JPH0553055B2 - - Google Patents

Info

Publication number
JPH0553055B2
JPH0553055B2 JP60202546A JP20254685A JPH0553055B2 JP H0553055 B2 JPH0553055 B2 JP H0553055B2 JP 60202546 A JP60202546 A JP 60202546A JP 20254685 A JP20254685 A JP 20254685A JP H0553055 B2 JPH0553055 B2 JP H0553055B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
substrate
reaction vessel
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60202546A
Other languages
Japanese (ja)
Other versions
JPS6263420A (en
Inventor
Nobuo Mikoshiba
Kazuo Tsubochi
Kazuya Eki
Kazuo Sato
Nobumasa Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20254685A priority Critical patent/JPS6263420A/en
Publication of JPS6263420A publication Critical patent/JPS6263420A/en
Publication of JPH0553055B2 publication Critical patent/JPH0553055B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CVD(Chemical Vapor
Deposition)、プラズマエツチングなどのエツチ
ング、プラズマアツシング(灰化)などのアツシ
ング、プラズマ酸化、窒化などの酸化、窒化等化
学的気相法により反応を行なわせるための装置及
びプラズマ処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to CVD (Chemical Vapor
The present invention relates to an apparatus and a plasma processing method for carrying out reactions by chemical vapor phase methods such as etching such as deposition, plasma etching, ashing such as plasma ashing, oxidation such as plasma oxidation and nitriding, and nitriding.

〔従来の技術〕[Conventional technology]

例えば、プラズマCVD、熱CVD、光CVD等化
学的気相法により堆積膜を形成する場合、反応容
器内におかれた基体上に堆積膜を形成するため
に、堆積膜の構成要素となる原子を含んだ気体や
希釈ガス等の反応用気体を反応容器内に供給し、
反応容器内の気相中、もしくは基体上での化学反
応を利用して所望の堆積膜を形成するものであ
る。CVD技術はLSI、超LSI等の製作に不可欠の
ものである。又、より低温で所望の膜を形成する
ことのできるCVD装置は、必要不可欠のもので
ある。特に、反応容器内を減圧にし、プラズマを
用いて予め反応用気体を励起したり、反応を促進
させたりするCVD技術は、低温CVD技術として
重要な技術のひとつである。
For example, when a deposited film is formed by a chemical vapor phase method such as plasma CVD, thermal CVD, or photo-CVD, the atoms that will be the constituent elements of the deposited film are A reaction gas such as a gas containing
A desired deposited film is formed by utilizing a chemical reaction in a gas phase in a reaction container or on a substrate. CVD technology is essential for manufacturing LSI, super LSI, etc. Furthermore, a CVD device that can form a desired film at a lower temperature is essential. In particular, CVD technology, which reduces the pressure inside the reaction vessel and uses plasma to excite the reaction gas in advance and accelerate the reaction, is an important low-temperature CVD technology.

プラズマCVDの場合、反応容器内の基体がプ
ラズマに曝されている状態で堆積膜の形成が行な
われていたため、荷電粒子損傷等が発生し膜特性
に悪影響を与えるといつた不都合が生じていた。
そこで、近年、プラズマの発生領域を反応容器内
の一部に閉じ込めたり、反応用気体の供給経路上
の他の部分に移したりして、基体がプラズマに直
接曝されないようにし、反応用気体の励起乃至は
反応を制御し、高品位の堆積膜を形成しようとす
る試みがなされている。
In the case of plasma CVD, the deposited film was formed while the substrate inside the reaction vessel was exposed to plasma, which caused problems such as charged particle damage, which adversely affected film properties. .
Therefore, in recent years, the plasma generation area has been confined to a part of the reaction vessel or moved to another part of the reaction gas supply route to prevent the substrate from being directly exposed to the plasma. Attempts have been made to control excitation or reaction to form high-quality deposited films.

第3図のa及びbにプラズマ発生領域を反応容
器内の一部に閉じ込めたCVD装置を示す。第3
図aの装置は、ガス導入口A31から、例えば水
素ガス(以下、H2ガスという)で希釈されたト
リメチルアルミニウム(以下、TMA1という)
を導入する。ガス導入口B32からはアンモニア
ガス(以下、NH3ガスという)、もしくは、NH3
ガスとH2ガスとの混合ガスを導入する。上記反
応用気体を用いて反応容器33内の基体34(必
要に応じて適宜の加熱手段により加熱されてい
る)上に窒化アルミニウムの単結晶薄膜を形成す
ることができる。この時、NH3ガスのみ、もし
くはNH3ガスとH2ガスとの混合ガスのみをプラ
ズマで励起してやると、基体34上での単結晶形
成温度がプラズマのない時、即ち熱エネルギーだ
けを用いたCVD法などの場合よりも低下する。
Figures 3a and 3b show a CVD apparatus in which the plasma generation region is confined in a part of the reaction vessel. Third
The device in Figure a uses trimethylaluminum (hereinafter referred to as TMA1) diluted with hydrogen gas (hereinafter referred to as H2 gas), for example, from the gas inlet A31.
will be introduced. Ammonia gas (hereinafter referred to as NH 3 gas) or NH 3 is supplied from the gas inlet B32.
Introduce a mixture of gas and H2 gas. Using the reaction gas described above, a single crystal thin film of aluminum nitride can be formed on the substrate 34 (heated by an appropriate heating means as necessary) in the reaction vessel 33. At this time, if only NH 3 gas or only a mixed gas of NH 3 gas and H 2 gas is excited with plasma, the single crystal formation temperature on the substrate 34 will be the same as when there is no plasma, that is, when only thermal energy is used. This is lower than in cases such as the CVD method.

同一要素を同一符号で表わすと、第3図bの装
置は、例えば、ガス導入口31からH2ガスで希
釈されたTMA1を導入する。プラズマ発生領域
イを通過した後、この反応用気体は基体34上へ
到達する。基体上で光入射窓37を通して照射さ
れている光(矢印ロ)の光子エネルギーにより反
応が促進され、光照射のある部分にのみA1薄膜
の堆積が起る。
The same elements are denoted by the same reference numerals. In the apparatus of FIG. 3b, for example, TMA1 diluted with H 2 gas is introduced from the gas inlet 31. After passing through the plasma generation region A, this reaction gas reaches the substrate 34. The reaction is promoted by the photon energy of the light (arrow B) that is irradiated onto the substrate through the light incidence window 37, and the A1 thin film is deposited only on the area where the light is irradiated.

第3図a及びbともに、反応容器の所望の位置
にプラズマを発生させることが重要である。反応
容器の外周にまかれた電極体に高周波電力を加え
てプラズマを発生させる方式の放電設備を第4図
に示す。第4図は、第3図a,bのプラズマ発生
部分のみを取出して示している。励起用電極38
と接地電極39の間に高周波電源40から高周波
電力を加える。電極38と電極39の間にグロー
放電が起る。従来、電極38と電極39を挟んで
反応容器高さ方向にプラズマ拡散防止電極41A
及び41Bを取りつけ、プラズマの発生領域を制
限する提案がなされている。しかし、第4図の装
置では、電極を4つ必要とするため、プラズマを
閉じ込められる長さハが長くなつてしまう。例え
ば、第3図a,bの例において、反応容器外径
略々80mm、反応容器内のガスの大部分がH2ガス、
圧力0.5〜1.0Torr、高周波電源周波数略々13.6M
Hzの時、0.5Torrでは20W,1.0Torrでは70Wの
電力範囲でしかプラズマを電極38,39,41
A,41B近傍に閉じ込められない。上記、70W
以上の電力投入ではプラズマ発生領域ハはプラズ
マ拡散防止電極41Aの上方及びプラズマ拡散防
止電極41Bの下方へ拡散してしまう。従つて、
大電力を投入できる電極体配置が必要である。
In both FIGS. 3a and 3b, it is important to generate plasma at a desired location in the reaction vessel. FIG. 4 shows a discharge equipment in which plasma is generated by applying high frequency power to an electrode body spread around the outer periphery of a reaction vessel. FIG. 4 shows only the plasma generating portions shown in FIGS. 3a and 3b. Excitation electrode 38
High frequency power is applied from a high frequency power source 40 between the ground electrode 39 and the ground electrode 39 . A glow discharge occurs between electrode 38 and electrode 39. Conventionally, a plasma diffusion prevention electrode 41A was installed in the height direction of the reaction vessel with electrodes 38 and 39 in between.
A proposal has been made to limit the plasma generation area by attaching a 41B and 41B. However, since the device shown in FIG. 4 requires four electrodes, the length over which the plasma can be confined becomes long. For example, in the examples shown in Figures 3a and 3b, the outer diameter of the reaction vessel is approximately 80 mm, and most of the gas in the reaction vessel is H 2 gas.
Pressure 0.5~1.0Torr, high frequency power supply frequency approximately 13.6M
Hz, the plasma can only be applied to electrodes 38, 39, 41 in the power range of 20W at 0.5Torr and 70W at 1.0Torr.
A, cannot be confined near 41B. Above, 70W
When the power is turned on in the above manner, the plasma generation region C diffuses above the plasma diffusion prevention electrode 41A and below the plasma diffusion prevention electrode 41B. Therefore,
It is necessary to arrange the electrode body so that a large amount of power can be applied.

〔発明の目的及び概要〕[Purpose and outline of the invention]

本発明の目的は、反応容器内を含め反応用気体
の供給経路上の所望の位置に、しかも電力量のい
かんを問わず有効にプラズマを閉じ込めることの
できる化学的気相法による反応装置を提供するこ
とにある。
An object of the present invention is to provide a reaction device using a chemical vapor method that can effectively confine plasma at a desired position on a reaction gas supply path, including inside a reaction vessel, regardless of the amount of electric power used. It's about doing.

上記目的は、基体が配される反応容器と、前記
反応容器内に反応ガスを供給するガス供給手段
と、前記反応容器内を排気する排気手段と、前記
反応容器内にプラズマを発生させるための第1の
電極と、前記第1の電極を挟んで設けられる1対
の第2の電極と、を有し、 前記第2の電極の前記基体側の電極には該基体
側の電極の電位を設定電位とフローテイング状態
との間で切り換える切り換え手段が設けられてい
て、該切り換え手段を切り換えることで前記基体
に対する前記反応容器内のプラズマ発生領域を可
変制御するようにしたことを特徴とする化学的気
相法による反応装置により達成される。
The above object is to provide a reaction vessel in which a substrate is disposed, a gas supply means for supplying a reaction gas into the reaction vessel, an exhaust means for exhausting the inside of the reaction vessel, and a system for generating plasma in the reaction vessel. It has a first electrode and a pair of second electrodes provided with the first electrode in between, and the electrode on the substrate side of the second electrode has the potential of the electrode on the substrate side. A chemical agent characterized in that a switching means is provided for switching between a set potential and a floating state, and by switching the switching means, a plasma generation area in the reaction vessel relative to the substrate is variably controlled. This is accomplished using a gas-phase reactor.

また更に、上記目的は、基体が配された反応容
器内に反応ガスを供給し、該反応ガスに第1の電
極より励起エネルギーを供給して前記反応容器内
にプラズマを発生させ、前記基体表面にプラズマ
処理を施すプラズマ処理方法であつて、 前記第1の電極を挟んで設けられている1対の
第2の電極の内、前記基体側の電極に設けられて
いる該基体側の電極の電位を設定電位とフローテ
イング状態との間で切り換えるための切り換え手
段を前記基体側の電極の電位が前記設定電位をと
るように制御し、前記プラズマの発生領域を前記
第2の電極間近傍に閉込めた状態として前記基体
表面のプラズマ処理を行う第1のプラズマ処理工
程と、 前記切り換え手段を前記基体側の電極の電位が
フローテイング状態をとるように制御し、前記プ
ラズマの発生領域を前記基体の配された位置まで
到達させた状態で前記基体表面のプラズマ処理を
行う第2のプラズマ処理工程と、を有することを
特徴とするプラズマ処理方法により達成される。
Furthermore, the above object is to supply a reaction gas into a reaction vessel in which a substrate is disposed, to supply excitation energy to the reaction gas from a first electrode to generate plasma in the reaction vessel, and to generate plasma on the surface of the substrate. A plasma processing method for subjecting a substrate to a plasma treatment, the plasma processing method comprising: performing plasma treatment on a substrate-side electrode of a pair of second electrodes provided on both sides of the first electrode; A switching means for switching the potential between a set potential and a floating state is controlled so that the potential of the electrode on the substrate side takes the set potential, and the plasma generation area is moved near between the second electrodes. a first plasma treatment step of performing plasma treatment on the surface of the substrate in a confined state; controlling the switching means so that the potential of the electrode on the substrate side takes a floating state; This is achieved by a plasma processing method characterized by comprising a second plasma processing step of performing plasma treatment on the surface of the substrate in a state where the substrate has reached the position where the substrate is disposed.

〔実施例〕〔Example〕

本発明装置は、第3図a及びbに例示した様な
CVD法による堆積膜形成装置のほか、例えばプ
ラズマエツチングなどのエツチング、プラズマア
ツシングなどのアツシング、プラズマ酸化、窒化
などの酸化、窒化等化学的気相法による反応装置
であれば、何れにも適用することができる。
The device of the present invention is as illustrated in FIGS. 3a and 3b.
In addition to deposition film forming equipment using the CVD method, it can be applied to any reaction equipment that uses chemical vapor phase methods, such as etching such as plasma etching, ashing such as plasma ashing, oxidation such as plasma oxidation, nitriding, etc. can do.

以下、添付した図面に即して、第3図a及びb
に例示した様なCVD法による堆積膜形成装置に
かんして、本発明の実施例を説明する。
Below, in accordance with the attached drawings, Figure 3 a and b
Embodiments of the present invention will be described with regard to a deposited film forming apparatus using the CVD method as exemplified in .

第1図及び第2図は、それぞれ、本発明装置の
構成例を説明するための模式図であり、第4図と
同様、第3図a及びbのプラズマ発生部分のみを
取り出して示しており、また、同一要素は同一符
号で表わしている。
1 and 2 are schematic diagrams for explaining an example of the configuration of the apparatus of the present invention, and like FIG. 4, only the plasma generation portions of FIGS. 3a and 3b are shown. , and the same elements are represented by the same symbols.

第1図中、1は、第4図中の33と同様、反応
容器又は反応容器と連続して反応気体の供給経路
を構成する容器もしくは管である。
In FIG. 1, 1, like 33 in FIG. 4, is a reaction container or a container or a pipe that is continuous with the reaction container and constitutes a reaction gas supply path.

2は励起用電極で高周波電源3から高周波電力
が投入される。供給経路に沿つて励起用電極2を
挟んで、略々等距離の位置に接地電極4A,4B
が配置されている。励起用電極2を接地電極4
A,4Bで挟んでいるため、電界は接地電極で終
端し、接地電極4A,4Bが励起用電極2の上下
方向の何れか一方にしかない場合よりもプラズマ
は電極間に有効に閉じ込められる。例えば、反応
容器1外径略々80mm、反応容器内のガスの大部分
がH2ガス、圧力0.5〜1.0Torr、高周波電源周波
数略々13.6MHzの時、略々200Wまで電力を印加
してもプラズマ発生領域ハは、接地電極4A及び
4B間近傍に閉じ込められる。
Reference numeral 2 denotes an excitation electrode to which high frequency power is applied from a high frequency power source 3. Ground electrodes 4A and 4B are placed at positions approximately equidistant from each other along the supply path with the excitation electrode 2 in between.
is located. The excitation electrode 2 is connected to the ground electrode 4
Since it is sandwiched between A and 4B, the electric field terminates at the ground electrode, and the plasma is more effectively confined between the electrodes than when the ground electrodes 4A and 4B are located either above or below the excitation electrode 2. For example, when the outer diameter of the reaction vessel 1 is approximately 80 mm, the majority of the gas in the reaction vessel is H 2 gas, the pressure is 0.5 to 1.0 Torr, and the high frequency power frequency is approximately 13.6 MHz, even if a power of approximately 200 W is applied. The plasma generation region C is confined near the ground electrodes 4A and 4B.

第2図の例では、接地電極4Bにスイツチ5が
取付けられ、スイツチ5のオン、オフにより、例
えばスイツチオンのときはニの範囲、スイツチオ
フのときはホの範囲として、プラズマ発生領域を
可変とすることができる。
In the example shown in FIG. 2, a switch 5 is attached to the ground electrode 4B, and by turning the switch 5 on and off, the plasma generation area can be varied, for example, as range D when the switch is on, and range E when it is off. be able to.

この様に、スイツチ5の取り付けにより、例え
ば次の様な動作が可能となる。まず、スイツチオ
ンでプラズマをニの範囲で発生させ、次にスイツ
チオフでプラズマをホの範囲で発生させる。この
時、プラズマは、例えば基体6の位置まで到達さ
せて基体表面のプラズマクリーニングが可能とな
る。次いで、スイツチオンとしてプラズマを再び
ニの範囲に閉じ込め、例えば第3図a及びbの例
で示した様な堆積膜形成を効率良く行なうことが
できる。
By installing the switch 5 in this way, the following operations are possible, for example. First, turn on the switch to generate plasma in range D, then turn off the switch to generate plasma in range E. At this time, the plasma can reach, for example, the position of the base 6 and plasma cleaning of the surface of the base can be performed. Next, the plasma is again confined within the range 2 as a switch, and the deposited film formation as shown in the example of FIGS. 3a and 3b, for example, can be efficiently performed.

なお、第1図及び第2図の例では、励起用電極
及び接地電極として、容器3の周囲に配置された
円環状の電極を用いているが、本発明で使用する
電極の形状はこれに限定されず、例えば容器内に
収容された板状、ロツド状等の電極であつてもよ
い。また、電源3を直流電源とすることもでき
る。
In the examples shown in FIGS. 1 and 2, annular electrodes arranged around the container 3 are used as the excitation electrode and the ground electrode, but the shape of the electrode used in the present invention is different from this. The electrode is not limited to this, and may be, for example, a plate-shaped, rod-shaped, etc. electrode housed in a container. Further, the power source 3 can also be a DC power source.

本発明装置を、例えば第3図a及びbに示した
様なCVD法による堆積膜形成装置に適用した場
合、A1N単結晶薄膜を略々800℃という低温で形
成できた。従来、A1N単結晶薄膜を得るのに、
熱エネルギーのみによるCVD法では1000℃以上
の高温を必要としていた。また、第3図bの装置
でA1薄膜を光照射のある部分のみに形成するこ
とができることが確認された。
When the apparatus of the present invention was applied to a deposited film forming apparatus using the CVD method as shown in FIGS. 3a and 3b, for example, an A1N single crystal thin film could be formed at a low temperature of approximately 800°C. Conventionally, to obtain an A1N single crystal thin film,
CVD methods using only thermal energy require high temperatures of over 1000°C. In addition, it was confirmed that the A1 thin film could be formed only in the area irradiated with light using the apparatus shown in FIG. 3b.

〔発明の効果〕〔Effect of the invention〕

本発明の化学的気相法による反応装置によれ
ば、反応容器内を含め反応用気体の供給経路上の
所望の位置に、しかも電力量のいかんを問わず有
効にプラズマを閉じ込めることができるため、反
応の制御が容易となり、また装置の適用分野を大
幅に広げることができる。
According to the chemical vapor phase reaction apparatus of the present invention, plasma can be effectively confined at a desired position on the reaction gas supply route, including inside the reaction vessel, regardless of the amount of electric power. , the reaction can be easily controlled, and the field of application of the device can be greatly expanded.

また特に、電極の電位を変更するスイツチ等の
切り換え手段を設けたため、反応処理中であつて
も、プラズマ発生領域を容易に変更制御すること
が可能となり、制御性が著しく向上するととも
に、より広範な処理にも適用可能となる効果が得
られた。
In particular, by providing a switching means such as a switch that changes the potential of the electrode, it becomes possible to easily change and control the plasma generation area even during reaction processing, which significantly improves controllability and expands the range. The result was an effect that made it applicable to other types of processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明装置の構
成例を説明するための図であり、反応装置のプラ
ズマ発生部分のみを取り出して示した模式図であ
る。第3図a及びbは、それぞれ、CVD法によ
る堆積膜形成装置の構成例を説明するための模式
図である。第4図は、従来の化学的気相法による
反応装置の構成を説明するための図であり、反応
装置のプズマ発生部分のみを取り出して示した模
式図である。 1,33……反応容器等、2,38……励起用
電極、3,40……高周波電源、4A,4B,3
9……接地電極、5……スイツチ、6,34……
基体、31,32……ガス導入口、35……ガス
排気口、36……排気手段、37……光入射窓、
41A,41B……プラズマ拡散防止電極、イ…
…プラズマ発生領域を示すドツト群、ロ……照射
光を示す矢印、ハ,ニ,ホ……プラズマ発生範囲
を示す矢印。
FIGS. 1 and 2 are diagrams for explaining configuration examples of the apparatus of the present invention, respectively, and are schematic diagrams showing only the plasma generating portion of the reaction apparatus. FIGS. 3a and 3b are schematic diagrams for explaining a configuration example of a deposited film forming apparatus using the CVD method, respectively. FIG. 4 is a diagram for explaining the configuration of a conventional chemical vapor phase reaction apparatus, and is a schematic diagram showing only the plasma generating part of the reaction apparatus. 1, 33... Reaction container etc., 2, 38... Excitation electrode, 3, 40... High frequency power supply, 4A, 4B, 3
9...Ground electrode, 5...Switch, 6,34...
Base body, 31, 32... Gas inlet, 35... Gas exhaust port, 36... Exhaust means, 37... Light incidence window,
41A, 41B...Plasma diffusion prevention electrode, i...
...A group of dots indicating the plasma generation area, B...Arrows indicating the irradiation light, C, D, H...Arrows indicating the plasma generation range.

Claims (1)

【特許請求の範囲】 1 基体が配される反応容器と、前記反応容器内
に反応ガスを供給するガス供給手段と、前記反応
容器内を排気する排気手段と、前記反応容器内に
プラズマを発生させるための第1の電極と、前記
第1の電極を挟んで設けられる1対の第2の電極
と、を有し、 前記第2の電極の前記基体側の電極には該基体
側の電極の電位を設定電位とフローテイング状態
との間で切り換える切り換え手段が設けられてい
て、該切り換え手段を切り換えることで前記基体
に対する前記反応容器内のプラズマ発生領域を可
変制御するようにしたことを特徴とする化学的気
相法による反応装置。 2 前記設定電位は、接地状態のものである特許
請求の範囲第1項記載の化学的気相法による反応
装置。 3 基体が配された反応容器内に反応ガスを供給
し、該反応ガスに第1の電極より励起エネルギー
を供給して前記反応容器内にプラズマを発生さ
せ、前記基体表面にプラズマ処理を施すプラズマ
処理方法であつて、 前記第1の電極を挟んで設けられている1対の
第2の電極の内、前記基体側の電極に設けられて
いる該基体側の電極の電位を設定電位とフローテ
イング状態との間で切り換えるための切り換え手
段を前記基体側の電極の電位が前記設定電位をと
るように制御し、前記プラズマの発生領域を前記
第2の電極間近傍に閉込めた状態として前記基体
表面のプラズマ処理を行う第1のプラズマ処理工
程と、 前記切り換え手段を前記基体側の電極の電位が
フローテイング状態をとるように制御し、前記プ
ラズマの発生領域を前記基体の配された位置まで
到達させた状態で前記基体表面のプラズマ処理を
行う第2のプラズマ処理工程と、を有することを
特徴とするプラズマ処理方法。 4 前記設定電位は、接地状態のものである特許
請求の範囲第3項記載のプラズマ処理方法。 5 前記第1のプラズマ処理工程により堆積膜の
形成が行われる特許請求の範囲第3項記載のプラ
ズマ処理方法。 6 前記第2のプラズマ処理工程によりプラズマ
クリーニングが行われる特許請求の範囲第3項記
載のプラズマ処理方法。 7 前記第1のプラズマ処理工程及び前記第2の
プラズマ処理工程の内、少なくともいずれか一方
は複数回行われる特許請求の範囲第3項記載のプ
ラズマ処理方法。
[Scope of Claims] 1. A reaction vessel in which a substrate is disposed, a gas supply means for supplying a reaction gas into the reaction vessel, an exhaust means for exhausting the inside of the reaction vessel, and a plasma generating device in the reaction vessel. and a pair of second electrodes provided on both sides of the first electrode, and the electrode on the substrate side of the second electrode has an electrode on the substrate side. A switching means is provided for switching the potential of the reactor between a set potential and a floating state, and by switching the switching means, the plasma generation area in the reaction vessel relative to the substrate is variably controlled. A reactor using a chemical vapor phase method. 2. The chemical vapor phase reactor according to claim 1, wherein the set potential is in a grounded state. 3. A plasma in which a reaction gas is supplied into a reaction vessel in which a substrate is arranged, and excitation energy is supplied to the reaction gas from a first electrode to generate plasma in the reaction vessel, and plasma treatment is performed on the surface of the substrate. A processing method, wherein the potential of an electrode on the substrate side that is provided on the substrate side among a pair of second electrodes provided on both sides of the first electrode is set to a set potential and a flow rate. The switching means for switching between the heating state and the heating state is controlled so that the potential of the electrode on the substrate side takes the set potential, and the plasma generation region is confined in the vicinity between the second electrodes. a first plasma treatment step of performing plasma treatment on the surface of the substrate, and controlling the switching means so that the potential of the electrode on the substrate side takes a floating state, and changing the plasma generation area to a position on the substrate. A plasma processing method characterized by comprising: a second plasma processing step of performing plasma processing on the surface of the substrate in a state in which the surface of the substrate is reached. 4. The plasma processing method according to claim 3, wherein the set potential is in a grounded state. 5. The plasma processing method according to claim 3, wherein the first plasma processing step forms a deposited film. 6. The plasma processing method according to claim 3, wherein plasma cleaning is performed in the second plasma processing step. 7. The plasma processing method according to claim 3, wherein at least one of the first plasma processing step and the second plasma processing step is performed multiple times.
JP20254685A 1985-09-14 1985-09-14 Reaction equipment by chemical vapor phase method Granted JPS6263420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20254685A JPS6263420A (en) 1985-09-14 1985-09-14 Reaction equipment by chemical vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20254685A JPS6263420A (en) 1985-09-14 1985-09-14 Reaction equipment by chemical vapor phase method

Publications (2)

Publication Number Publication Date
JPS6263420A JPS6263420A (en) 1987-03-20
JPH0553055B2 true JPH0553055B2 (en) 1993-08-09

Family

ID=16459291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20254685A Granted JPS6263420A (en) 1985-09-14 1985-09-14 Reaction equipment by chemical vapor phase method

Country Status (1)

Country Link
JP (1) JPS6263420A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176923A (en) * 1982-04-09 1983-10-17 Jeol Ltd Plasma cvd apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176923A (en) * 1982-04-09 1983-10-17 Jeol Ltd Plasma cvd apparatus

Also Published As

Publication number Publication date
JPS6263420A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
JP3590416B2 (en) Thin film forming method and thin film forming apparatus
TW201624589A (en) Methods and systems to enhance process uniformity
WO2000044033A1 (en) Method and apparatus for film deposition
US6172322B1 (en) Annealing an amorphous film using microwave energy
JPH0277578A (en) Thin film forming device
JPH05217922A (en) Precipitation method of layer from vapor phase by means of plasma
JP2001358077A (en) Thin film forming device
WO2002047445A3 (en) Chemical plasma cathode
EP0223787B1 (en) Selective chemical vapor deposition method and apparatus
KR100457455B1 (en) Chemical Vapor Deposition Apparatus which deposition-speed control is possible
JPH04277628A (en) Removal of unreacted gas and reaction-suppressing apparatus
JPH0553055B2 (en)
JPH07142400A (en) Plasma treating method and its apparatus
US5990006A (en) Method for forming materials
JPH04111362A (en) Thin-film transistor and its manufacture
JP2726149B2 (en) Thin film forming equipment
JPH04277627A (en) Leaf type plasma chemical vapor growth apparatus
JPH01188678A (en) Plasma vapor growth apparatus
JPS634454B2 (en)
KR100243654B1 (en) A apparatus and method for copper metalorganic chemical vapor deposition
JPH02143420A (en) Manufacture of hetero epitaxial film on silicon substrate
JP2001110785A (en) Treatment method
JPH03259512A (en) High frequency plasma chemical vapor deposition system
JP2663518B2 (en) Silicon substrate cleaning method
JP3261795B2 (en) Plasma processing equipment