JPH0554236B2 - - Google Patents

Info

Publication number
JPH0554236B2
JPH0554236B2 JP32769891A JP32769891A JPH0554236B2 JP H0554236 B2 JPH0554236 B2 JP H0554236B2 JP 32769891 A JP32769891 A JP 32769891A JP 32769891 A JP32769891 A JP 32769891A JP H0554236 B2 JPH0554236 B2 JP H0554236B2
Authority
JP
Japan
Prior art keywords
heating element
silicon carbide
coil
core
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32769891A
Other languages
Japanese (ja)
Other versions
JPH0513154A (en
Inventor
Yasuhiro Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP32769891A priority Critical patent/JPH0513154A/en
Publication of JPH0513154A publication Critical patent/JPH0513154A/en
Publication of JPH0554236B2 publication Critical patent/JPH0554236B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】 本発明は、炭化珪素質の
抵抗発熱体に関し、特に応用範囲の広いコイル形
状を成し、耐酸化性、高温時の強度劣化のない抵
抗発熱体の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a silicon carbide resistance heating element, and more particularly to a method for producing a resistance heating element that has a coil shape that has a wide range of applications, is oxidation resistant, and does not deteriorate in strength at high temperatures.

【0002】[0002]

【従来の技術】 高温電気炉用発熱体として黒鉛
材料から加工された黒鉛発熱体は耐熱性、耐熱衝
撃性、耐蝕性に優れているため各種の工業炉に使
用されている。
[Prior Art] Graphite heating elements processed from graphite materials as heating elements for high-temperature electric furnaces are used in various industrial furnaces because of their excellent heat resistance, thermal shock resistance, and corrosion resistance.

【0003】 しかし、黒鉛は空気中や水蒸気等の存
在する雰囲気では約500℃から酸化され始めるた
め、酸化雰囲気では使用できず、応用範囲が限定
されるという欠点があつた。
[0003] However, since graphite begins to oxidize at about 500°C in air or in an atmosphere where water vapor is present, it cannot be used in an oxidizing atmosphere, which has the disadvantage that the range of application is limited.

【0004】 そこで従来1600℃以下の空気中でも使
用できる発熱体として、炭化珪素粉粒体とバイン
ダー、及び焼結助剤等を混練し形成したものを焼
成して作つた炭化珪素発熱体が知られている。
[0004] Conventionally, as a heating element that can be used in air at temperatures below 1600°C, a silicon carbide heating element is known, which is made by kneading and firing silicon carbide powder, a binder, and a sintering aid. ing.

【0005】【0005】

【発明が解決しようとする課題】 しかし、この
炭化珪素発熱体は高温炉に使用した場合、発熱体
内部に発生する応力を吸収できずにクラツクを発
生したり、あるいはクリープを起こしやすく、そ
の結果、酸化消耗を抑制できなくなつたり、熱変
形が激しく発熱時の振動等によつて炉内での固定
不良を起こす等の問題があつた。
[Problems to be Solved by the Invention] However, when this silicon carbide heating element is used in a high-temperature furnace, it cannot absorb the stress generated inside the heating element and tends to crack or creep. However, there were problems such as the inability to suppress oxidative consumption, severe thermal deformation, and vibration during heat generation, which caused poor fixation in the furnace.

【0006】 かかる現状に鑑み、本発明者は、炭化
珪素質抵抗発熱体について研究を重ねた結果、炭
化珪素質抵抗発熱体のコイル形状が炭化珪素質中
空線状体より構成された中空構造とすることによ
り、より弾性と可撓性を増し、振動等による炉内
での発熱体の固定不良を防止し、発熱体内部に発
生する応力によつて生ずる発熱体のクラツクをな
くすと共に、中空部に不活性ガスを流し、抵抗発
熱体の酸化消耗を防止することができることを見
い出した。
[0006] In view of the current situation, the present inventor has repeatedly researched on silicon carbide resistance heating elements and found that the coil shape of the silicon carbide resistance heating element has a hollow structure composed of silicon carbide hollow linear bodies. This increases elasticity and flexibility, prevents the heating element from being improperly fixed in the furnace due to vibrations, eliminates cracks in the heating element caused by stress generated inside the heating element, and prevents the heating element from cracking due to stress generated inside the heating element. It was discovered that oxidative consumption of the resistance heating element can be prevented by flowing an inert gas through the heating element.

【0007】 本発明は、かかる中空線状体からなる
コイル形状の抵抗発熱体を効率よく製造するため
の製造方法を抵抗することを目的としている。
[0007] The present invention aims to improve the manufacturing method for efficiently manufacturing a coil-shaped resistance heating element made of such a hollow linear body.

【0008】[0008]

【課題を解決するための手段】 すなわち、本発
明は、下記工程からなる抵抗発熱体の製造方法で
あつて、 「コークス、カーボンブラツク、黒鉛粉、ピツ
チ類、繊維状物、合成樹脂の一種もしくは二種以
上の混合物を原料とし、コイル形状の綿状体にに
賦形し、加熱焼成する第一工程、 第一工程によつて得られたコイル状物を一酸化
珪素と反応させて芯部を残して炭化珪素化する第
二工程、 第二工程によつて得られた芯部を残して炭化珪
素化した該コイル状物を酸化雰囲気中で加熱し、
芯部の炭素部分を酸化除去する第三工程。」 を要旨とするものである。
[Means for Solving the Problems] That is, the present invention is a method for manufacturing a resistance heating element, which comprises the following steps, and includes the following steps: A first step in which a mixture of two or more types is used as a raw material, is shaped into a coil-shaped flocculent body, and is heated and fired.The coil-shaped article obtained in the first step is reacted with silicon monoxide to form a core. a second step of converting the coiled material into silicon carbide while leaving behind the core portion obtained in the second step;
The third step is to oxidize and remove the carbon part of the core. ” is the gist.

【0009】 本発明に用いる出発原料としてのコー
クスはピツチコークス、石油コークスなどを指称
するものであり、カーボンブラツクはチヤンネル
ブラツク、フアーネスブラツク、ランプブラツ
ク、サーマルブラツクなどである。黒鉛粉は天然
黒鉛としてりん状黒鉛、土状黒鉛や、その他キツ
シユ黒鉛や人造黒鉛を用いる。ピツチ類はコール
タールピツチ、石油ピツチ等を用いる。繊維状物
は炭素繊維、炭化珪素繊維等を用いる。合成樹脂
としてはフエノール樹脂やフラン樹脂等の熱硬化
性樹脂やポリアミド、ポリイミド等の熱可塑性樹
脂、その他の各種高分子物質を用いる。
[0009] Coke as a starting material used in the present invention refers to pitch coke, petroleum coke, etc., and carbon black includes channel black, furnace black, lamp black, thermal black, etc. The graphite powder uses natural graphite such as phosphorous graphite, earthy graphite, and other types of graphite and artificial graphite. As the pitch, coal tar pitch, petroleum pitch, etc. are used. As the fibrous material, carbon fiber, silicon carbide fiber, etc. are used. As the synthetic resin, thermosetting resins such as phenolic resin and furan resin, thermoplastic resins such as polyamide and polyimide, and other various polymeric substances are used.

【0010】 これら上記の一種又は二種以上の混合
物を加圧、加熱混練機によつて均一に混練する。
配合された出発原料は押出成形機で線状体にさ
れ、中子に巻きつけコイル状に成形固定する。
[0010] One or more of the above mixtures are uniformly kneaded using a pressurized and heated kneader.
The blended starting materials are made into a linear body using an extrusion molding machine, and then wound around a core and fixed in a coil shape.

【0011】 このようにして得られた成形体は200
℃〜300℃の空気中で不融化する。次に、700℃〜
2300℃、好ましくは1000℃〜1200℃で加熱焼成し
て炭素化する。
[0011] The molded body thus obtained is 200
Infusible in air at temperatures between ℃ and 300℃. Next, 700℃~
It is carbonized by heating and firing at 2300°C, preferably 1000°C to 1200°C.

【0012】 炭素化されたコイル状物は一酸化珪素
ガスと反応させて炭化珪素に転化させ、芯部を未
反応の炭素部分として残留させる。
[0012] The carbonized coiled material is reacted with silicon monoxide gas to be converted into silicon carbide, leaving the core as an unreacted carbon portion.

【0013】 炭素化されたコイル状物を炭化珪素に
転化するには、一酸化珪素ガス雰囲気内で、1700
℃〜2300℃の温度範囲に加熱して行なうのが好ま
しい。ここで一酸化珪素ガスは珪素粉と二酸化珪
素粉の混合体、あるいは炭素粉と二酸化珪素粉の
混合体を1400℃〜2300℃に加熱させることにより
発生させることができる。
[0013] To convert the carbonized coiled material into silicon carbide, in a silicon monoxide gas atmosphere, 1700
It is preferable to carry out heating to a temperature range of .degree. C. to 2300.degree. Here, silicon monoxide gas can be generated by heating a mixture of silicon powder and silicon dioxide powder, or a mixture of carbon powder and silicon dioxide powder to 1400°C to 2300°C.

【0014】 処理温度が1700℃以下になると一酸化
珪素ガスは雰囲気中の一酸化炭素ガスと優先的に
反応して繊維状の微細な炭化珪素ウイスカーを生
じ、炭素表面上で成長するため、炭素化コイル状
物内部への炭化珪素転化は起こらない。一方、処
理温度が2300℃以上になると炭化珪素に転化した
層が分解を起こし始めるので好ましくない。
[0014] When the processing temperature is 1700°C or lower, silicon monoxide gas preferentially reacts with carbon monoxide gas in the atmosphere to produce fine fibrous silicon carbide whiskers, which grow on the carbon surface. No silicon carbide conversion occurs inside the coiled body. On the other hand, if the treatment temperature exceeds 2300°C, the layer converted to silicon carbide will begin to decompose, which is not preferable.

【0015】 炭化珪素質中空線状体よりなるコイル
形状の抵抗発熱体を得るには芯部に未反応炭素部
分を持つ炭化珪素質コイル状物の該炭素部分を酸
化除去することによつて達成される。
[0015] Obtaining a coil-shaped resistance heating element made of a silicon carbide hollow linear body is achieved by oxidizing and removing the carbon portion of a silicon carbide coil having an unreacted carbon portion in the core. be done.

【0016】 酸化除去する方法としては空気中600
℃〜1500℃の温度下に該コイル状物を放置してお
けば、コンバージヨン法によつて得られた炭化珪
素質は多孔質で、炭化珪素に転化する前の炭素体
のポロシテイーと同一であるため、芯部の炭素部
分が拡散浸透してきた空気と選択的に反応して酸
化除去される。
[0016] As a method of oxidation removal, 600% in air
If the coiled material is left at a temperature of 1500°C to 1500°C, the silicon carbide material obtained by the conversion method is porous and has the same porosity as the carbon material before being converted to silicon carbide. Therefore, the carbon part of the core selectively reacts with the diffused air and is oxidized and removed.

【0017】 炭化珪素質中空線状体よりなるコイル
形状の抵抗発熱体は中空部にヘリウム、アルゴ
ン、窒素などの不活性ガスを流すことによつて、
空気中2000℃付近の高温で使用しても、中空部か
ら多孔質の炭化珪素厚肉部を通過して発熱体表面
へ不活性ガスがただよい出てくるため、空気に対
して不活性ガスの境膜バリヤーを形成して表層の
炭化珪素質の酸化消耗を低くおさえる働きがあ
る。
[0017] A coil-shaped resistance heating element made of a hollow linear body made of silicon carbide is heated by flowing an inert gas such as helium, argon, or nitrogen into the hollow part.
Even when used in air at high temperatures of around 2000℃, inert gas easily flows out from the hollow part through the porous thick-walled silicon carbide part to the surface of the heating element. It has the function of forming a film barrier and suppressing the oxidative wear and tear of the silicon carbide layer on the surface.

【0018】 又、炭化珪素質中空線状体よりなる抵
抗発熱体の中空部に各種ガス体を流すことによつ
て、必要とする温度のガス体を手軽に制度良く得
ることができ、多方面に応用範囲を広げることが
できる。一般に、炭化珪素発熱体の製造方法は、
複雑形状のものをつくることができず、炭化珪素
自体が高硬度のため後加工をするにしても極めて
困難であつた。しかし、上記製造方法によつてコ
イル状の炭化珪素質抵抗発熱体を容易に製造する
ことができる。
[0018] In addition, by flowing various gas bodies into the hollow part of the resistance heating element made of a silicon carbide hollow linear body, the gas body at the required temperature can be easily and accurately obtained, which can be used in many ways. The range of applications can be expanded to Generally, the manufacturing method of silicon carbide heating element is as follows:
It was not possible to manufacture products with complex shapes, and post-processing was extremely difficult due to the high hardness of silicon carbide itself. However, a coiled silicon carbide resistance heating element can be easily manufactured by the above manufacturing method.

【0019】 また、黒鉛ブロツクから切り出して、
スリツトを入れたり、スパイラル状に切削加工し
たものを珪化反応によつて炭化珪素に転化して発
熱体を作る方法も考えられるが、黒鉛ブロツクか
ら中空線状体よりなるコイル形状に加工切り出し
することは不可能に近く、上記製造方法を用いる
ことによつてコイル状の炭化珪素質抵抗発熱体を
効率よく製造することができる。したがつて、上
記製造方法は工業的な生産に適した製造方法であ
る。
[0019] Also, cut out from graphite block,
Although it is possible to make a heating element by making a slit or cutting it into a spiral shape and converting it into silicon carbide through a silicification reaction, it is also possible to make a heating element by cutting out a coil shape made of a hollow wire from a graphite block. However, by using the above manufacturing method, it is possible to efficiently manufacture a coiled silicon carbide resistance heating element. Therefore, the above manufacturing method is suitable for industrial production.

【0020】 このようにして得られた炭化珪素質中
空線状体のコイル形状抵抗発熱体は、コイル弾性
によつて他の形状の発熱体では作用しない応力吸
収能があり、振動等による炉内での発熱体の固定
不良を防止し、発熱体内部に発生する応力によつ
て生ずる発熱体のクラツクをなくして炉の設計に
柔軟性を与える。また、炭化珪素質抵抗発熱体は
焼結助剤を含んだ炭化珪素質焼結体とは異なり、
炭化珪素質のみによつて構成された反応焼結体
で、高温使用中に液相をつくるような低融点酸化
物等を含んでいないため、高温下で急激な強度劣
化やクリープを起こすことがない。さらに、炭化
珪素質抵抗発熱体の中空部に不活性ガスを流し、
コイル状抵抗発熱体の酸化消耗を防止することが
でき、炭化珪素の分解温度である、2300℃まで空
気中で発熱体として用いることができるものであ
る。
[0020] The coil-shaped resistance heating element made of the silicon carbide hollow wire body obtained in this way has a stress absorption ability that does not work with other shaped heating elements due to the coil elasticity, and it has the ability to absorb stress in the furnace due to vibration etc. This prevents the heating element from being improperly fixed, eliminates cracks in the heating element caused by stress generated inside the heating element, and provides flexibility in the design of the furnace. In addition, silicon carbide resistance heating elements are different from silicon carbide sintered bodies that contain sintering aids.
It is a reactive sintered body composed only of silicon carbide, and does not contain low-melting point oxides that would form a liquid phase during high-temperature use, so it does not cause rapid strength deterioration or creep at high temperatures. do not have. Furthermore, inert gas is flowed into the hollow part of the silicon carbide resistance heating element.
It is possible to prevent oxidative consumption of the coiled resistance heating element, and it can be used as a heating element in air up to 2300°C, which is the decomposition temperature of silicon carbide.

【0021】[0021]

【作用】 本発明にかかる抵抗発熱体の製造方法
では、第一工程で得られた炭素質のコイル状物に
一酸化珪素ガスを拡散浸透させて炭素質コイル状
物を炭化珪素に転化させるコンバージヨン法を用
いているため、第一工程で成形されたままの形を
保つて炭化珪素になり、後加工をする必要がな
い。そして、炭化珪素質中空線状体よりなるコイ
ル形状の抵抗発熱体は、芯部に未反応炭素部分を
持つ炭化珪素質コイル状物の該炭素部分を酸化除
去することによつて、容易に製造することができ
る。
[Function] In the method for manufacturing a resistance heating element according to the present invention, silicon monoxide gas is diffused and permeated into the carbonaceous coiled material obtained in the first step to convert the carbonaceous coiled material into silicon carbide. Since the silicon carbide method is used, the silicon carbide retains its shape in the first step, and there is no need for post-processing. A coil-shaped resistance heating element made of a silicon carbide hollow linear body can be easily produced by oxidizing and removing the carbon portion of a silicon carbide coil having an unreacted carbon portion in the core. can do.

【0022】【0022】

【実施例】 次に、本発明を実施例によつて具体
的に説明する。
[Examples] Next, the present invention will be specifically explained using examples.

【0023】 実施例 1 炭素骨材として石油コークス15部、ランプブラ
ツク45部、人造黒鉛粉28部、土状黒鉛粉2部、レ
ゾール型フエノール樹脂10部の100重量に対しコ
ールタールピツチ49重量部を2本のZ型混和翼を
組合せて使用した混練機に入れて150分かけて混
合した。なお混合に際してはまず常温で炭素骨材
とコールタールピツチとを充分に混ぜ合せてか
ら、170℃に昇温したのち120分間混合した。 得られた混合物を押出成形機に供給して押出し
温度150℃で3mmφの線状体に押し出し、直径30
mmφの黒鉛製中子に図1に示すようにコイル状に
巻き取つた。これを200℃、24時間空気中で不融
化した後、昇温速度約300℃/hrにより2000℃ま
で昇温し、炭素質コイル状物を得た。 得られた炭素質コイル状物を珪素粉と二酸化珪
素粉の混合成形体2Kg(モル比1.0)と接触しな
いように同一黒鉛容器に入れ密閉し、1950℃で加
熱し、この温度で30分間保持した。 この処理の結果、図2に示すような線状体断面
が芯部に炭素部分を残して、囲りがβ型炭化珪素
に転化したコイル状物を得た。これを800℃空気
雰囲気の炉内に入れて芯部の炭素部分を酸化除去
し、図3に示すような炭化珪素質中空線状体より
なるコイル形状の抵抗発熱体が得られた。該発熱
体の給電端子部はアルミニウムメタリコン処理を
施した。 得られた発熱体の中空部に0.51/minのアルゴ
ンガスを流しながら、空気中1900℃まで加熱し、
30回くり返し使用したが、発熱体の電気抵抗の変
化、クラツク呼び熱変形はほとんど認められなか
つた。
[0023] Example 1 15 parts of petroleum coke, 45 parts of lamp black, 28 parts of artificial graphite powder, 2 parts of earthy graphite powder, and 49 parts by weight of coal tar pitch per 100 parts of resol type phenolic resin 10 parts as carbon aggregate. was placed in a kneader using a combination of two Z-type mixing blades and mixed for 150 minutes. During mixing, the carbon aggregate and coal tar pitch were first thoroughly mixed at room temperature, then heated to 170°C and mixed for 120 minutes. The obtained mixture was fed to an extrusion molding machine and extruded at an extrusion temperature of 150°C into a linear body with a diameter of 3 mmφ.
It was wound into a coil shape as shown in Fig. 1 around a mmφ graphite core. This was made infusible in air at 200°C for 24 hours, and then heated to 2000°C at a heating rate of about 300°C/hr to obtain a carbonaceous coiled material. The obtained carbonaceous coiled material was placed in a sealed graphite container to avoid contact with 2 kg of a mixed molded product of silicon powder and silicon dioxide powder (molar ratio 1.0), heated to 1950°C, and held at this temperature for 30 minutes. did. As a result of this treatment, a coiled product was obtained in which the cross section of the linear body was converted into β-type silicon carbide while the carbon portion remained in the core as shown in FIG. This was placed in a furnace in an air atmosphere at 800°C to oxidize and remove the carbon portion of the core, yielding a coil-shaped resistance heating element made of a silicon carbide hollow linear body as shown in FIG. The power supply terminal portion of the heating element was treated with aluminum metallic. While flowing argon gas at 0.51/min into the hollow part of the heating element obtained, it was heated to 1900℃ in air.
Although it was used 30 times, there was hardly any change in the electrical resistance of the heating element or any cracks or thermal deformation.

【0024】【0024】

【発明の効果】 以上説明したように、本発明の
製造方法により、より弾性と可撓性を増し、振動
等による炉内で発熱体の固定不良を防止し、発熱
体内部に発生する応力によつて生ずる発熱体のク
ラツクをなくすと共に、抵抗発熱体の酸化消耗を
防止することができる内部が中空のコイルの形状
の抵抗発熱体を、後加工の手間を要せず、サイズ
制限もなく、容易に製造することができ、効率的
な生産を図ることができる、産業上寄与するとこ
ろが極めて大きい。
Effects of the Invention As explained above, the manufacturing method of the present invention increases elasticity and flexibility, prevents the heating element from being improperly fixed in the furnace due to vibrations, etc., and reduces the stress generated inside the heating element. We have developed a resistance heating element in the form of a coil with a hollow interior that eliminates the cracks that occur in the heating element and prevents the resistance heating element from being consumed by oxidation, without the need for post-processing and without size restrictions. It can be easily manufactured and can achieve efficient production, making it an extremely important contribution to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る製造方法において加熱処理
された炭素質コイル状物を示す概略正面図であ
る。
FIG. 1 is a schematic front view showing a carbonaceous coiled material heat-treated in a manufacturing method according to the present invention.

【図2】本発明の製造方法において製造途中のコ
イル状物の線状体断面をあらわし、芯部に炭素部
分を残して周囲が炭化珪素化された状態を示す概
略断面図である。
FIG. 2 is a schematic sectional view showing a cross-section of a linear body of a coil-shaped product that is being manufactured in the manufacturing method of the present invention, and shows a state in which the periphery is made of silicon carbide while leaving a carbon portion in the core.

【図3】本発明の製造方法において芯部の炭素部
分を酸化除去して得られたコイル状炭化珪素質抵
抗発熱体を形成する線状体を示す概略断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing a linear body forming a coiled silicon carbide resistance heating element obtained by oxidizing and removing the carbon portion of the core in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 コイル状抵抗発熱体 2 炭素 3 炭化珪素質 4 中空部。 1 Coiled resistance heating element 2 carbon 3 Silicon carbide material 4 Hollow part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記工程からなる抵抗発熱体の製
造方法。 コークス、カーボンブラツク、黒鉛粉、ピツチ
類、繊維状物、合成樹脂の一種もしくは二種以上
の混合物を原料とし、コイル形状の綿状体に賦形
し、加熱焼成する第一工程、 第一工程によつて得られたコイル状物を一酸化
珪素と反応させて芯部を残して炭化珪素化する第
二工程、 第二工程によつて得られた芯部を残して炭化珪
素化した該コイル状物を酸化雰囲気中で加熱し、
芯部の炭素部分を酸化除去する第三工程。
1. A method for manufacturing a resistance heating element, comprising the following steps. The first step is to use one or a mixture of two or more of coke, carbon black, graphite powder, pitch, fibrous materials, and synthetic resin as raw materials, shape it into a coil-shaped cotton body, and heat and bake it. a second step of reacting the coil-shaped material obtained by the step with silicon monoxide to form silicon carbide while leaving the core; heating the substance in an oxidizing atmosphere,
The third step is to oxidize and remove the carbon part of the core.
JP32769891A 1991-12-11 1991-12-11 Manufacture of resistant heating element Granted JPH0513154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32769891A JPH0513154A (en) 1991-12-11 1991-12-11 Manufacture of resistant heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32769891A JPH0513154A (en) 1991-12-11 1991-12-11 Manufacture of resistant heating element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62214099A Division JPH0644506B2 (en) 1987-08-27 1987-08-27 Resistance heating element

Publications (2)

Publication Number Publication Date
JPH0513154A JPH0513154A (en) 1993-01-22
JPH0554236B2 true JPH0554236B2 (en) 1993-08-12

Family

ID=18201981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32769891A Granted JPH0513154A (en) 1991-12-11 1991-12-11 Manufacture of resistant heating element

Country Status (1)

Country Link
JP (1) JPH0513154A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592924B2 (en) * 2000-09-26 2010-12-08 株式会社イノアックコーポレーション Ceramic heater
KR100686328B1 (en) * 2005-08-18 2007-02-22 (주)지스코 Lamp heater with pipe typed form of woven carbon fibers and method thereof
JP2007251014A (en) * 2006-03-17 2007-09-27 Hitachi Kokusai Electric Inc Substrate-treating device
KR101065185B1 (en) * 2010-02-12 2011-09-19 제이씨텍(주) Cylindrical Carbon Heating Element
WO2016138545A1 (en) 2015-02-23 2016-09-01 E-Smarts Global Licensing Ltd High density soilless plant growth system and method
CN114920577A (en) * 2022-06-01 2022-08-19 山东卓越高新材料科技有限公司 Carbon graphite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0513154A (en) 1993-01-22

Similar Documents

Publication Publication Date Title
KR910014328A (en) Method for producing porous solid of refractory carbide system using metal or nonmetal and organic compound
FI112206B (en) A process for making porous, flow-permeable moldings, a silicon carbide and a diesel soot filter element
JPH0554236B2 (en)
JP2006312569A (en) Carbon nanotube solidified body connected with silicon carbide and its producing method
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
JP5557231B2 (en) Method for producing porous ceramic fiber body
JPH0644506B2 (en) Resistance heating element
JPH0355430B2 (en)
JPS61275114A (en) Production of graphite
JP7167814B2 (en) Method for producing modified pitch
KR102359342B1 (en) A method of manufacturing porous materials including carbon fiber
JP4988252B2 (en) Method for producing sintered metal carbide
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
US5037699A (en) Heat-resistant, corrosion-resistant inorganic composite bodies and process for preparing the same
JPH01183413A (en) Spring and production thereof
JPH08217568A (en) Production of porous electrically conductive silicon carbide sintered body
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2012041214A (en) Method for producing silicon carbide sintered compact, and silicon carbide sintered compact
KR970008694B1 (en) Process for the preparation of carbon composite material
JPH01239060A (en) Production of carbon fiber reinforced carbon composite material
JP7060702B2 (en) A method for stabilizing a precursor fiber for carbon fiber production and a method for producing carbon fiber using the method.
JPS59223210A (en) Carbonaceous article and its manufacture
JPH07115968B2 (en) Method for producing porous SiC whisker pellets
JP2004002130A (en) Ceramic porous body and its forming process
JPH02184581A (en) Production of cellular carbonaceous material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20070812

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080812

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080812