JPH0553779B2 - - Google Patents

Info

Publication number
JPH0553779B2
JPH0553779B2 JP60061358A JP6135885A JPH0553779B2 JP H0553779 B2 JPH0553779 B2 JP H0553779B2 JP 60061358 A JP60061358 A JP 60061358A JP 6135885 A JP6135885 A JP 6135885A JP H0553779 B2 JPH0553779 B2 JP H0553779B2
Authority
JP
Japan
Prior art keywords
formula
methyl
acid
methoxy
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60061358A
Other languages
Japanese (ja)
Other versions
JPS61221153A (en
Inventor
Takeshi Hiiro
Tadashi Nishiwaki
Shizuo Himoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP60061358A priority Critical patent/JPS61221153A/en
Publication of JPS61221153A publication Critical patent/JPS61221153A/en
Publication of JPH0553779B2 publication Critical patent/JPH0553779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、解熱鎮痛剤として有用なナプロキセ
ンを製造するための重要な中間体である一般式 (式中R1は低級アルキル基を表す)のブテン酸
エステル誘導体の製造方法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 解熱消炎鎮痛剤として広く用いられているナプ
ロキセンの製法には種々知られているが、有力な
方法として一般式 (式中R1は低級アルキル基を表す) のグリシド酸エステル誘導体を臭化マグネシウム
(特開昭55−22613号)あるいは塩化マグネシウム
(特開昭57−93933号)などのルイス酸の存在下で
一般式()のブテン酸エステル誘導体とし、さ
らにこれを、ケト酸エステル誘導体となしさらに
加水分解して最後に脱炭酸反応に施しナプロキセ
ンとする方法が知られている。しかしこれらの方
法は80〜120℃という高温で反応しなければなら
ないという操作上の問題、及び触媒を大量に必要
とし、その上収率に問題があつた。 また、ルイス酸の代りに塩化水素、硫酸、p−
トルエンスルホン酸などの強酸の存在下行う方法
が知られているが、この場合副生物が多く従つて
収率に問題があつた。 上記の状況から、本発明は一般式()のブテ
ン酸エステル誘導体を収率よく製造することにあ
る。 〔問題点を解決するための手段〕 本発明者らは、これら従来法の欠点を解決する
ために種々検討した結果、本発明を見い出した。 即ち、本発明は 一般式 (式中R1は低級アルキル基を表わす) のグリシド酸エステル誘導体を一般式 (式中R2はフエニル基又は炭素原子数1〜12の
アルキル基1個により置換したアルキルフエニル
基を表わし、R3、R4、R5、R6、R7のそれぞれは
水素原子であるか又は任意の1又は2個はメチル
基であつて他は水素原子であるか又は互に隣り合
つた2個が炭素原子4個で結合してベンゼン環を
形成し他は水素原子である)のピリジン・スルホ
ン酸塩誘導体の存在下異性化することを特徴とす
る 一般式 (式中R1は前記同様である) のブテン酸エステル誘導体の製造方法に関する。 本発明では、一般式()のピリジン・スルホ
ン酸塩誘導体(以下ピリジン塩とする)の存在下
反応を行わせると、80℃より低い温度でその上グ
リシド酸に対し0.1〜20モル%という少量で収率
良くブテン酸を得ることが出来る。 本発明に用いられるピリジン塩は、種々の方法
で得ることが出来るが、例えばp−トルエンスル
ホン酸をピリジンに溶解して塩とし、過剰のピリ
ジンを留去した後アセトンで再結晶して得ること
が出来る〔例えばJ.Og.Chem.42、3772(1977)参
照〕。ピリジン塩として好ましくはピリジニウム
p−トルエンスルホネート、ピリジニウムベンゼ
ンスルホネート、ピリジニウムドデシルベンゼン
スルホネート、3,5−ルチジニウムp−トルエ
ンスルホネート、キノリニウムp−トルエンスル
ホネートをあげることが出来る。本発明では、こ
のピリジン塩そのものを用いるばかりでなくピリ
ジン類とスルホン酸塩とを反応系に加えて系内に
ピリジン塩を形成させてもよい。この場合、ピリ
ジン類としては例えばピリジン、3,5−ルチジ
ニウム、キノリンをあげることが出来、又スルホ
ン酸類としては、例えばp−トルエンスルホン
酸、ベンゼンスルホン酸、ドデシルベンゼンスル
ホン酸をあげることが出来る。そして使用量とし
ては、両者を略等モル用いる。 又、本発明の原料として用いられる一般式
()のグリシド酸は例えば式
[Industrial Application Field] The present invention relates to the general formula The present invention relates to a method for producing a butenoic acid ester derivative (wherein R 1 represents a lower alkyl group). [Prior art and problems to be solved by the invention] Various methods are known for producing naproxen, which is widely used as an antipyretic and antiinflammatory analgesic. (in the formula, R 1 represents a lower alkyl group) in the presence of a Lewis acid such as magnesium bromide (JP-A-55-22613) or magnesium chloride (JP-A-57-93933). A known method is to obtain a butenoic acid ester derivative of the general formula (), which is then converted into a ketoic acid ester derivative, which is further hydrolyzed and finally subjected to a decarboxylation reaction to obtain naproxen. However, these methods have operational problems in that the reaction must be carried out at a high temperature of 80 to 120°C, require a large amount of catalyst, and have problems in yield. Also, hydrogen chloride, sulfuric acid, p-
A method in which the reaction is carried out in the presence of a strong acid such as toluenesulfonic acid is known, but in this case many by-products are produced, resulting in a problem in yield. In view of the above circumstances, the present invention is directed to producing a butenoic acid ester derivative of the general formula () in good yield. [Means for Solving the Problems] The present inventors conducted various studies to solve the drawbacks of these conventional methods, and as a result, discovered the present invention. That is, the present invention has the general formula (in the formula, R 1 represents a lower alkyl group) is a glycidic acid ester derivative with the general formula (In the formula, R 2 represents a phenyl group or an alkyl phenyl group substituted with one alkyl group having 1 to 12 carbon atoms, and each of R 3 , R 4 , R 5 , R 6 , and R 7 is a hydrogen atom. One or two of the groups are methyl groups and the others are hydrogen atoms, or two adjacent groups are bonded with 4 carbon atoms to form a benzene ring and the others are hydrogen atoms. ) isomerized in the presence of a pyridine sulfonate derivative. (In the formula, R 1 is the same as above.) The present invention relates to a method for producing a butenoic acid ester derivative. In the present invention, when the reaction is carried out in the presence of a pyridine sulfonate derivative (hereinafter referred to as pyridine salt) of the general formula (), it is possible to perform the reaction at a temperature lower than 80°C and in a small amount of 0.1 to 20 mol% based on glycidic acid. Butenoic acid can be obtained in good yield. The pyridine salt used in the present invention can be obtained by various methods, but for example, it can be obtained by dissolving p-toluenesulfonic acid in pyridine to form a salt, distilling off excess pyridine, and then recrystallizing it with acetone. [See, for example, J.Og.Chem.42, 3772 (1977)]. Preferred examples of the pyridine salt include pyridinium p-toluenesulfonate, pyridinium benzenesulfonate, pyridinium dodecylbenzenesulfonate, 3,5-lutidinium p-toluenesulfonate, and quinolinium p-toluenesulfonate. In the present invention, not only this pyridine salt itself is used, but also a pyridine and a sulfonate may be added to the reaction system to form a pyridine salt in the system. In this case, examples of pyridines include pyridine, 3,5-lutidinium, and quinoline, and examples of sulfonic acids include p-toluenesulfonic acid, benzenesulfonic acid, and dodecylbenzenesulfonic acid. As for the amounts used, both are used in approximately equal moles. In addition, the glycidic acid of general formula () used as a raw material of the present invention is, for example,

【式】の化合物とク ロロ酢酸エステルとを不活性ガスの下でナトリウ
ムメトキシド、あるいはナトリウムエトキシド等
の縮合剤を用い反応させて得ることができる。一
般式()のR1基は好ましくは、メチル、エチ
ル、n−プロピル、t−ブチルである。 本発明では一般式()のグリシド酸を一般式
()のピリジン塩の存在下反応させる。反応に
当つては、ピリジン塩の使用量はグリシド酸に対
して約0.1〜20モル%好ましくは約0.5〜10モル%
である。又反応温度は約20〜80℃好ましくは約40
〜70℃である。又反応は溶媒の存在下で行われる
が、用いられる溶媒としてトルエン、キシレン等
の芳香族炭化水素、ジクロロエタン、トリクロロ
エタン等の塩素系炭化水素、ジオキサン、ジブチ
ルエーテル等のエーテル類があげられる。反応は
有機溶媒中で好ましくは撹拌しつつ行われ反応時
間は好ましくは約1〜5時間である。反応終了後
反応生成物に水を加え、有機層を分取し、水洗
し、乾燥する。有機溶媒を除去し残渣を再結晶し
て目的のブテン酸を得る。 本発明により得られたブテン酸は例えばメタノ
ール中ナトリウムメトキシドで処理した後加水分
解して式
It can be obtained by reacting a compound of the formula with a chloroacetic ester under an inert gas using a condensing agent such as sodium methoxide or sodium ethoxide. The R 1 group in general formula () is preferably methyl, ethyl, n-propyl, t-butyl. In the present invention, glycidic acid of general formula () is reacted in the presence of a pyridine salt of general formula (). In the reaction, the amount of pyridine salt used is about 0.1 to 20 mol%, preferably about 0.5 to 10 mol%, based on glycidic acid.
It is. The reaction temperature is about 20 to 80℃, preferably about 40℃.
~70℃. The reaction is carried out in the presence of a solvent, and the solvents used include aromatic hydrocarbons such as toluene and xylene, chlorinated hydrocarbons such as dichloroethane and trichloroethane, and ethers such as dioxane and dibutyl ether. The reaction is carried out in an organic solvent, preferably with stirring, and the reaction time is preferably about 1 to 5 hours. After the reaction is completed, water is added to the reaction product, and the organic layer is separated, washed with water, and dried. The organic solvent is removed and the residue is recrystallized to obtain the desired butenoic acid. The butenoic acid obtained according to the invention can be treated with, for example, sodium methoxide in methanol and then hydrolyzed to give the formula

【式】のケト 酸とし、ついでアルカリ中、過酸化水素で処理し
て式
[Formula] is prepared as a keto acid, and then treated with hydrogen peroxide in an alkali to give the formula

〔効果〕〔effect〕

本発明では、解熱消炎鎮痛剤として有用なナプ
ロキセンを得るための中間体として重要なブテン
酸を従来法に比べて安価な化合物少量を用い、低
い温度でしかも例えば約90%以上という高い収率
で得ることが出来るのであつて、その工業的価値
は極めて高い。 次に製法の具体的な例を示す。 〔実施例〕 実施例 1 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル83gをトルエン500mlに溶
解させピリジニウムp−トルエンスルホネート
1.53g(2モル%)を加え55〜60℃で2時間撹拌
した後水200mlを加えた。有機層を分取し、水200
mlで2回水洗し、無水硫酸ナトリウムで乾燥し
た。トルエンを減圧留去し、残渣をベンゼン−ヘ
キサンから再結晶して2−ヒドロキシ−3−(6
−メトキシ−2−ナフチル)−3−ブテン酸メチ
ル77gを得た。収率92.8%、融点90.2〜92.3℃。 分析結果は次の通りであつた。 元素分析 実測値 計算値 C%: 70.35 70.57 H%: 6.18 5.92 IR(cm-1) 3438、1734、1625、1604、1215、
1172、1099、1035、1001、910、865 NMR(δ、ppm、TMS、CDCl3)3.76(3H、
S、−COOH3)、3.98(3H、S、−OCH3)、5.26
(1H、S、
In the present invention, butenoic acid, which is an important intermediate for obtaining naproxen, which is useful as an antipyretic and antiinflammatory analgesic, is produced using a small amount of a cheaper compound than in conventional methods, at a low temperature, and in a high yield of about 90% or more. can be obtained, and its industrial value is extremely high. Next, a specific example of the manufacturing method will be shown. [Example] Example 1 83 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate was dissolved in 500 ml of toluene to prepare pyridinium p-toluenesulfonate.
After adding 1.53 g (2 mol %) and stirring at 55 to 60°C for 2 hours, 200 ml of water was added. Separate the organic layer and add 200 ml of water.
ml of water twice and dried over anhydrous sodium sulfate. Toluene was distilled off under reduced pressure, and the residue was recrystallized from benzene-hexane to give 2-hydroxy-3-(6
77 g of methyl -methoxy-2-naphthyl)-3-butenoate was obtained. Yield 92.8%, melting point 90.2-92.3℃. The analysis results were as follows. Elemental analysis Actual value Calculated value C%: 70.35 70.57 H%: 6.18 5.92 IR (cm -1 ) 3438, 1734, 1625, 1604, 1215,
1172, 1099, 1035, 1001, 910, 865 NMR (δ, ppm, TMS, CDCl3 ) 3.76 (3H,
S, -COOH3 ), 3.98 (3H, S, -OCH3 ), 5.26
(1H, S,

【式】)、5.53および5.67 (2H、2S、H2C=C) 実施例 2 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸t−ブチル3.6gをn−ブチルエ
ーテル20mlに溶解させピリジニウムp−トルエン
スルホネート0.12g(4モル%)を加え55〜60℃
で2時間反応した後実施例1と同様に処理し2−
ヒドロキシ−3−(6−メトキシ−2−ナフチル)
−3−ブテン酸t−ブチル3.5gを得た。収率
97.5%、融点85.7〜86.5℃。 分析結果は次の通りであつた。 元素分析 実測値 計算値 C%: 72.63 72.59 H%: 7.09 7.05 IR(cm-1) 3510、1720、1620、1594、1250、
1155、1125、1115、1100、1030、860 NMR(δ、ppm、TMS、CDCl3)1.32(9H、
S、tBu)、3.47(1H、d、OH)、3.86(3H、S、
CH3O−)、5.00(1H、d、
[Formula]), 5.53 and 5.67 (2H, 2S, H 2 C=C) Example 2 3.6 g of t-butyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate and 20 ml of n-butyl ether Add 0.12g (4 mol%) of pyridinium p-toluenesulfonate to 55-60°C.
After reacting for 2 hours, the mixture was treated in the same manner as in Example 1.
Hydroxy-3-(6-methoxy-2-naphthyl)
3.5 g of t-butyl-3-butenoate was obtained. yield
97.5%, melting point 85.7-86.5℃. The analysis results were as follows. Elemental analysis Actual value Calculated value C%: 72.63 72.59 H%: 7.09 7.05 IR (cm -1 ) 3510, 1720, 1620, 1594, 1250,
1155, 1125, 1115, 1100, 1030, 860 NMR (δ, ppm, TMS, CDCl3 ) 1.32 (9H,
S, tBu), 3.47 (1H, d, OH), 3.86 (3H, S,
CH 3 O−), 5.00 (1H, d,

【式】)、5.45および 5.52(2H、2S、H2C=C) 実施例 3 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル40gをトルエン250mlに溶
解させピリジン0.23g、ベンゼンスルホン酸0.46
g(2モル%)を加え55〜65℃で2時間撹拌した
後実施例1と同様に処理し2−ヒドロキシ−3−
(6−メトキシ−2−ナフチル)−3−ブテン酸メ
チル37.3gを得た。収率93.3%。 実施例 4 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル20gをトルエン150mlに溶
解させピリジン0.23g、ドデシルベンゼンスルホ
ン酸0.96g(4モル%)を加え55〜65℃で3時間
撹拌した後、実施例1と同様に処理し2−ヒドロ
キシ−3−(6−メトキシ−2−ナフチル)−3−
ブテン酸メチル18.3gを得た。収率91.5%。 実施例 5 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル20gをトルエン150mlに溶
解させ、3,5−ルチジン0.31g、p−トルエン
スルホン酸1水和物0.56gを加え55〜65℃で3時
間撹拌した後実施例1と同様に処理し2−ヒドロ
キシ−3−(6−メトキシ−2−ナフチル)−3−
ブテン酸メチル18.1gを得た。収率90.5%。 実施例 6 3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル20gをトルエン150mlに溶
解させ、キノリン0.38g、p−トルエンスルホン
酸1水和物0.56gを加え55〜65℃で3時間撹拌し
た後、実施例1と同様に処理し、2−ヒドロキシ
−3−(6−メトキシ−2−ナフチル)−3−ブテ
ン酸メチル18.3gを得た。収率91.5%。 参考例 1 6−メトキシ−2−アセチルナフタレン120g、
クロロ酢酸メチル120gをトルエン1200mlに溶解
し、窒素気流下撹拌しながらカリウムt−ブトキ
シド120gを3〜5℃で2時間を要して徐々に加
えた。5〜7℃で1時間撹拌した後、水400mlを
加え充分撹拌した。有機層を分取し、水洗した後
無水硫酸ナトリウムで乾燥した。トルエンを減圧
留去して得られる粗結晶をベンゼンから再結晶し
て3−メチル−3−(6−メトキシ−2−ナフチ
ル)−グリシド酸メチル123gを得た。収率75.3
%、融点120.5〜124.1℃。 分析結果は次の通りであつた。 元素分析 実測値 計算値 C%: 70.31 70.57 H%: 6.05 5.92 IR(cm-1) 1745、1600、1260、1220、1210、
1070、1035、860、820 NMR(δ、ppm、TMS、CDCl3)1.88および
1.93(3H、2S、
[Formula]), 5.45 and 5.52 (2H, 2S, H 2 C=C) Example 3 40 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate was dissolved in 250 ml of toluene and pyridine 0.23 g, benzenesulfonic acid 0.46
g (2 mol%) and stirred at 55-65°C for 2 hours, treated in the same manner as in Example 1 to give 2-hydroxy-3-
37.3 g of methyl (6-methoxy-2-naphthyl)-3-butenoate was obtained. Yield 93.3%. Example 4 20 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate was dissolved in 150 ml of toluene, and 0.23 g of pyridine and 0.96 g (4 mol%) of dodecylbenzenesulfonic acid were added to the mixture at 55-65°C. After stirring for 3 hours at
18.3 g of methyl butenoate was obtained. Yield 91.5%. Example 5 20 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate was dissolved in 150 ml of toluene, and 0.31 g of 3,5-lutidine and 0.56 g of p-toluenesulfonic acid monohydrate were dissolved. After stirring at 55-65°C for 3 hours, the same treatment as in Example 1 was carried out to give 2-hydroxy-3-(6-methoxy-2-naphthyl)-3-
18.1 g of methyl butenoate was obtained. Yield 90.5%. Example 6 20 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate was dissolved in 150 ml of toluene, and 0.38 g of quinoline and 0.56 g of p-toluenesulfonic acid monohydrate were added to the mixture. After stirring at <RTIgt;C</RTI> for 3 hours, the mixture was treated in the same manner as in Example 1 to obtain 18.3 g of methyl 2-hydroxy-3-(6-methoxy-2-naphthyl)-3-butenoate. Yield 91.5%. Reference example 1 120g of 6-methoxy-2-acetylnaphthalene,
120 g of methyl chloroacetate was dissolved in 1200 ml of toluene, and 120 g of potassium t-butoxide was gradually added over 2 hours at 3 to 5°C while stirring under a nitrogen stream. After stirring for 1 hour at 5-7°C, 400 ml of water was added and thoroughly stirred. The organic layer was separated, washed with water, and then dried over anhydrous sodium sulfate. The crude crystals obtained by distilling off toluene under reduced pressure were recrystallized from benzene to obtain 123 g of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate. Yield 75.3
%, melting point 120.5-124.1℃. The analysis results were as follows. Elemental analysis Actual value Calculated value C%: 70.31 70.57 H%: 6.05 5.92 IR (cm -1 ) 1745, 1600, 1260, 1220, 1210,
1070, 1035, 860, 820 NMR (δ, ppm, TMS, CDCl3 ) 1.88 and
1.93 (3H, 2S,

【式】)、3.63および3.81(1H、 2S、[Formula]), 3.63 and 3.81 (1H, 2S,

【式】)、3.48および3.94(3H、2S、− COOCH3)、4.00(3H、S、−OCH3) 参考例 2 参考例1と同様に6−メトキシ−2−アセチル
ナフタレン5.5g、クロロ酢酸t−ブチル8.3gを
トルエン60mlに溶解し、カリウムt−ブトキシド
6.2gを用いて反応させ3−メチル−3−(6−メ
トキシ−2−ナフチル)−グリシド酸t−ブチル
9.1gを得た。 分析結果は次の通りであつた。 元素分析 実測値 計算値 C%: 72.41 72.59 H%: 6.95 7.05 IR(cm-1) 1730、1705、1620、1595、1195、
1150、1030、850 NMR(δ、ppm、TMS、CDCl3)1.00および
1.51(9H、2S、t−Bu)、1.77および1.83(3H、
2S、
[Formula]), 3.48 and 3.94 (3H, 2S, -COOCH 3 ), 4.00 (3H, S, -OCH 3 ) Reference Example 2 Same as Reference Example 1, 5.5 g of 6-methoxy-2-acetylnaphthalene, chloroacetic acid Dissolve 8.3g of t-butyl in 60ml of toluene and add potassium t-butoxide.
t-butyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate
9.1g was obtained. The analysis results were as follows. Elemental analysis Actual value Calculated value C%: 72.41 72.59 H%: 6.95 7.05 IR (cm -1 ) 1730, 1705, 1620, 1595, 1195,
1150, 1030, 850 NMR (δ, ppm, TMS, CDCl3 ) 1.00 and
1.51 (9H, 2S, t-Bu), 1.77 and 1.83 (3H,
2S,

【式】)、3.44および3.60(1H、2S、[Formula]), 3.44 and 3.60 (1H, 2S,

【式】)、3.88(3H、S、−OCH3) 参考例 3 文献の方法(T.Org.Chem.、42、3772(1977))
に従い、p−トルエンスルホン酸1水和物5.7g
をピリジン12mlに撹拌しながら加えた。30分撹拌
後、過剰のピリジンを減圧留去し、アセトンにて
再結晶を行ない6.5gをピリジニウムp−トルエ
ンスルホネートを得た。
[Formula]), 3.88 (3H, S, -OCH 3 ) Reference example 3 Method in literature (T.Org.Chem., 42 , 3772 (1977))
According to the following, 5.7 g of p-toluenesulfonic acid monohydrate
was added to 12 ml of pyridine with stirring. After stirring for 30 minutes, excess pyridine was distilled off under reduced pressure, and recrystallization was performed with acetone to obtain 6.5 g of pyridinium p-toluenesulfonate.

Claims (1)

【特許請求の範囲】 1 一般式 (式中R1は低級アルキル基を表わす) のグリシド酸エステル誘導体を一般式 (式中R2はフエニル基又は炭素原子数1〜12の
アルキル基1個により置換したアルキルフエニル
基を表わし、R3、R4、R5、R6、R7のそれぞれは
水素原子であるか又は任意の1又は2個はメチル
基であつて他は水素原子であるか又は互に隣り合
つた2個が炭素原子4個で結合してベンゼン環を
形成し他は水素原子である) のピリジン・スルホン酸塩誘導体の存在下異性化
することを特徴とする (式中R1は前記同様である) 2−ヒドロキシ−3−ブテン酸エステル誘導体の
製造方法。
[Claims] 1. General formula (in the formula, R 1 represents a lower alkyl group) is a glycidic acid ester derivative with the general formula (In the formula, R 2 represents a phenyl group or an alkyl phenyl group substituted with one alkyl group having 1 to 12 carbon atoms, and each of R 3 , R 4 , R 5 , R 6 , and R 7 is a hydrogen atom. One or two of the groups are methyl groups and the others are hydrogen atoms, or two adjacent groups are bonded with 4 carbon atoms to form a benzene ring and the others are hydrogen atoms. ) isomerized in the presence of a pyridine sulfonate derivative. (In the formula, R 1 is the same as above.) A method for producing a 2-hydroxy-3-butenoic acid ester derivative.
JP60061358A 1985-03-26 1985-03-26 Production of 2-hydroxy-3-butenoic ester derivative Granted JPS61221153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061358A JPS61221153A (en) 1985-03-26 1985-03-26 Production of 2-hydroxy-3-butenoic ester derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061358A JPS61221153A (en) 1985-03-26 1985-03-26 Production of 2-hydroxy-3-butenoic ester derivative

Publications (2)

Publication Number Publication Date
JPS61221153A JPS61221153A (en) 1986-10-01
JPH0553779B2 true JPH0553779B2 (en) 1993-08-10

Family

ID=13168854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061358A Granted JPS61221153A (en) 1985-03-26 1985-03-26 Production of 2-hydroxy-3-butenoic ester derivative

Country Status (1)

Country Link
JP (1) JPS61221153A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262565A (en) * 1990-11-16 1993-11-16 Eisai Co., Ltd. Naphthalene derivatives

Also Published As

Publication number Publication date
JPS61221153A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
JPWO2004099149A1 (en) Process for producing 2-chloro-5-fluoro-3-substituted pyridine or a salt thereof
Pattison et al. The synthesis of α-monofluoroalkanoic acids
EP3737685B1 (en) Process for the preparation of crisaborole and its intermediates
JPH0553779B2 (en)
JP3241889B2 (en) Method for producing cyanoacylcyclopropane compound and 2-cyanoacyl-4-butanolide compound used therefor
JPH07215952A (en) Catechol derivative
JPS6126556B2 (en)
JP2523026B2 (en) α, β-Unsaturated ketone and ketoxime derivatives
JPH05286902A (en) Production of alpha-chloro-beta-ketoester derivative
JPS6241510B2 (en)
US7049459B2 (en) 1-[(4-methyl thio)phenyl]-2-(phenyl acetoxy)-1-ethanone and a process for preparing the same
CA2050345C (en) Process for producing isoxazole derivatives
JPS6125716B2 (en)
JPH0129793B2 (en)
JP3013022B2 (en) Method for producing alkyl 3-phthalidylideneacetate
JPS6051463B2 (en) (2-Fluoro-4-biphenylyl)ketene mercaptal S-oxides
JPH0645572B2 (en) Process for producing 2-hydroxy-3-butenoic acid derivative
JPH07252183A (en) Production of phenol derivative
JPH0580479B2 (en)
JPS6036412B2 (en) α-Bromo(p-acyloxyphenyl)acetic acid
JPH02172986A (en) Production of 3-hydroxy-2-thiophene-carboxylic acid derivative
JPS6124568A (en) Preparation of dihydropyridine ester
JPH041736B2 (en)
JPH03130258A (en) Method for preparation of 2-(2-halogenoethylthio)- phenylsulfonamide
JPH0114917B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees