JPH055347B2 - - Google Patents

Info

Publication number
JPH055347B2
JPH055347B2 JP8081687A JP8081687A JPH055347B2 JP H055347 B2 JPH055347 B2 JP H055347B2 JP 8081687 A JP8081687 A JP 8081687A JP 8081687 A JP8081687 A JP 8081687A JP H055347 B2 JPH055347 B2 JP H055347B2
Authority
JP
Japan
Prior art keywords
recording
dielectric layer
resin
electrostatic
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8081687A
Other languages
Japanese (ja)
Other versions
JPS63243944A (en
Inventor
Hirosuke Hamada
Hisanori Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP8081687A priority Critical patent/JPS63243944A/en
Priority to DE3751221T priority patent/DE3751221T2/en
Priority to EP87117599A priority patent/EP0270032B1/en
Publication of JPS63243944A publication Critical patent/JPS63243944A/en
Priority to US07/399,441 priority patent/US4944959A/en
Publication of JPH055347B2 publication Critical patent/JPH055347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/0202Dielectric layers for electrography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、400ドツト/インチなどの高密度記
録用静電フアクシミリ、静電プリンター、静電プ
ロツター等に適する静電記録体に関するものであ
る。 (従来技術) 通信技術の進歩に付随して高速度の記録と高画
像品位を同時に満たす記録方法として静電記録方
式が広く用いられており、その例として光通信や
コンピユーターの出力用機器としてのフアクシミ
リ、プリンターを挙げることが出来る。特に近年
ではコンピユーターを用い設計・製図を行う
CADシステム等図面の出力用として高密度記録
が可能な静電プリンター、静電プロツターが好ん
で用いられている。 静電記録方法において最も多用されている多針
電極型記録方法には、片面制御型と両面制御型が
あるが、いずれの場合も主に文章の記録を目的と
する200ドツト/インチ程度の記録密度では各針
電極の面積が充分あるためか、その放電の発生そ
のものには特に問題がなかつた。ところが、従来
の静電記録体を使用して主に図面の記録を目的と
する400ドツト/インチ程度の高密度記録を行う
と、細線を描いた場合に正常な放電が起こらず現
像後に記録されない部分が現れる所謂細線抜け現
像が発生したり、逆に場所によつては放電が各針
電極の面積の10倍以上にも達し、現像後の細線中
に異常な膨らみを持つた点が現れる所謂異常放電
が発生し、良好な記録が得られない。 (発明が解決しようとする問題点) 本発明は400ドツト/インチのような高密度記
録において、細線抜けや異常放電の起こらない静
電記録体の製造方法を提供すること目的とする。 (問題点を解決するための手段) 本発明者等は、前記の問題点は記録体の構成面
のみの検討では改良程度に限界があることから、
誘電体層表面への放電、帯電状況について更に研
究を行つた。因に従来から静電記録体の誘電体層
表面は記録画像用の静電荷を印加するまでは静電
荷の存在しない誘電体層表面でなければならない
というのが、技術常識であつた。本発明は一見、
この技術常識に逆行する発想であるが、本発明者
等は記録画像形成のための静電荷を印加する前に
予め印加電荷とは反対極性の静電荷を帯電させて
おくと、異常放電の解消になりはしないかとの考
えの下に検討を進めてきた。その結果、以下の構
成から成る発明に到達した。 本発明は、導電性支持体上に顔料と絶縁性樹脂
を含有する誘電体層を有する、記録画像形成のた
めの静電荷を多針電極からの放電で印加する静電
記録方式用の静電記録体の製造方法であり、該絶
縁性樹脂として、摩擦処理材で摩擦した場合に正
に帯電する樹脂と、負に帯電する樹脂とを少なく
とも各1種づつ使用し、かつ摩擦処理材で誘電体
層を摩擦することにより、誘電体層表面に予め記
録のための印加電荷とは反対極性の静電荷を形成
することを特徴とする静電記録体の製造方法であ
る。 (作用) 本発明において誘電体層表面を摩擦するための
処理材としては、ポリエチレン樹脂、プリプロピ
レン樹脂、ポリスチレン樹脂、ポリエーテル樹
脂、ポリ塩化ビニル樹脂、ポリメチルメタクリレ
ート樹脂、メラミン樹脂、尿素樹脂、フエノール
樹脂、エポキシ樹脂、アミノ樹脂、イミド樹脂等
があり、これらの中でも処理材としての加工の容
易さ、耐摩耗性、摩擦した際の静電荷の発生し易
さ、誘電体層上に分布する静電荷の径のコントロ
ールの容易さ等から、ポリスチレン樹脂、スチレ
ン−アクリル酸誘導体あるいはスチレン−メタク
リル酸誘導体の共重合体樹脂、ポリメチルメタク
リレート樹脂等の熱可塑性樹脂やエポキシ樹脂、
メラミン樹脂、尿素メラミン樹脂、ベンゾグアナ
ミン樹脂等の熱硬化性樹脂等が好ましく用いられ
る。 これらの処理材は単体あるいは混合体で使用さ
れる。 次に、本発明において、静電記録体の誘電体層
を構成する絶縁性樹脂で、摩擦処理材で摩擦した
場合に正に帯電する樹脂と負に帯電する樹脂とい
うのは、摩擦処理材及び誘電体層に用いる顔料と
の関連において正極性となつたり負極性にも変化
するものである。 但し、絶縁性樹脂の帯電極性は、顔料と樹脂の
配合割合によつては変化することはない。 例えば摩擦処理材がポリメチルメタクリレート
樹脂で、顔料が炭酸カルシウムの場合、正に帯電
する絶縁性樹脂にはメチルメタクリレート−エチ
ルアクリレート共重合体等があり、負に帯電する
絶縁性樹脂にはポリメチルメタクリレート、ポリ
ブチルメタクリレート、スチレン−メチルメタク
リレート共重合体、ポリエステル、ポリスチレ
ン、ポリビニルブチラール等がある。 また摩擦処理材がポリメチルメタクリレート樹
脂で、顔料が焼成クレーの場合、正に帯電する絶
縁性樹脂にはポリメチルメタクリレート、メチル
メタクリレート−エチルアクリレート共重合体、
ポリブチルメタクリレート等があり、負に帯電す
る絶縁性樹脂にはスチレン−メチルメタクリレー
ト共重合体、ポリエステル、ポリスチレン、ポリ
ビニルブチラール等がある。 更に摩擦処理材がポリメチルメタクリレート樹
脂で、顔料がシリカの場合はポリメチルメタクリ
レート、メチルメタクリレート、エチルメタクリ
レート共重合体、ポリブチルメタクリレート、ス
チレン−メチルメタクリレート共重合体、ポリエ
ステル、ポリスチレン、ポリビニルブチラール等
は負に帯電する絶縁性樹脂となる。 次に摩擦処理材がポリスチレン樹脂で、顔料が
炭酸カルシウムの場合、正に帯電する絶縁性樹脂
にはメチルメタクリレート−エチルアクリレート
共重合体、ポリブチルメタクリレート、スチレン
−メチルメタクリレート共重合体、ポリエステ
ル、ポリスチレン等があり、負の帯電する絶縁性
樹脂にはポリビニルブチラール等がある。 また摩擦処理材がポリスチレン樹脂で、顔料が
焼成クレーの場合、正に帯電する絶縁性樹脂には
メチルメタクリレート−エチルアクリレート共重
合体、ポリブチルメタクリレート、スチレン−メ
チルメタクリレート共重合体、ポリエステル等が
あり、負に帯電する絶縁性樹脂にはポリスチレ
ン、ポリビニルブチラール等がある。 更に摩擦処理材がポリスチレン樹脂で、顔料が
シリカの場合、正に帯電する絶縁性樹脂にはポリ
メチルメタクリレート、メチルメタクリレート−
エチルアクリレート共重合体、スチレン−メチル
メタクリレート共重合体、ポリエステル等があ
り、負に帯電する絶縁性樹脂にはポリブチルメタ
クリレート、ポリスチレン、ポリビニルブチラー
ル等がある。 而して本発明は誘電体層に顔料と、該顔料と混
合された場合の摩擦帯電極性の異なる樹脂を少な
くとも各一種類混合使用し、かつ誘電体層表面に
予め記録のための印加電荷とは反対極性の静電荷
を、摩擦処理材と該誘電体層表面の摩擦で形成す
ることにより優れた細線抜け、異常電改良効果を
得るものであるが、記録用印加電荷と同極性の静
電荷を誘電体層上に予め形成すると、記録用印加
電荷と反対極性の現像剤を使用する場合に誘電体
層の樹脂組成によらず記録画像にカブリと呼ばれ
る汚れが生じ、また細線抜け改良効果も得られな
い。従つて本発明においては、記録用印加電荷と
反対極性の静電荷が摩擦により形成されるように
樹脂の混合割合を調整する必要がある。つまり記
録用印加電荷が負極性である場合、摩擦により予
め誘電体層上に正電荷が形成されるように樹脂を
配合する。 上記の樹脂の中で例えば摩擦処理材がポリメチ
ルメタクリレート樹脂製のものを使用する場合に
は、誘電体層に含有される顔料として炭酸カルシ
ウム、絶縁性樹脂としてメチルメタクリレート−
エチルアクリレート共重合体とポリブチルメタク
リレートの混合物、また摩擦処理材がポリスチレ
ン樹脂製のものを使用する場合には、誘電体層に
含有される顔料としてシリカ、絶縁性樹脂として
ポリエステルとポリビニルブチラールの混合物の
ような組み合わせが考えられる。 次に摩擦による帯電状態は、処理材の組成、摩
擦圧の強さ、処理回数、摩擦スピード等によつて
調整することが出来る。摩擦処理は、処理材を通
常ロール状または板状等の成形体とし、あるいは
シート状支持体に塗布しロール状のものに巻きつ
けて通常走行する静電記録体の誘電体層表面に処
理物質を押し当てることにより処理を行い、その
時期は、静電記録体の誘電体層形成後の製造工
程、仕上げ工程、さらに静電記録装置に内蔵した
処理材によつても、いずれの工程で行つても良
い。処理材がロール状の場合は、回転させながら
摩擦処理を行うと誘電体層表面の傷の発生を防止
することが出来る。 なお誘電体層上に形成された静電荷は電子顕微
鏡で観察することが出来る。つまり、加速電圧を
2キロボルト程度にして2次電子像を観察すると
正極性の静電荷は黒く表現され、負極性の静電荷
は白く表現される。本発明により予め形成される
記録画像のための静電荷と反対極性の静電荷は島
状に分布しており、各電荷の大きさは、1μ〜
300μの範囲内にあつてほぼ均一である。かかる
記録体は、静電記録装置による1ドツトの細線記
録で、細線抜け、異常放電の無い鮮明な画像が得
られる。本発明においては摩擦処理条件により帯
電状態を調整することができるが、静電荷の径が
小さ過ぎると細線抜け改良の効果が不充分で、大
き過ぎると異常放電が減少しないため各島状電荷
の最大径が1μ〜300μ、より好ましくは静電記録
装置の各針電極の直径よりやや小さい程度に調節
するのがよい。 これに対し摩擦で発生する電荷の極性が単一の
絶縁性樹脂のみからなる記録体では、誘電体層上
に予め形成した記録画像のための静電荷と反対極
性の静電荷は網状か島状に分布しているが、島状
に分布している場合でも各電荷の大きさは不規則
で、1ドツトの細線を記録すると、摩擦処理を全
く行わない記録体と比べて細線抜けは改良される
ものの、異常放電は摩擦処理を全く行わない記録
体と比べても大幅に増加してしまう。 而して本発明の静電記録体によると細線抜けや
異常放電が生じないで、優れた記録が得られる理
由については必ずしも明らかではないが、誘電体
層が摩擦処理材によつて摩擦した場合に正に帯電
する樹脂と負に帯電する樹脂を含有しているた
め、摩擦によつて生じる静電荷の大きさ、強さ及
び分布状態が適度に調節することが出来、その結
果、潜像形成時における放電開始電圧の低下が起
り、より確実な放電が発生することになるのでは
ないかと推測される。 尚、静電記録体を構成する導電性支持体として
は、塩化ナトリウムのような無機塩、ポリビニル
ベンジルトリメチルアンモニウムクロライド等の
カチオン性高分子電解質、又はアニオン性高分子
電解質、界面活性剤、あるいは酸化亜鉛、導電性
処理をした酸化亜鉛等の金属酸化物半導体粉を含
浸ないしは塗布し、表面抵抗を105〜1011Ωとなし
た紙、プラスチツクフイルム、布等が使用され
る。 (実施例) 以下、本発明の実施例を記載するが、本発明は
これらの実施例のみに限定されるものではない。
また特に断らない限り例中の部及び%は、それぞ
れ重量部及び重量%を示す。 実施例 1 記録体の調製:秤量53g/m2の上質紙の表面にカ
チオン系高分子電解質(商品名:ケミスタ
ツト6300、三洋化成社製)を絶乾重量3
g/m2、裏面に2g/m2となるように塗布
し導電性支持体を得た。この導電性支持体
上に下記組成よりなる誘電体層塗料を、乾
燥重量が5g/m2となるように塗布乾燥し
静電記録体を得た。 トルエン 200部 炭酸カルシウム 50部 メチルメタクリレート−エチルアクリレート共
重合体樹脂(共重合比1:1) 25部 ポリブチルメタクリレート樹脂 25部 この記録体につき帯電極性試験、及び摩擦によ
り誘電体層表面へ静電荷を形成後に記録試験を行
つた。 帯電極性試験 ポリメチルメタクリレート樹脂製ロール(摩擦
処理材)で静電記録体の誘電体層表面を20回摩擦
し、表面電位計で電位の極性を調べた。 誘電体層表面への静電荷の形成 ガラス板上に静電記録体を誘電体層を上にして
置き、その表面を直径100mmのポリメチルメタク
リレート樹脂製ロール(摩擦処理材)の自重(2
Kg)を利用して(圧力260g/cm2、接触幅3mm)
10m/分の速度で摩擦処理して静電荷を形成し
た。 記録試験方法 松下電送(株)製CADシステム用静電プロツター
EP−101A1(針電極により負極性の静電荷を印加
し潜像を形成する。)で1ドツトの細線の記録を
行い、50cmの細線中の細線抜け、異常放電の数を
それぞれ計測した。 比較例 1 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例1と同様にして記録体を得
た。 トルエン 200部 炭酸カルシウム粉末 50部 メチルメタクリレート−エチルアクリレート共
重合体樹脂(共重合比1:1) 50部 この記録体につき実施例1と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 2 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例1と同様にして記録体を得
た。 トルエン 200部 炭酸カルシウム粉末 50部 ポリブチルメタクリレート樹脂 50部 この記録体につき実施例1と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 3 実施例1において、記録体の誘電体層表面へ摩
擦により静電荷を形成しなかつた以外は同様に記
録試験を行つた。 実施例 2 記録体の調製:下記組成の誘電体層塗料を乾燥
重量4g/m2塗布した以外は実施例1と同
様にして記録体を得た。 メチルエチルケトン 200部 シリカ粉末 20部 ポリメチルメタクリレート樹脂 60部 ポリブチルメタクリレート樹脂 20部 この記録体につき帯電極性試験、及び摩擦によ
り誘電体層表面へ静電荷を形成後に記録試験を行
つた。 帯電極性試験 ポリスチレン樹脂製ロール(摩擦処理材)で静
電記録体の誘電体層表面を20回摩擦し、表面電位
計で電位の極性を調べた。 誘電体層表面への静電荷の形成 ガラス板上に静電記録体を誘電体層を上にして
置き、表面を直径100mmのポリスチレン樹脂製ロ
ール(摩擦処理材)の自重(2Kg)を利用して
(圧力260g/cm2、接触幅3mm)10m/分の速度で
摩擦処理して静電荷を形成した。 記録試験方法 実施例1と同様。 比較例 4 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例2と同様にして記録体を得
た。 メチルエチルケトン 200部 シリカ粉末 20部 ポリメチルメタクリレート樹脂 80部 この記録体につき実施例2と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 5 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例2と同様にして記録体を得
た。 メチルエチルケトン 200部 シリカ粉末 20部 ポリブチルメタクリレート樹脂 80部 この記録体につき実施例2と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 6 実施例2において、記録体の誘電体層表面へ摩
擦により静電荷を形成しなかつた以外は同様に記
録試験を行つた。 実施例 3 記録体の調製:下記組成の誘電体層塗料を乾燥重
量4g/m2塗布した以外は実施例1と同様
にして記録体を得た。 メチルエチルケトン 200部 焼成クレー粉末 30部 ポリビニルブチラール樹脂 40部 ポリエステル樹脂 30部 この記録体につき帯電極性試験、及び摩擦によ
り誘電体層表面へ静電荷を形成後に記録試験を行
つた。 帯電極性試験 ポリスチレン樹脂製ロール(摩擦処理材)で静
電記録体の誘電体層表面を20回摩擦し、表面電位
計で電位の極性を調べた。 誘電体層表面への静電荷の形成 ガラス板上に静電記録体を誘電体層を上にして
置き、その表面を直径100mmのポリスチレン樹脂
製ロール(摩擦処理材)の自重(2Kg)を利用し
て(圧力260g/cm2、接触幅3mm)10m/分の速
度で摩擦処理して電荷を形成した。 記録試験方法 実施例1と同様。 比較例 7 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例3と同様にして記録体を得
た。 メチルエチルケトン 200部 焼成クレー粉末 30部 ポリエステル樹脂 70部 この記録体につき実施例3と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 8 記録体の調製:誘電体層塗料の組成を下記とした
以外は実施例3と同様にして記録体を得
た。 メチルエチルケトン 200部 焼成クレー粉末 30部 ポリビニルブチラール樹脂 70部 この記録体につき実施例3と同様に帯電極性試
験、及び摩擦により誘電体層表面へ静電荷を形成
後に記録試験を行つた。 比較例 9 実施例3において、記録体の誘電体層表面へ摩
擦により静電荷を形成しなかつた以外は同様に記
録試験を行つた。 以上の結果を第1表に示す。
(Field of Industrial Application) The present invention relates to an electrostatic recording medium suitable for high-density recording electrostatic facsimiles such as 400 dots/inch, electrostatic printers, electrostatic plotters, and the like. (Prior art) Along with advances in communication technology, electrostatic recording is widely used as a recording method that simultaneously satisfies high-speed recording and high image quality. Examples of this are optical communications and computer output equipment. Examples include fax machines and printers. Especially in recent years, computers are used for designing and drafting.
Electrostatic printers and electrostatic plotters, which are capable of high-density recording, are preferred for outputting drawings such as CAD systems. The multi-needle electrode recording method that is most commonly used in electrostatic recording methods includes single-sided control type and double-sided control type, but in both cases, recording of about 200 dots/inch is mainly used for recording text. There was no particular problem in the generation of discharge itself, probably because the area of each needle electrode was sufficient in terms of density. However, when high-density recording of around 400 dots/inch is performed using conventional electrostatic recording materials, mainly for the purpose of recording drawings, when thin lines are drawn, normal discharge does not occur and the recording is not recorded after development. The so-called thin line dropout development occurs, in which small areas appear, or conversely, depending on the location, the discharge reaches more than 10 times the area of each needle electrode, and abnormally bulged spots appear in the fine lines after development. Abnormal discharge occurs and good recording cannot be obtained. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing an electrostatic recording medium that does not cause thin line dropout or abnormal discharge in high-density recording such as 400 dots/inch. (Means for Solving the Problems) The present inventors believe that there is a limit to the degree of improvement in solving the above problems by considering only the structure of the recording medium.
Further research was conducted on the discharge and charging conditions on the surface of the dielectric layer. Incidentally, it has conventionally been common general knowledge that the surface of the dielectric layer of an electrostatic recording medium must be free of static charge until an electrostatic charge for a recorded image is applied. At first glance, the present invention seems
Although this idea goes against common technical knowledge, the inventors of the present invention have found that, before applying electrostatic charges for forming recorded images, by charging them with electrostatic charges of opposite polarity to the applied charges, abnormal discharge can be resolved. We have been considering this with the idea that it might become a reality. As a result, we have arrived at an invention consisting of the following configuration. The present invention is an electrostatic recording system for electrostatic recording, which has a dielectric layer containing a pigment and an insulating resin on a conductive support, and applies electrostatic charge for forming a recorded image by discharging from a multi-needle electrode. A method for producing a recording medium, in which at least one resin each of a resin that is positively charged when rubbed with a friction treatment material and a resin that is negatively charged when rubbed with a friction treatment material is used as the insulating resin, and the dielectric resin is dielectrically charged with the friction treatment material. This method of manufacturing an electrostatic recording medium is characterized in that an electrostatic charge having a polarity opposite to the charge previously applied for recording is formed on the surface of a dielectric layer by rubbing the body layer. (Function) In the present invention, the treatment materials for rubbing the surface of the dielectric layer include polyethylene resin, polypropylene resin, polystyrene resin, polyether resin, polyvinyl chloride resin, polymethyl methacrylate resin, melamine resin, urea resin, There are phenolic resins, epoxy resins, amino resins, imide resins, etc. Among these, there is ease of processing as a processing material, wear resistance, ease of generating static charge when rubbed, and distribution on the dielectric layer. Due to the ease of controlling the diameter of electrostatic charge, thermoplastic resins such as polystyrene resin, copolymer resins of styrene-acrylic acid derivatives or styrene-methacrylic acid derivatives, polymethyl methacrylate resin, epoxy resins, etc.
Thermosetting resins such as melamine resin, urea melamine resin, and benzoguanamine resin are preferably used. These treatment materials can be used alone or in a mixture. Next, in the present invention, among the insulating resins constituting the dielectric layer of the electrostatic recording material, the resins that are positively charged when rubbed with the friction treatment material and the resins that are negatively charged are the resins that are negatively charged when rubbed with the friction treatment material. In relation to the pigment used in the dielectric layer, the polarity changes from positive to negative. However, the charge polarity of the insulating resin does not change depending on the blending ratio of the pigment and the resin. For example, if the friction treatment material is polymethyl methacrylate resin and the pigment is calcium carbonate, positively charged insulating resins include methyl methacrylate-ethyl acrylate copolymer, and negatively charged insulating resins include polymethyl methacrylate. Examples include methacrylate, polybutyl methacrylate, styrene-methyl methacrylate copolymer, polyester, polystyrene, and polyvinyl butyral. In addition, when the friction treatment material is polymethyl methacrylate resin and the pigment is fired clay, the positively charged insulating resin is polymethyl methacrylate, methyl methacrylate-ethyl acrylate copolymer,
Examples include polybutyl methacrylate, and negatively charged insulating resins include styrene-methyl methacrylate copolymer, polyester, polystyrene, polyvinyl butyral, and the like. Furthermore, if the friction treatment material is polymethyl methacrylate resin and the pigment is silica, polymethyl methacrylate, methyl methacrylate, ethyl methacrylate copolymer, polybutyl methacrylate, styrene-methyl methacrylate copolymer, polyester, polystyrene, polyvinyl butyral, etc. It becomes an insulating resin that is negatively charged. Next, when the friction treatment material is polystyrene resin and the pigment is calcium carbonate, positively charged insulating resins include methyl methacrylate-ethyl acrylate copolymer, polybutyl methacrylate, styrene-methyl methacrylate copolymer, polyester, and polystyrene. There are polyvinyl butyral and the like as negatively charged insulating resins. In addition, when the friction treatment material is polystyrene resin and the pigment is fired clay, positively charged insulating resins include methyl methacrylate-ethyl acrylate copolymer, polybutyl methacrylate, styrene-methyl methacrylate copolymer, polyester, etc. Examples of negatively charged insulating resins include polystyrene and polyvinyl butyral. Furthermore, when the friction treatment material is polystyrene resin and the pigment is silica, polymethyl methacrylate and methyl methacrylate are used as positively charged insulating resins.
Examples include ethyl acrylate copolymer, styrene-methyl methacrylate copolymer, polyester, etc., and negatively charged insulating resins include polybutyl methacrylate, polystyrene, polyvinyl butyral, etc. Accordingly, the present invention uses a pigment in the dielectric layer, and at least one type of resin that has a different friction charge polarity when mixed with the pigment, and a charge applied to the surface of the dielectric layer in advance for recording. By forming electrostatic charges of opposite polarity by friction between the friction treatment material and the surface of the dielectric layer, excellent thin line removal and abnormal electric charge improvement effects can be obtained. If it is formed on the dielectric layer in advance, when a developer with a polarity opposite to the applied charge for recording is used, a stain called fog will occur on the recorded image regardless of the resin composition of the dielectric layer, and it will also have the effect of improving fine line omission. I can't get it. Therefore, in the present invention, it is necessary to adjust the mixing ratio of the resin so that an electrostatic charge having a polarity opposite to that of the applied charge for recording is formed by friction. That is, when the applied charge for recording is of negative polarity, the resin is blended so that positive charges are formed on the dielectric layer in advance by friction. Among the above resins, for example, when a friction treatment material made of polymethyl methacrylate resin is used, calcium carbonate is used as the pigment contained in the dielectric layer, and methyl methacrylate is used as the insulating resin.
A mixture of ethyl acrylate copolymer and polybutyl methacrylate, or when using a friction treatment material made of polystyrene resin, a mixture of silica as the pigment contained in the dielectric layer and polyester and polyvinyl butyral as the insulating resin. The following combinations are possible. Next, the charging state due to friction can be adjusted by the composition of the treatment material, the strength of the friction pressure, the number of times of treatment, the friction speed, etc. In the friction treatment, the treated material is usually formed into a roll-shaped or plate-shaped body, or is coated on a sheet-like support and wound around a roll, and the treated material is applied to the surface of the dielectric layer of an electrostatic recording medium that normally runs. Processing is performed by pressing the electrostatic recording material, and the timing of the processing depends on the manufacturing process after forming the dielectric layer of the electrostatic recording medium, the finishing process, and also depending on the processing material built into the electrostatic recording device. It's good to wear. If the treatment material is in the form of a roll, performing the friction treatment while rotating can prevent scratches on the surface of the dielectric layer. Note that the electrostatic charge formed on the dielectric layer can be observed with an electron microscope. That is, when observing a secondary electron image with an accelerating voltage of about 2 kilovolts, positive electrostatic charges are expressed in black, and negative electrostatic charges are expressed in white. Electrostatic charges of opposite polarity to the electrostatic charges for the recorded image formed in advance according to the present invention are distributed in an island shape, and the size of each charge is 1 μ to 1 μm.
It is almost uniform within the range of 300μ. With such a recording medium, a clear image without missing lines or abnormal discharge can be obtained by recording one dot of a fine line using an electrostatic recording device. In the present invention, the charging state can be adjusted by the friction treatment conditions, but if the diameter of the electrostatic charge is too small, the effect of improving fine line omission will be insufficient, and if it is too large, abnormal discharge will not be reduced, so each island-shaped charge The maximum diameter is preferably adjusted to 1 μ to 300 μ, more preferably slightly smaller than the diameter of each needle electrode of the electrostatic recording device. On the other hand, in a recording medium made of an insulating resin in which the polarity of charges generated by friction is only one, the electrostatic charges of the opposite polarity to the electrostatic charges for the recorded image formed in advance on the dielectric layer are formed in the form of a net or island. However, even when distributed in an island-like manner, the size of each charge is irregular, and when a single dot thin line is recorded, thin line omission is improved compared to a recording medium that does not undergo any friction treatment. However, abnormal discharge increases significantly compared to a recording medium that is not subjected to any friction treatment. Although it is not necessarily clear why the electrostatic recording material of the present invention provides excellent recording without thin line omissions or abnormal discharge, it is clear that when the dielectric layer is rubbed by the friction treatment material, Contains a resin that is positively charged and a resin that is negatively charged, so the size, strength, and distribution of static charges generated by friction can be adjusted appropriately, resulting in the formation of a latent image. It is surmised that this causes a decrease in the discharge starting voltage at the time of discharge, resulting in more reliable discharge. The conductive support constituting the electrostatic recording medium may be an inorganic salt such as sodium chloride, a cationic polymer electrolyte such as polyvinylbenzyltrimethylammonium chloride, an anionic polymer electrolyte, a surfactant, or an oxidized polymer electrolyte. Paper, plastic film, cloth, etc. impregnated with or coated with metal oxide semiconductor powder such as zinc or zinc oxide treated to make it conductive, and having a surface resistance of 10 5 to 10 11 Ω, are used. (Examples) Examples of the present invention will be described below, but the present invention is not limited only to these Examples.
Further, unless otherwise specified, parts and % in the examples indicate parts by weight and % by weight, respectively. Example 1 Preparation of recording medium: A cationic polymer electrolyte (trade name: Chemistat 6300, manufactured by Sanyo Chemical Co., Ltd.) was placed on the surface of high-quality paper with a weight of 53 g/m 2 at an absolute dry weight of 3
g/m 2 , and the back surface was coated at 2 g/m 2 to obtain a conductive support. A dielectric layer coating material having the following composition was coated on this conductive support so that the dry weight was 5 g/m 2 and dried to obtain an electrostatic recording material. Toluene 200 parts Calcium carbonate 50 parts Methyl methacrylate-ethyl acrylate copolymer resin (copolymerization ratio 1:1) 25 parts Polybutyl methacrylate resin 25 parts This recording material was subjected to a charge polarity test and static charge on the dielectric layer surface due to friction. A recording test was conducted after the formation. Charging polarity test The surface of the dielectric layer of the electrostatic recording medium was rubbed 20 times with a roll made of polymethyl methacrylate resin (friction treatment material), and the polarity of the potential was examined using a surface electrometer. Formation of electrostatic charge on the surface of the dielectric layer The electrostatic recording material was placed on a glass plate with the dielectric layer facing up, and the surface was covered with the weight (2
Kg) (pressure 260g/cm 2 , contact width 3mm)
A static charge was created by rubbing at a speed of 10 m/min. Recording test method Electrostatic plotter for CAD system manufactured by Matsushita Electric Transmission Co., Ltd.
A one-dot thin line was recorded using EP-101A1 (which applies a negative electrostatic charge using a needle electrode to form a latent image), and the number of thin line omissions and abnormal discharges in a 50 cm thin line was counted. Comparative Example 1 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 1 except that the composition of the dielectric layer paint was changed to the following. Toluene 200 parts Calcium carbonate powder 50 parts Methyl methacrylate-ethyl acrylate copolymer resin (copolymerization ratio 1:1) 50 parts This recording medium was subjected to a charge polarity test in the same manner as in Example 1, and static electricity was applied to the surface of the dielectric layer by friction. After the charge was formed, a recording test was performed. Comparative Example 2 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 1 except that the composition of the dielectric layer paint was changed to the following. Toluene 200 parts Calcium carbonate powder 50 parts Polybutyl methacrylate resin 50 parts This recording medium was subjected to a charging polarity test in the same manner as in Example 1, and a recording test after forming electrostatic charges on the surface of the dielectric layer by friction. Comparative Example 3 A recording test was conducted in the same manner as in Example 1, except that no electrostatic charge was formed on the surface of the dielectric layer of the recording medium due to friction. Example 2 Preparation of recording material: A recording material was obtained in the same manner as in Example 1, except that a dielectric layer paint having the following composition was applied at a dry weight of 4 g/m 2 . Methyl ethyl ketone 200 parts Silica powder 20 parts Polymethyl methacrylate resin 60 parts Polybutyl methacrylate resin 20 parts This recording medium was subjected to a charging polarity test and a recording test after electrostatic charge was formed on the surface of the dielectric layer by friction. Charging polarity test The surface of the dielectric layer of the electrostatic recording medium was rubbed 20 times with a polystyrene resin roll (friction treatment material), and the polarity of the potential was examined using a surface electrometer. Formation of electrostatic charge on the surface of the dielectric layer The electrostatic recording material was placed on a glass plate with the dielectric layer facing up, and the surface was coated using the weight (2 kg) of a polystyrene resin roll (friction treatment material) with a diameter of 100 mm. (pressure 260 g/cm 2 , contact width 3 mm) at a speed of 10 m/min to form an electrostatic charge. Recording test method Same as Example 1. Comparative Example 4 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 2 except that the composition of the dielectric layer paint was changed to the following. Methyl ethyl ketone 200 parts Silica powder 20 parts Polymethyl methacrylate resin 80 parts This recording medium was subjected to a charging polarity test in the same manner as in Example 2, and a recording test after forming electrostatic charges on the surface of the dielectric layer by friction. Comparative Example 5 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 2 except that the composition of the dielectric layer paint was changed to the following. Methyl ethyl ketone 200 parts Silica powder 20 parts Polybutyl methacrylate resin 80 parts This recording medium was subjected to a charging polarity test in the same manner as in Example 2, and a recording test after forming electrostatic charges on the surface of the dielectric layer by friction. Comparative Example 6 A recording test was conducted in the same manner as in Example 2, except that no static charge was formed on the surface of the dielectric layer of the recording medium due to friction. Example 3 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 1, except that a dielectric layer paint having the following composition was applied at a dry weight of 4 g/m 2 . Methyl ethyl ketone 200 parts Calcined clay powder 30 parts Polyvinyl butyral resin 40 parts Polyester resin 30 parts This recording medium was subjected to a charging polarity test and a recording test after electrostatic charge was formed on the surface of the dielectric layer by friction. Charging polarity test The surface of the dielectric layer of the electrostatic recording medium was rubbed 20 times with a polystyrene resin roll (friction treatment material), and the polarity of the potential was examined using a surface electrometer. Formation of electrostatic charge on the surface of the dielectric layer Place the electrostatic recording material on the glass plate with the dielectric layer facing up, and use the dead weight (2 kg) of a polystyrene resin roll (friction treatment material) with a diameter of 100 mm to cover the surface. A charge was formed by rubbing at a speed of 10 m/min (pressure 260 g/cm 2 , contact width 3 mm). Recording test method Same as Example 1. Comparative Example 7 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 3 except that the composition of the dielectric layer paint was changed to the following. Methyl ethyl ketone 200 parts Calcined clay powder 30 parts Polyester resin 70 parts This recording medium was subjected to a charge polarity test in the same manner as in Example 3, and a recording test after forming electrostatic charges on the surface of the dielectric layer by friction. Comparative Example 8 Preparation of Recording Body: A recording body was obtained in the same manner as in Example 3 except that the composition of the dielectric layer paint was changed to the following. Methyl ethyl ketone 200 parts Calcined clay powder 30 parts Polyvinyl butyral resin 70 parts This recording medium was subjected to a charging polarity test in the same manner as in Example 3, and a recording test after forming electrostatic charges on the surface of the dielectric layer by friction. Comparative Example 9 A recording test was conducted in the same manner as in Example 3, except that no electrostatic charge was formed on the surface of the dielectric layer of the recording medium due to friction. The above results are shown in Table 1.

【表】【table】

【表】 本発明にかかる実施例1〜3では細線抜けも異
常放電も殆どない記録が得られた。 これに対し顔料と正に帯電する樹脂のみからな
る誘電体層を有する記録体(比較例1,4,7)
では、摩擦処理を行つても異常放電が著しく、ま
た負に帯電する樹脂のみからなる誘電体層を有す
る記録体(比較例2,5,8)では、摩擦処理を
行つても細線抜けが多く、カブリ汚レ(余白部分
が全面に薄く発色する汚れ)が発生した。更に正
に帯電する樹脂と負に帯電する樹脂を混合使用し
ても、摩擦により静電荷を形成しない記録体では
(比較例3,6,9)細線抜け、異常放電が多く、
いずれも記録適性不良であつた。 (効果) 本発明の静電記録体は、400ドツト/インチの
ような高密度静電記録の場合でも、細線抜けや異
常放電の起こらない鮮明な記録画像を得ることが
出来る優れた静電記録体であつた。
[Table] In Examples 1 to 3 according to the present invention, recordings with almost no thin line omissions or abnormal discharges were obtained. On the other hand, recording bodies having a dielectric layer consisting only of pigment and positively charged resin (Comparative Examples 1, 4, 7)
In this case, abnormal discharge was significant even after friction treatment, and recording bodies with dielectric layers made only of negatively charged resin (Comparative Examples 2, 5, and 8) had many thin lines missing even after friction treatment. , fog stains (stains in which the margins are thinly colored over the entire surface) occurred. Furthermore, even if a positively charged resin and a negatively charged resin are mixed and used, recording materials that do not form static charges due to friction (Comparative Examples 3, 6, and 9) have many fine line omissions and abnormal discharges.
All had poor recording aptitude. (Effects) The electrostatic recording material of the present invention is an excellent electrostatic recording material that can obtain clear recorded images without thin line omissions or abnormal discharge even in the case of high-density electrostatic recording such as 400 dots/inch. My body was warm.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性支持体上に顔料と絶縁性樹脂を含有す
る誘電体層を有する、記録画像形成のための静電
荷を多針電極からの放電で印加する静電記録方式
用の静電記録体の製造方法であり、該絶縁性樹脂
として、摩擦処理材で摩擦した場合に正に帯電す
る樹脂と、負に帯電する樹脂とを少なくとも各1
種づつ使用し、かつ摩擦処理材で誘電体層を摩擦
することにより、誘電体層表面に予め記録のため
の印加電荷とは反対極性の静電荷を形成すること
を特徴とする静電記録体の製造方法。
1. An electrostatic recording medium for electrostatic recording method, which has a dielectric layer containing a pigment and an insulating resin on a conductive support, and applies electrostatic charge for forming a recorded image by discharging from a multi-needle electrode. The manufacturing method includes at least one resin that is positively charged when rubbed with a friction treatment material and one resin that is negatively charged as the insulating resin.
An electrostatic recording material characterized in that an electrostatic charge having a polarity opposite to the charge previously applied for recording is formed on the surface of the dielectric layer by using seeds one by one and rubbing the dielectric layer with a friction treatment material. manufacturing method.
JP8081687A 1986-11-29 1987-03-30 Electrostatic recording body Granted JPS63243944A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8081687A JPS63243944A (en) 1987-03-30 1987-03-30 Electrostatic recording body
DE3751221T DE3751221T2 (en) 1986-11-29 1987-11-27 Electrostatic recording method.
EP87117599A EP0270032B1 (en) 1986-11-29 1987-11-27 Electrostatic recording method
US07/399,441 US4944959A (en) 1986-11-29 1989-08-28 Process for electrostatic recording comprising charging dielectric sheet to polarity opposite of imaging charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8081687A JPS63243944A (en) 1987-03-30 1987-03-30 Electrostatic recording body

Publications (2)

Publication Number Publication Date
JPS63243944A JPS63243944A (en) 1988-10-11
JPH055347B2 true JPH055347B2 (en) 1993-01-22

Family

ID=13728977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8081687A Granted JPS63243944A (en) 1986-11-29 1987-03-30 Electrostatic recording body

Country Status (1)

Country Link
JP (1) JPS63243944A (en)

Also Published As

Publication number Publication date
JPS63243944A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH055347B2 (en)
JPH0612457B2 (en) Electrostatic recording body
EP0270032B1 (en) Electrostatic recording method
JPS63143555A (en) Electrostatic recording body
JPH059020B2 (en)
JPH0534937A (en) Electrostatic recording body
US5950541A (en) Method of producing lithographic printing plate
JPH035742B2 (en)
JPS63318563A (en) Electrostatic recording body
JPH01211765A (en) Electrostatic recording body
JPS613146A (en) Electrostatic recording body
JPS60217363A (en) Electrostatic recording body
US5942325A (en) Electrostatic recording materials
JPS63225242A (en) Electrostatic recording body
JP2527225B2 (en) Electrostatic recording body
JPH0517544B2 (en)
JPH0253063A (en) Electrostatic recording body
JPH06308741A (en) Electrostatic recording material
JPS63182672A (en) Electrostatic recorder
JPH06282083A (en) Electrostatic recording body
JPS63276053A (en) Electrostatic recording body
JPS63138354A (en) Electrostatic recording body
JPH01147460A (en) Electrostatic recording body
JPS613145A (en) Electrostatic recording body
JPS63280253A (en) Electrostatic recording body