JPH0553921B2 - - Google Patents

Info

Publication number
JPH0553921B2
JPH0553921B2 JP3025786A JP3025786A JPH0553921B2 JP H0553921 B2 JPH0553921 B2 JP H0553921B2 JP 3025786 A JP3025786 A JP 3025786A JP 3025786 A JP3025786 A JP 3025786A JP H0553921 B2 JPH0553921 B2 JP H0553921B2
Authority
JP
Japan
Prior art keywords
steam
switching
valve
speed
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3025786A
Other languages
Japanese (ja)
Other versions
JPS62189303A (en
Inventor
Tadahiko Iijima
Takumi Kawai
Sadao Yanagida
Toshoshi Ishikawa
Hiroshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3025786A priority Critical patent/JPS62189303A/en
Publication of JPS62189303A publication Critical patent/JPS62189303A/en
Publication of JPH0553921B2 publication Critical patent/JPH0553921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気タービン装置の調速方式切換装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speed governing mode switching device for a steam turbine device.

〔従来の技術〕[Conventional technology]

蒸気タービンの調速方式として、複数の蒸気加
減弁(流量制御弁)を同時に開いて行く絞り調速
方式と、複数の蒸気加減弁を順次に開くノズル締
切調速方式が最も代表的な調速方式として知られ
ている。絞り調速方式では、第5図の曲線22の
如く各蒸気加減弁を負荷に応じて一斉に同一開度
で開いて行くので、蒸気タービン全体に蒸気が均
等に与えられる。従つて、タービン内で温度差が
生じず、熱応力も発生しない。しかし、弁開度を
徐々に増加させるため、弁が絞られている間の流
量にロスが生じ、部分負荷では効率が悪くなると
いう欠点がある。一方、ノズル締切調速方式で
は、第5図に示す如く、まず第1の弁を直線23
aのように開いていき、所定の負荷に達したと
き、第2の弁を直線24aのように開く、という
ように各弁を1個づつ順次に全開状態にして行く
ため、1個の弁のそれぞれについてはすぐに全開
状態になるので、絞りによる流量のロスは生じな
い。しかし、未だ開かれていない弁の部位と全開
状態となつている弁の部位との温度差が大きくな
るため、熱応力が発生するという欠点がある。そ
こで、いずれの調速方式を採用するかは、そのタ
ービンの運転特性によつて判断される。すなわ
ち、深夜は運転を停止し、早朝に起動して昼間の
ピークロードに対処するという、ピークロード特
性のタービンでは、熱応力が生じない絞り調速方
式が採用される。また、1年に1度程度だけ起動
または停止する、ベースロード特性のタービンで
は、広い負荷範囲に亘つて高い熱効率を有するノ
ズル締切調速方式が採用される。
The most typical speed governing methods for steam turbines are the throttle regulating method, in which multiple steam regulating valves (flow control valves) are opened simultaneously, and the nozzle closing regulating method, in which multiple steam regulating valves are opened sequentially. known as the method. In the throttle control system, each steam control valve is opened at the same opening degree according to the load, as shown by curve 22 in FIG. 5, so that steam is evenly distributed throughout the steam turbine. Therefore, no temperature differences occur within the turbine and no thermal stress occurs. However, since the valve opening degree is gradually increased, there is a loss in flow rate while the valve is being throttled, and there is a drawback that efficiency deteriorates under partial load. On the other hand, in the nozzle closing speed regulating system, as shown in Fig. 5, the first valve is first
When a predetermined load is reached, the second valve is opened as shown in line 24a, and each valve is sequentially fully opened one by one. Since each of them immediately becomes fully open, there is no loss of flow rate due to the restriction. However, there is a drawback that thermal stress is generated due to the large temperature difference between the portion of the valve that is not yet opened and the portion of the valve that is fully open. Therefore, which speed regulating method to adopt is determined based on the operating characteristics of the turbine. In other words, in a turbine with peak load characteristics, in which operation is stopped late at night and started early in the morning to cope with the daytime peak load, a throttling speed control method that does not generate thermal stress is adopted. In addition, for base-load turbines that are started or stopped only about once a year, a nozzle shut-off speed regulating system is used that has high thermal efficiency over a wide load range.

従来における調速方式は、上記の2つの調速方
式のうちいずれか一方を固定的に用いるのが一般
的であつた。しかしながら、例えば、ノズル締切
方式を採用しているタービンにおいては、熱応力
が大きいという問題の他に、部分負荷において一
部の弁のみに蒸気を流すことがあるので、その弁
のエロージヨンが他の弁に比較して大きくなると
いう問題が生じていた。このエロージヨンは、主
としてボイラ等の蒸気発生器側からのスケール等
の飛来物によるものであるが、スケール等の飛来
物は停止後の再起動時に著しく多く、その後はほ
とんど無くなることから、停止後の再起動時のみ
を絞り調速方式とし、スケール等の飛来物が無く
なつた時点で、ノズル締切調速方式に切換えるよ
うにしたものがある。
Conventional speed governing systems generally use one of the two speed governing systems described above in a fixed manner. However, for example, in a turbine that uses a nozzle shutoff system, in addition to the problem of large thermal stress, steam may flow only through some valves at partial load, so erosion of that valve may affect other valves. A problem has arisen in that the valve is large compared to the valve. This erosion is mainly caused by flying objects such as scale from the side of the steam generator such as a boiler. However, flying objects such as scale are extremely large when restarting after a shutdown, and almost disappear after that. Some systems use the throttling control method only when restarting, and then switch to the nozzle closing speed control method when there are no more flying objects such as scale.

このような調速方式の切換えを行うものとし
て、例えば特許第1034856号に示されているもの
があるが、ここでは複数の蒸気加減弁の開度を、
切換前後の開度差が同一比率で変化するように制
御するようにしている。
For example, there is a device that switches the speed regulating method as shown in Japanese Patent No. 1034856, but here, the opening degree of multiple steam control valves is changed by
Control is performed so that the difference in opening before and after switching changes at the same ratio.

すなわち、蒸気加減弁として第1および第2の
弁が有るものとすると、絞り調速時は、まず第5
図の曲線22に沿つて第1および第2の弁開度を
同一開度で変化させ、所定の弁開度に達した後
は、ノズル調速方式に切換え、第1の弁は曲線2
3bに沿つて開き、また、第2の弁は曲線24b
に沿つて閉じる如く、同一比率で開度を変化させ
るものである。
In other words, assuming that there are first and second valves as steam control valves, first the fifth valve is used during throttling speed control.
The first and second valve opening degrees are changed at the same opening degree along the curve 22 in the figure, and after reaching the predetermined valve opening degree, the mode is switched to the nozzle speed control method, and the first valve is changed to the curve 22.
3b, and the second valve opens along curve 24b.
The opening degree is changed at the same ratio so that the opening is closed along the .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述した調速方式の切換装置によれ
ば、各弁の開度は一定比率で変化するものの、弁
の開度と流量の関係に非直線特性関係がある場合
には、第1の弁と第2の弁を通過する蒸気流量が
第6図に示すように一定の比率関係で変化しなく
なり、その結果としてタービンに流入する総合蒸
気流量が調速方式の切換え途中で変動し、負荷変
動が生じてしまうという問題があつた。
However, according to the above-mentioned speed control type switching device, although the opening degree of each valve changes at a constant ratio, if there is a non-linear characteristic in the relationship between the valve opening degree and the flow rate, the first valve As shown in Figure 6, the steam flow rate passing through the second valve and the second valve no longer change in a fixed ratio relationship, and as a result, the total steam flow rate flowing into the turbine fluctuates during the switching of the regulating method, causing load fluctuations. There was a problem that this occurred.

本発明の目的は、負荷変動が生じることなく調
速方式を切換えることができる調速方式切換装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a speed governing system switching device that can switch the speed governing system without causing load fluctuations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、調速方式の切換え前と切換え後に各
蒸気加減弁を通過する蒸気流量が同一比率で変化
するように、各弁に対する開度指令を変換する手
段を設けたものである。
The present invention is provided with means for converting the opening degree command for each valve so that the flow rate of steam passing through each steam control valve changes at the same ratio before and after switching the regulating method.

〔作用〕[Effect]

各弁に対する開度指令は、各弁の開度と流量特
性に基づきそれぞれを通過する蒸気流量が同一比
率で変化するような開度指令に変換され、各弁に
与えられる。従つて、各弁の開度と流量特性に非
直線的な関係があつたとしても各弁を通過する蒸
気流量の変化分の総和は常に零となり、すなわち
タービンに流入する蒸気流量の総和は常に一定と
なり、負荷変動が防止される。
The opening degree command for each valve is converted into an opening degree command such that the steam flow rate passing through each valve changes at the same ratio based on the opening degree and flow rate characteristics of each valve, and is given to each valve. Therefore, even if there is a non-linear relationship between the opening degree and flow rate characteristics of each valve, the sum of the changes in the steam flow rate passing through each valve will always be zero, that is, the sum of the steam flow rates flowing into the turbine will always be It becomes constant and load fluctuations are prevented.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロツク図で
あり、2つの蒸気加減弁α,βを持つタービンの
調速方式切換装置に適用したものである。従つ
て、各弁の開度を制御する系として添字αを付し
た系と添字βを付した系の2系統の開度制御系が
設けられている。
FIG. 1 is a block diagram showing one embodiment of the present invention, which is applied to a speed control system switching device for a turbine having two steam control valves α and β. Therefore, two opening control systems, a system with a subscript α and a system with a subscript β, are provided as systems for controlling the opening degree of each valve.

第1図において、1は速度検出手段20で検出
したタービンの実回転速度NAと定格速度NSとの
偏差(NS−NA)と調定率δNとで定まる速度偏差
LNに負荷設定器21で設定された設定値を加算
することにより、負荷指令値LRを算出する基本
制御手段、2α,2βは基本制御手段1から出力
される負荷指令値LRを絞り調速時の蒸気加減弁
の開度要求信号に変換する負荷/開度変換手段、
3α,3βはノズル締切調速(ノズル調速)時に
おいて要求蒸気量を開度要求信号に変換する負
荷/開度変換手段、4α1,4β2は上記変換手段2
α,2β,3α,3βから出力された各開度要求
信号を弁開度と蒸気流量との特性関係に基づいて
要求蒸気流量信号に変換する開度/流量変換手
段、5α1〜5β2は調速方式切換比率信号13,1
4により上記変換手段4α1〜4β2から出力された
要求蒸気流量信号を操作する掛算器、6αは掛算
器5α1,5α2の出力信号を加算する加算器、6β
は掛算器5β1,5β2の出力信号を加算する加算
器、7α,7βは加算器6α,6βから出力され
た要求蒸気流量信号をこれに対応する弁開度の要
求信号に変換する流量/開度変換手段、8α,8
βは変換手段7α,7βから出力された弁開度要
求信号に従つて実際の弁開度を制御する弁位置制
御手段、9,10は調速方式切換え時に2つの調
速方式より求まる各弁毎の要求蒸気流量を内分す
るための切換比率信号13,14を発生する切換
比率信号発生器、11は切換比率信号13,14
を発生させるための切換駆動回路、12は切換駆
動回路11に動作指令を与える調速方式切換指令
回路である。
In FIG. 1, 1 is the speed deviation determined by the deviation between the actual rotational speed N A of the turbine detected by the speed detection means 20 and the rated speed N S (N S - N A ) and the regulation rate δ N
Basic control means that calculates the load command value L R by adding the set value set by the load setting device 21 to L N. 2α and 2β throttle the load command value L R output from the basic control means 1. load/opening conversion means for converting into a request signal for the opening of the steam control valve during speed control;
3α and 3β are load/opening conversion means for converting the required steam amount into an opening request signal at the time of nozzle closing speed regulation (nozzle speed regulation), and 4α 1 and 4β 2 are the above-mentioned conversion means 2.
Opening degree/flow rate conversion means 5α 1 to 5β 2 convert each opening request signal outputted from α, 2β, 3α, and 3β into a required steam flow rate signal based on the characteristic relationship between the valve opening degree and the steam flow rate. Speed control method switching ratio signal 13,1
4 is a multiplier for manipulating the required steam flow rate signal outputted from the conversion means 4α 1 to 4β 2 , 6α is an adder for adding the output signals of multipliers 5α 1 and 5α 2 , and 6β is
is an adder that adds the output signals of multipliers 5β 1 and 5β 2 , and 7α and 7β are flow rate/flow rates that convert the required steam flow rate signal output from the adders 6α and 6β into a corresponding request signal for the valve opening degree. Opening degree conversion means, 8α, 8
β is a valve position control means that controls the actual valve opening according to the valve opening request signal outputted from the conversion means 7α and 7β, and 9 and 10 are each valve determined from the two regulating methods when switching the regulating method. A switching ratio signal generator 11 generates switching ratio signals 13 and 14 for internally dividing the required steam flow rate at each time;
A switching drive circuit 12 is a speed-governing type switching command circuit that gives an operation command to the switching drive circuit 11.

次に、第1図の構成において、負荷指令値LR
に対応した弁開度要求信号が求まるまでの過程を
第2図のフローチヤートに従つて説明する。
Next, in the configuration shown in Figure 1, load command value L R
The process of finding the valve opening request signal corresponding to the following will be explained with reference to the flowchart shown in FIG.

まず、負荷指令値LRに基づいて絞り調速時お
よびノズル調速時の各弁開度指令値αP1,αP2
求める。
First, the valve opening command values αP 1 and αP 2 during throttle control and nozzle speed control are determined based on the load command value L R .

αP1=f2(LR) ……(1) αP2=f3(LR) ……(2) 但し、f2は変換手段2α,2βの絞り調速カム
特性、f3は変換手段3α,3βのノズル調速カム
特性である。
αP 1 = f 2 (L R ) …(1) αP 2 = f 3 (L R ) …(2) However, f 2 is the throttle regulating cam characteristic of the conversion means 2α and 2β, and f 3 is the conversion means These are the nozzle speed regulating cam characteristics of 3α and 3β.

次に、流量指令値αF1,αF2を求める。 Next, flow rate command values αF 1 and αF 2 are determined.

αF1=f4(αP1) ……(3) αF2=f4(αP2) ……(4) 但し、f4は変換手段4α1〜4β2の弁開度に対す
る通過蒸気流量を表わす変換特性である。
αF 1 = f 4 (αP 1 ) ...(3) αF 2 = f 4 (αP 2 ) ...(4) However, f 4 represents the flow rate of passing steam with respect to the valve opening degree of the conversion means 4α 1 to 4β 2 It is a conversion property.

次に、2つの調速方式を切換える時の切換比率
信号K1,K2を発生する。すなわち、 K2=1−K1 ……(5) とし、絞り調速時 K1=1 ……(6) ノズル調速時 K1=0 ……(7) として、ノズル調速から絞り調速への切換時、 K1=K1+ΔK ……(8) 絞り調速からノズル調速への切換時 K1=K1−ΔK ……(9) とし、(8)式または(9)式を繰返し計算し、ΔKの変
化幅で時間的に変化する切換比率信号K1,K2
発生させる。
Next, switching ratio signals K 1 and K 2 for switching between the two speed governing systems are generated. In other words, K 2 = 1 - K 1 ...(5), K 1 = 1 ... (6) during nozzle speed control, K 1 = 0 ... (7), and from nozzle speed control to aperture control. When switching to speed, K 1 = K 1 + ΔK ... (8) When switching from throttle speed control to nozzle speed control, K 1 = K 1 - ∆K ... (9), and use equation (8) or (9) The formula is repeatedly calculated to generate switching ratio signals K 1 and K 2 that change over time with a change width of ΔK.

次に、負荷指令値LRに対する蒸気流量指令FL
を求める FL〓=αF1×K1+αF2×K2 ……(10) ここで、前述の第(5)式〜第(9)式からわかるよう
に、切換比率信号K1,K2が時間と共に一定速度
で「1」と「0」との間を移動するため、調速方
式切換時のの流量指令FLαの変化量は一定値と
なる。K1が「1」から「0」または「0」から
「1」に移動する時間をTとすると、FL〓の変化量
は dFL〓/dt=αF1−αF2/T ……(11) となる。
Next, the steam flow rate command F L 〓 for the load command value L R
Find F L 〓 = αF 1 ×K 1 + αF 2 ×K 2 ... (10) Here, as can be seen from the above-mentioned equations (5) to (9), the switching ratio signals K 1 , K 2 moves between "1" and "0" at a constant speed over time, so the amount of change in the flow rate command F L α at the time of switching the governor mode becomes a constant value. If the time for K 1 to move from "1" to "0" or from "0" to "1" is T, then the amount of change in F L 〓 is dF L 〓/dt=αF 1 −αF 2 /T...( 11) becomes.

この演算は各弁毎に行なわれるため、添字βで
示す系の弁については dFL〓/dt=βF1−βF2/T ……(12) となる。また、切換え前後の総合流量は一定であ
るから αF1+βF1=αF2+βF2 ……(13) の関係が成立し、第(11)〜第(13)式より調速方式
の切換途中において dFL〓/dt+dFL〓/dt=0 ……(14) となり、流量指令の変動は生じない。
Since this calculation is performed for each valve, for the valves in the system indicated by the subscript β, dF L 〓/dt=βF 1 −βF 2 /T (12). In addition, since the total flow rate before and after switching is constant, the relationship αF 1 + βF 1 = αF 2 + βF 2 ...(13) is established, and from equations (11) to (13), during switching of the governing system, dF L 〓/dt+dF L 〓/dt=0...(14) Therefore, no fluctuation in the flow rate command occurs.

実際の制御においては、弁開度を調節すること
により蒸気流量を制御するものであるため、第(10)
式で求めた流量指令FL〓を次式によつて開度指令
Pαに逆変換する。
In actual control, the steam flow rate is controlled by adjusting the valve opening, so
The flow rate command F L 〓 obtained by the formula is used as the opening command using the following formula.
Convert back to Pα.

Pα=f4 -1(FL〓) ……(15) 以上が負荷指令値LRに対する弁開度指令値Pα
が求まるまでの流れである。
Pα=f 4 -1 (F L 〓) ...(15) The above is the valve opening command value Pα for the load command value L R
This is the flow until it is found.

次に、弁開度が変化する様子を第3図を参照し
ながら説明する。まず、現在は絞り調速運転状態
であり、運転点Pで運転しており、これからノズ
ル調速方式に切換えるものとする。
Next, how the valve opening degree changes will be explained with reference to FIG. First, it is assumed that the system is currently in throttle control mode, operating at operating point P, and will now switch to the nozzle speed control mode.

切換前の各弁の開度は、運転点Pと曲線27が
交わる点の開度αP1,βP1であるから、この時の
蒸気流量はそれぞれαF1,βF1である。
The opening degrees of each valve before switching are the opening degrees αP 1 and βP 1 at the intersection of the operating point P and the curve 27, so the steam flow rates at this time are αF 1 and βF 1, respectively.

この時、基本制御手段1は運転点Pに対応する
負荷指令値LRを出力しており、変換手段2α,
2βは開度αP1,βP1に相当する信号を出力して
いる。さらに変換手段3α,3βは、ノズル調速
をした場合に、現在の蒸気流量(αF1+βF1)を
得るに必要な開度αP2,βP2に相当する信号を出
力している。
At this time, the basic control means 1 is outputting the load command value L R corresponding to the operating point P, and the conversion means 2α,
2β outputs signals corresponding to the opening degrees αP 1 and βP 1 . Further, the converting means 3α and 3β output signals corresponding to the opening degrees αP 2 and βP 2 necessary to obtain the current steam flow rate (αF 1 +βF 1 ) when the nozzle speed is controlled.

これらの信号は、変換手段4α1〜4β2によつて
開度と流量との関係に従つて変換される。従つ
て、変換手段4α1,4β1は、絞り調速用の要求蒸
気流量信号としてαF1,βF1に相当する信号を出
力し、また変換手段4α2,4β2はノズル調速用の
蒸気流量信号としてαF2,βF2に相当する信号を
出力している。
These signals are converted by converting means 4α 1 to 4β 2 according to the relationship between the opening degree and the flow rate. Therefore, the conversion means 4α 1 and 4β 1 output signals corresponding to αF 1 and βF 1 as required steam flow rate signals for throttle speed control, and the conversion means 4α 2 and 4β 2 output signals corresponding to the steam flow rate signals for nozzle speed control. Signals corresponding to αF 2 and βF 2 are output as flow signals.

そして、絞り調速での運転状態であるため、切
換比率信号13(=K1)は「1」であり、また
切換比率信号14(=K2)は「0」である。従
つて、掛算器5α2,5β2の出力は「0」となり、
絞り調速用の要求蒸気流量信号のみが掛算器5
α1,5β1から出力されることになり、加算器6
α,6βの出力信号は、流量αF1,βF1に相当す
る信号となる。この信号は、変換手段7α,7β
によつて弁開度指令に変換され、αP1,βP1とな
つて弁位置制御回路8α,8βに入力される。こ
れによつて、弁開度はαP1,βP1に制御される。
Since the operating state is throttle controlled, the switching ratio signal 13 (=K 1 ) is "1" and the switching ratio signal 14 (=K 2 ) is "0". Therefore, the outputs of multipliers 5α 2 and 5β 2 are “0”,
Only the required steam flow rate signal for throttling control is sent to the multiplier 5.
It will be output from α 1 and 5β 1 , and adder 6
The output signals of α and 6β are signals corresponding to the flow rates αF 1 and βF 1 . This signal is converted into converting means 7α, 7β
is converted into a valve opening degree command by αP 1 and βP 1 and inputted to valve position control circuits 8α and 8β. As a result, the valve opening degrees are controlled to αP 1 and βP 1 .

この状態でノズル調速に切換えると、切換比率
信号発生器9,10の出力が切換駆動回路11に
よつて、ノズル調速側に徐々に移動する。このた
め、切換比率信号13(=K1)は「1」から
「0」に、また切換比率信号14(=K2)は
「0」から「1」にそれぞれ同一速度で変化する。
この時、運転点がPであれば、変換手段4α1〜4
β2は流量αF1,βF1,αF2,βF2に相当する信号を
出力しているため、これらの信号が掛算器5α1
5β2で信号13,14が乗算されることによつて
比例配分される。この結果、加算器6α,6βか
らは2つの調速方式における要求蒸気流量信号を
内分した信号が出力される。
When switching to nozzle speed control in this state, the outputs of the switching ratio signal generators 9 and 10 are gradually moved to the nozzle speed control side by the switching drive circuit 11. Therefore, the switching ratio signal 13 (=K 1 ) changes from "1" to "0" and the switching ratio signal 14 (=K 2 ) changes from "0" to "1" at the same speed.
At this time, if the operating point is P, the conversion means 4α 1 to 4
Since β 2 outputs signals corresponding to the flow rates αF 1 , βF 1 , αF 2 , βF 2 , these signals are sent to the multipliers 5α 1 to
The signals 13 and 14 are multiplied by 5β 2 to be distributed proportionally. As a result, the adders 6α and 6β output signals obtained by internally dividing the required steam flow rate signals in the two regulating systems.

すなわち、変換手段7α,7βに対して第3図
に示すように、切換えを開始してからの時間経過
と共に、αF1→αF2、βF1→βF2に直線的に変化す
る信号が入力される。
That is, as shown in FIG. 3, signals that linearly change from αF 1 to αF 2 and from βF 1 to βF 2 are input to the conversion means 7α and 7β as time passes from the start of switching. Ru.

変換手段7α,7βは、このような信号を受け
たことにより、第4図に示すように変化する開度
指令を出力する。これにより、実際の弁開度がこ
の開度指令に対応した開度になると、各弁を通過
する蒸気流量は、αF1→αF2、βF1→βF2に変化す
るものとなる。
Upon receiving such a signal, the converting means 7α and 7β output an opening degree command that changes as shown in FIG. As a result, when the actual valve opening corresponds to the opening command, the flow rate of steam passing through each valve changes from αF 1 to αF 2 and from βF 1 to βF 2 .

なお、切換え終了は、切換比率信号発生器9,
10がノズル調速側に完全に移動した時であり、
これによつて各弁の切換えが完了する。
Note that the switching is completed by the switching ratio signal generator 9,
10 is when the nozzle has completely moved to the speed regulating side,
This completes switching of each valve.

ここで、切換え途中における各弁の蒸気通過流
量の総和は、第4図にαF2で示すように一定とな
るため、調速方式の切換えに伴う負荷変動を防止
することができる。
Here, since the sum total of the steam passing flow rate of each valve during the switching becomes constant as shown by αF 2 in FIG. 4, it is possible to prevent load fluctuations due to switching of the regulating method.

なお、実施例においては、2つの蒸気加減弁を
有する場合について説明したが、さらに多くの蒸
気加減弁を持つものでも同様に適用することがで
きる。
In addition, in the embodiment, a case has been described in which there are two steam control valves, but the present invention can be similarly applied to a case having even more steam control valves.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、負荷変動が生じることなく調速方式を切換え
ることができ、安定度を向上させることができ
る。
As is clear from the above description, according to the present invention, the speed governing method can be switched without causing load fluctuations, and stability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は第1図の動作を説明するためのフローチ
ヤート、第3図および第4図は調速方式切換時の
弁開度と蒸気流量との関係を説明するための説明
図、第5図および第6図は従来装置における調速
方式切換時の弁開度と蒸気流量との関係を説明す
るための説明図である。 1…基本制御手段、2α,3α,2β,3β…
負荷/開度変換手段、4α1,4α2,4β1,4β2
開度/流量変換手段、5α1,5α2,5β1,5β2
掛算器、7α,7β…流量/開度変換手段、9,
10…切換比率信号発生器。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a flowchart for explaining the operation of FIG. 1, FIGS. 3 and 4 are explanatory diagrams for explaining the relationship between the valve opening and the steam flow rate when switching the regulating method, and FIG. FIG. 6 and FIG. 6 are explanatory diagrams for explaining the relationship between the valve opening degree and the steam flow rate when switching the regulating method in the conventional device. 1...Basic control means, 2α, 3α, 2β, 3β...
Load/opening conversion means, 4α 1 , 4α 2 , 4β 1 , 4β 2 ...
Opening degree/flow rate conversion means, 5α 1 , 5α 2 , 5β 1 , 5β 2 ...
Multiplier, 7α, 7β...Flow rate/opening conversion means, 9,
10...Switching ratio signal generator.

Claims (1)

【特許請求の範囲】 1 蒸気タービンの出力を調整する複数の蒸気加
減弁と、これら蒸気加減弁の開度を可変制御する
開度制御手段と、蒸気加減弁による調速方式を切
換える調速方式切換え手段とを有する蒸気タービ
ン装置において、調速方式の切換え時、切換え前
と切換え後に各蒸気加減弁を通過する蒸気流量差
が同一の比率で変化するように上記開度制御手段
から発せられる開度指令を変換する手段を設けた
ことを特徴とする調速方式切換装置。 2 前記比率を一定速度で変化させることを特徴
とする特許請求の範囲第1項記載の調速方式切換
装置。
[Scope of Claims] 1. A plurality of steam regulating valves that adjust the output of the steam turbine, an opening control means that variably controls the opening degrees of these steam regulating valves, and a speed governing system that switches the speed governing method using the steam regulating valves. In a steam turbine apparatus having a switching means, when switching the speed governing method, an opening is issued from the opening control means so that the difference in steam flow rate passing through each steam control valve before and after switching changes at the same ratio. What is claimed is: 1. A speed control system switching device characterized by comprising means for converting a speed command. 2. The speed governing method switching device according to claim 1, wherein the ratio is changed at a constant speed.
JP3025786A 1986-02-14 1986-02-14 Changeover device for speed governing system Granted JPS62189303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025786A JPS62189303A (en) 1986-02-14 1986-02-14 Changeover device for speed governing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025786A JPS62189303A (en) 1986-02-14 1986-02-14 Changeover device for speed governing system

Publications (2)

Publication Number Publication Date
JPS62189303A JPS62189303A (en) 1987-08-19
JPH0553921B2 true JPH0553921B2 (en) 1993-08-11

Family

ID=12298653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025786A Granted JPS62189303A (en) 1986-02-14 1986-02-14 Changeover device for speed governing system

Country Status (1)

Country Link
JP (1) JPS62189303A (en)

Also Published As

Publication number Publication date
JPS62189303A (en) 1987-08-19

Similar Documents

Publication Publication Date Title
Younkins et al. Steam turbine overspeed control and behavior during system disturbances
JPH0553921B2 (en)
AG Turbine-governor models
JPH0222203B2 (en)
JPS5917243B2 (en) Control device for marine turbine power station
US3979682A (en) Hysteresis compensator for control systems
Zhou et al. Controller design for acceleration and deceleration of a turbofan aircraft engine
JPS6243045B2 (en)
JPS6332106A (en) Speed governing system change-over device
JPS62101806A (en) Speed control switching device
JP2620124B2 (en) Bleed turbine control method and apparatus
JP4237606B2 (en) Turbine controller
JPS61106903A (en) Speed governing type change-over device
JPS6193210A (en) Load controller of one-shaft type composite power plant
JP4126973B2 (en) Gas turbine control system
JPS6139043Y2 (en)
JPH0751882B2 (en) Turbine control device control method
JPH0540530A (en) Number of revolution controller for turbine
JPS62240404A (en) Turbine control device
JPH0510103A (en) Steam turbine control device
JPH11166402A (en) Turbine speed control method
JPS61215404A (en) Control device for steam turbine
JPH04265700A (en) Output controller for generating facility
JPH09189204A (en) Steam turbine control device
JPS62107205A (en) Controller for turbine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees