変速機において、 上記変速速度制御弁23は給油位置と排油位置
に切換え動作する制御ポート23a,23bとス
プリング23cとを有し、ライン圧油路21から
流量制限手段32aを介して分岐する油路26が
ソレノイド弁28に連通して制御ユニツト40の
電気信号に応じた信号油圧を生成し、この信号油
圧を油路34により変速速度制御弁23の制御ポ
ート23aに導入して変速及び変速速度を制御す
るように構成すると共に、 上記制御ユニツト40はプライマリプーリ回転
数とセカンダリプーリ回転数により実変速比を算
出する手段45と、スロツトル開度とセカンダリ
プーリ回転数により目標変速比を定める手段46
と、加速状態に応じた係数を設定する手段47
と、目標変速比と実変速比の偏差が設定値以上の
場合にその係数を減少補正する手段52と、目標
変速比と実変速比の偏差及び補正した係数により
目標とする変速速度を算出する手段48と、目標
とする変速速度と実変速比の関係で操作量を定め
この操作量の電気信号を出力する手段49とを備
えることを特徴とする無段変速機の制御装置。
[Scope of Claims] 1 A primary pulley with variable pulley spacing is provided on the main shaft on the engine side, a secondary pulley with variable pulley spacing is provided on the subshaft on the wheel side, which is arranged parallel to the main shaft, and a driving pulley is provided between the two pulleys. A line pressure control valve is provided on the oil path from the hydraulic source around which the belt is wound, which controls line pressure and supplies the line pressure to the cylinder of the secondary pulley to apply pulley pressing force, and the line pressure is applied to the cylinder of the primary pulley. A variable speed control valve that changes the primary pressure by supplying and discharging line pressure to the oil passage is installed, and the primary pressure changes the ratio of the winding diameter of the drive belt to both pulleys to continuously change the speed. In the transmission, the speed change control valve 23 has control ports 23a, 23b and a spring 23c that operate to switch between an oil supply position and an oil drain position, and has oil branched from the line pressure oil passage 21 via a flow rate restriction means 32a. The passage 26 communicates with the solenoid valve 28 to generate a signal oil pressure according to the electric signal from the control unit 40, and this signal oil pressure is introduced into the control port 23a of the speed change control valve 23 through the oil path 34 to control the speed change and the speed change. The control unit 40 includes means 45 for calculating the actual gear ratio based on the primary pulley rotation speed and secondary pulley rotation speed, and means 46 for determining the target gear ratio based on the throttle opening and the secondary pulley rotation speed.
and means 47 for setting a coefficient according to the acceleration state.
, means 52 for reducing the coefficient when the deviation between the target gear ratio and the actual gear ratio is equal to or greater than a set value, and calculating a target gear change speed from the deviation between the target gear ratio and the actual gear ratio and the corrected coefficient. A control device for a continuously variable transmission, comprising means 48 and means 49 for determining a manipulated variable based on the relationship between a target gear speed and an actual gear ratio and outputting an electrical signal of the manipulated variable.
JP14346385A 1985-06-29 1985-06-29 Control device of continuously variable speed change gear Granted JPS624641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14346385A JPS624641A (en) 1985-06-29 1985-06-29 Control device of continuously variable speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14346385A JPS624641A (en) 1985-06-29 1985-06-29 Control device of continuously variable speed change gear

Publications (2)

Publication Number Publication Date
JPS624641A JPS624641A (en) 1987-01-10
JPH0554583B2 true JPH0554583B2 (en) 1993-08-12

Family

ID=15339290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14346385A Granted JPS624641A (en) 1985-06-29 1985-06-29 Control device of continuously variable speed change gear

Country Status (1)

Country Link
JP (1) JPS624641A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166877A (en) * 1987-10-02 1992-11-24 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
JPH01106740A (en) * 1987-10-19 1989-04-24 Honda Motor Co Ltd Method of controlling speed change of continuously variable transmission for vehicle
JPH0613915B2 (en) * 1987-11-16 1994-02-23 本田技研工業株式会社 Driving method of duty operated solenoid valve

Also Published As

Publication number Publication date
JPS624641A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
JPH0564258B2 (en)
JPH0564267B2 (en)
JPH0564268B2 (en)
KR100512223B1 (en) Belt-Type Continuously Variable transmission
JPH0564263B2 (en)
JPH0554588B2 (en)
JPH0554582B2 (en)
JPH02107866A (en) Speed change controller for continuously variable transmission
JPH0564272B2 (en)
JPH0564262B2 (en)
JPH0555745B2 (en)
JPH0554589B2 (en)
JPS624647A (en) Control device of continuously variable speed change gear
JPH0554581B2 (en)
JPH0564264B2 (en)
JPH0564260B2 (en)
JPH0554583B2 (en)
JPH0554587B2 (en)
JPH0564259B2 (en)
JPH0554585B2 (en)
JPH0564265B2 (en)
JPH0546465B2 (en)
JPS6361646A (en) Controller for continuously variable transmission
JPH0554584B2 (en)
JPH0554586B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term