JPH0553007B2 - - Google Patents

Info

Publication number
JPH0553007B2
JPH0553007B2 JP29454985A JP29454985A JPH0553007B2 JP H0553007 B2 JPH0553007 B2 JP H0553007B2 JP 29454985 A JP29454985 A JP 29454985A JP 29454985 A JP29454985 A JP 29454985A JP H0553007 B2 JPH0553007 B2 JP H0553007B2
Authority
JP
Japan
Prior art keywords
metal thin
thin film
magnetic recording
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29454985A
Other languages
Japanese (ja)
Other versions
JPS62167611A (en
Inventor
Yasuro Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP29454985A priority Critical patent/JPS62167611A/en
Publication of JPS62167611A publication Critical patent/JPS62167611A/en
Publication of JPH0553007B2 publication Critical patent/JPH0553007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は強磁性金属薄膜を磁気記録層として備
えてなる磁気記録媒体に関し、特に走行性、耐摩
耗性に優れる金属薄膜型磁気記録媒体に関するも
のである。 〔従来技術〕 従来より磁気記録媒体としては、非磁性支持体
上にγ−Fe2O3、Coをドープしたγ−Fe2O3
Fe3O4、Coをドープしたγ−Fe2O3,Fe3O4のベ
ルトライド化合物、CrO2等の磁性粉末あるいは
強磁性金属粉末等を磁性材料を塩化ビニル−酢酸
ビニル共重合体、スチレン−ブタジエン共重合
体、エポキシ樹脂、ポリウレタン樹脂等の有機バ
インダー中に分散せしめたものを塗布し乾燥させ
る塗布型のものが広く使用されてきている。近年
高密度記録への要求の高まりと共に真空蒸着、ス
パツタリング、イオンプレーテイング等のベーパ
ーテポジシヨン法あるいは電気メツキ法、無電解
メツキ等のメツキ法により形成される強磁性金属
薄膜を磁気記録層とする、バインダーを使用しな
い、いわゆる金属薄膜型磁気記録媒体が、注目を
あびており実用化への努力が種々おこなわれてい
る。 高密度記録用の磁気記録媒体に要求される条件
の一つとして、高抗磁力化、薄型化が理論的に
も、実験的にも提唱されており、塗布型の磁気記
録媒体よりも一桁小さい薄型化が容易で、飽和磁
束密度も大きい金属薄膜型磁気記録媒体への期待
は大きい。 特に真空蒸着による方法はメツキの場合のよう
な廃液処理を必要とせず製造工程も簡単で膜の析
出速度も大きくできるため非常にメリツトが大き
い。真空蒸着によつて磁気記録媒体にのぞましい
抗磁力および角型性を有する磁性膜を製造する方
法としては米国特許3342632号、同3342633号等に
述べられている斜め蒸着法が知られている。さら
に強磁性金属薄膜からなる磁気記録媒体にかかわ
る大きな問題として耐候性、走行性、耐摩耗性が
ある。磁気記録媒体は磁気信号の記録、再生およ
び消去の過程において磁気ヘツドと高速相対運動
のもとにおかれるが、その際走行がスムーズにし
かも安定に行われねばならないし、同時にヘツド
との接触、摩耗もしくは破壊が起こつてはならな
い。また高温多湿条件等の苛酷な環境での保存に
おいても腐食せず安定した走行性、磁気特性を維
持しなければならない。このような背景から走行
性、耐久性、耐候性を向上させる方法として潤滑
層や保護層を設けることが検討されてきている。 金属薄膜型磁気記録層の保護層としては、熱可
塑性樹脂、熱硬化性樹脂、脂肪酸、脂肪酸の金属
塩、脂肪酸エステル、アルキル燐酸エステル、ア
ルキルコハク酸無水物等を有機溶剤に溶解して塗
布したものがある。(例えば特開昭58−146026号
公報、特開昭60−69824号公報、特開昭60−85427
号公報)しかしながら、これらによつても充分な
走行性、耐久性、および耐候性はいまだえられて
いない。 〔発明が解決しようとする問題点〕 しかしながらこうして得られた金属薄膜型磁気
記録媒体の走行性、耐摩耗性、耐候性は不十分で
あつたり、設けた保護層の厚みによるヘツド−テ
ープ間のスペーシング損失のため電磁変換特性が
劣化するなどの問題があり、金属薄膜型磁気記録
の実用化に際しなお改良が望まれている。 本発明の目的は、走行性、耐摩耗性、耐候性、
電磁変換特性にすぐれた金属薄膜型磁気記録媒体
を提供することにある。 〔問題を解決するための手段〕 本発明者らは金属薄膜型磁気記録媒体について
鋭意検討した結果、非磁性支持体上に磁気記録層
として設けられた強磁性金属薄膜の表面上に
()式で示されるアルケニルコハク酸無水物を
含む層を形成してなる磁気記録媒体においては、
磁気ヘツド、ガイドポール等の部材に対する耐摩
耗性が著しく向上するとともに、走行系部材に対
する摩擦係数が低減されさらに優れた耐候性を備
えることを見出し、本発明をなすに至つたもので
ある。すなわち本発明の上記の目的は、支持体上
に電気メツキ、無電解メツキ、気相メツキ、スパ
ツタリング、蒸着、イオンプレーテイング等の方
法により形成された強磁性金属薄膜の表面に、前
記式()に示すアルケニルコハク酸無水物を含
む層を形成することにより達成される。 () (R;炭素数8以上30以下のアルケニル基) 本発明において使用される化合物は、上記一般
式()に示される化合物であれば、二重結合の
数等に制限はなく広く用いることができる。 式()の化合物のRの例としては、1−エイ
コセニル、2−エイコセニル、1−オクタデセニ
ル、2−オクタデセニル、1−ドデセニル、1−
オクテニル、1−オクチル−1−ブデニル基等が
挙げられる。このうち特に走行性、耐候性を極め
て高いレベルで満たすものは、Rが1−エイコセ
ニル、2−エイコセニル、1−オクタデセニル、
2−オクタデセニル、1−ドデセニル基等炭素数
が12以上のアルケニル基である場合である。 本発明において磁気金属薄膜の表面に設ける保
護層には前記式()に示されるアルケニルコハ
ク酸無水物の1種または2種以上のほか一般の潤
滑剤を混在、または積層させてもよい。積層と
は、前記式()に示されるアルケニルコハク酸
無水物の1種または2種以上を含む層の上層に一
般の潤滑剤層を設けることを指す。前記式()
に示されるアルケニルコハク酸無水物だけでは走
行性が不十分である場合にはこの混用、積層は非
常に有効な手段である。 上記式()のアルケニルコハク酸無水物のほ
かに混入できる潤滑剤としては、脂肪酸、金属石
鹸、脂肪酸アミド、高級脂肪族アルコール、脂肪
族アルコールと脂肪・燐酸・ほう酸・チタン酸・
珪酸等各種酸とのエステル、および以上のものの
フツ素置換物、パラフイン類、シリコーンオイ
ル、動植物油、鉱油、高級脂肪族アミン;グラフ
アイト、シリカ、二硫化モリブテン、二硫化タン
グステン等の無機微粉末;ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、エチレン−塩化ビニ
ル共重合体、ポリテトラフルオロエチレン等の樹
脂微粉末;αオレフイン重合物;常温で液体の不
飽和脂肪族炭化水素、フルオロカーボン類等があ
げられる。これらのうちで特に好ましいのは、脂
肪酸、脂肪酸の金属塩(金属石鹸)、脂肪酸アミ
ド、脂肪族アルコールと脂肪酸・燐酸・ほう酸・
チタン酸・珪酸等各種酸とのエステルおよびこれ
らのフツ素置換物等である。 本発明において、表面保護層を形成する方法と
しては、材料を有機溶剤に溶解して基板に塗布あ
るいは噴霧したのち乾燥する方法、材料を熔融し
て基板に塗着させる方法、有機溶剤に材料を溶解
した溶液に基板を浸漬して材料を基板表面に吸着
させる方法、ラングミユアーブロジエツト法など
により基板表面に材料の単分子膜を形成する方法
等が挙げられる。 本発明において設ける保護層の厚み(存在量の
ことをここでは厚みと呼ぶことにする)は、0.5
mg/m2〜100mg/m2が好ましく、より好ましくは
2mg/m2〜20mg/m2である。厚みが0.5mg/m2
下だと均一な膜として形成するのが困難であり、
走行性、耐久性が十分でない。また厚みが100
mg/m2以上の場合は、ヘツド−テープ間のスペー
シング損失のため電磁変換性が劣化する問題があ
る。 また本発明において、保護層の下地金属薄膜と
の密着を向上させるために、保護・潤滑剤を設け
る前に下地金属薄膜表面を脂肪酸などの界面活性
剤、各種キレート化剤や各種カツプリング剤で改
質しておくこともできる。 また保護層は1層でもよいし複数の層からなつ
ていてもよい。 強磁性金属薄膜の材料としては鉄、コバルト、
ニツケルその他の強磁性金属あるいはFe−Co,
Fe−Ni,Co−Ni,Co−Cr,Fe−Rh,Co−P,
Co−B,Co−Y,Co−La,Co−Ce,Co−Pt,
Co−Sm,Co−Mn,Fe−Co−Ni,Co−Ni−
P,Co−Ni−B,Co−Ni−Ag,Co−Ni−Nd,
Co−Ni−Ce,Co−Ni−Zn,Co−Ni−Cu,Co
−Ni−W,Co−Ni−Re等の強磁性合金を電気メ
ツキ、無電解メツキ、気相メツキ、スパツタリン
グ、蒸着、イオンプレーテイング等の方法により
形成せしめたもので、その膜厚は磁気記録媒体と
して使用する場合0.02−2μmの範囲であり、特に
0.05−0.4μmの範囲が望ましい。 上記の強磁性金属薄膜は他にO,N,Cr,Ga,
As,Sr,Zr,Nb,Mo,Rh,Pd,Sn,Sb,
Te,Pm,Re,Os,Ir,Au,Hg,Pb,Bi等を
含んでいてもよい。 上記の磁性層の表面形状は特に規定されない
が、10〜1000Åの高さの突起を存在密度103
109/mm2有している場合、さらに50〜200Åの高さ
の突起を存在密度104〜108/mm2有している場合特
に走行性・耐久性にすぐれる。 支持体の厚さは4〜50μmが好ましい。また強
磁性薄膜の密着向上・磁気特性の改良の為に支持
体上に下地層を設けてもよい。 本発明に用いられる基体としてはポリエチレン
テレフタレート、ポリイミド、ポリアミド、ポリ
塩化ビニル、ポリ塩化ビニル、三酢酸セルロー
ス、ポリカーボネート、ポリエチレンナフタレー
ト、ポリフエニレンサルフアイドのようなプラス
チツクベース、又はAl,Ti、ステンレス鋼など
がもちいられる。 磁気記録媒体の形状はテープ、シート、カー
ド、デイスク等いずれでもよいが、特に好ましい
のはテープ状、デイスク状である。 〔実施例〕 次に実施例をもつて本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 実施例 13μmのポリエチレンテレフタレートフイルム
上にコバルト−ニツケル磁性膜(膜厚150nm)を
斜め蒸着し、磁気記録媒体の原反を調製した。蒸
発源としては電子ビーム蒸発源を使用し、これに
コバルト−ニツケル合金(Co:80wt%、Ni:20
%)をチヤージし真空度5×10-5Torr中にて入
射角が50度となるよう斜め蒸着を行つた。得られ
た磁気記録媒体の原反の磁気金属薄膜上に各種材
料をメチルエチルケトンに溶解して塗布、乾燥し
調製したサンプルを作製し試料No.1〜8とした
(第1表)。得られた磁気テープの(A)25℃、80%相
対湿度および(B)25℃、10%相対湿度におけるステ
ンレス棒に対する摩擦係数すなわちμ値および8
ミリ型VTRでの繰り返し走行耐久性、スチル耐
久性、ヘツド目詰りおよび耐候性を調べたところ
第2表のようになつた。 ここで繰り返し走行耐久性とは50m長のテープ
を8ミリ型VTR(富士写真フイルム(株);FUJIX
−8 M6型)で繰り返し再生し走行不安定によ
る画面の乱れや摩擦係数の上昇による走行の停止
が起こるまでの再生回数である。またスチル耐久
性は、同型のVTR(ただしスチル再生時間を制限
する機能を取り去つてある)で画像再生時にポー
ズボタンを押し、画像が出なくなるまでの時間を
測定して評価した。また耐候性は、気温60℃、相
対湿度90%の条件に10日間保存することにより表
面に生じる変化で評価した。(まつたく変化のな
いもの……○、100倍の顕微鏡で表面に斑点状の
変色域が観察されるもの……△、肉眼で観察して
あきらかに変色、腐食が生じているもの……×と
した) ヘツド目詰りはビデオヘツドの目詰りによる出
力の瞬間落ちが1分間に0個なら○、1〜5個な
ら△、6個以上なら×と評価した。 このようにして前記式()に示されるアルケ
ニルコハク酸無水物を含む層を表面に設けてなる
金属薄膜型磁気記録媒体は脂肪酸、アルキルコハ
ク酸無水物よりもμ値、繰り返し走行性において
優れ、かつその特徴が高湿から低湿までの広範囲
な条件の中で実現されていることが明らかであ
る。 〔発明の効果〕 強磁性金属薄膜上に前記式()に示されるア
ルケニルコハク酸無水物を含む層を設けることに
より、従来技術では実現し得なかつた優れた走行
性・耐久性・耐候性をもち、かつヘツド目詰りも
起こさない、極めて優れた金属薄膜型磁気記録を
提供できるものである。
[Industrial Application Field] The present invention relates to a magnetic recording medium comprising a ferromagnetic metal thin film as a magnetic recording layer, and particularly to a metal thin film type magnetic recording medium having excellent running properties and wear resistance. [Prior Art] Conventionally, magnetic recording media have been made of γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 ,
Fe 3 O 4 , Co-doped γ-Fe 2 O 3 , Fe 3 O 4 beltride compounds, magnetic powders such as CrO 2 or ferromagnetic metal powders, magnetic materials such as vinyl chloride-vinyl acetate copolymer, Coating-type materials have been widely used in which a material dispersed in an organic binder such as a styrene-butadiene copolymer, epoxy resin, or polyurethane resin is coated and dried. In recent years, as the demand for high-density recording has increased, ferromagnetic metal thin films formed by vapor deposition methods such as vacuum evaporation, sputtering, and ion plating, or plating methods such as electroplating and electroless plating are used as magnetic recording layers. A so-called metal thin film magnetic recording medium that does not use a binder is attracting attention, and various efforts are being made to put it into practical use. As one of the conditions required for magnetic recording media for high-density recording, high coercive force and thinness have been proposed both theoretically and experimentally. There are great expectations for metal thin film magnetic recording media, which can be easily made small and thin and have a high saturation magnetic flux density. In particular, the vacuum deposition method is very advantageous because it does not require waste liquid treatment as is the case with plating, the manufacturing process is simple, and the deposition rate of the film can be increased. As a method for producing a magnetic film having coercive force and squareness desirable for magnetic recording media by vacuum deposition, the oblique deposition method described in US Pat. Nos. 3,342,632 and 3,342,633 is known. Further, major problems concerning magnetic recording media made of ferromagnetic metal thin films include weather resistance, runnability, and abrasion resistance. During the process of recording, reproducing, and erasing magnetic signals, the magnetic recording medium is subjected to high-speed relative motion with the magnetic head, but in this case, the traveling must be smooth and stable, and at the same time, contact with the head, No wear or breakage shall occur. Furthermore, it must not corrode and maintain stable running performance and magnetic properties even when stored in harsh environments such as high temperature and high humidity conditions. Against this background, consideration has been given to providing a lubricating layer or a protective layer as a method of improving running performance, durability, and weather resistance. The protective layer for the metal thin film type magnetic recording layer was coated by dissolving thermoplastic resin, thermosetting resin, fatty acid, metal salt of fatty acid, fatty acid ester, alkyl phosphate ester, alkyl succinic anhydride, etc. in an organic solvent. There is something. (For example, JP-A-58-146026, JP-A-60-69824, JP-A-60-85427)
However, even with these, sufficient runnability, durability, and weather resistance have not yet been achieved. [Problems to be Solved by the Invention] However, the running performance, abrasion resistance, and weather resistance of the metal thin film magnetic recording medium obtained in this way are insufficient, and the thickness of the protective layer provided may cause problems between the head and the tape. There are problems such as deterioration of electromagnetic conversion characteristics due to spacing loss, and improvements are still desired when metal thin film magnetic recording is put into practical use. The purpose of the present invention is to improve running performance, wear resistance, weather resistance,
The object of the present invention is to provide a metal thin film magnetic recording medium with excellent electromagnetic conversion characteristics. [Means for Solving the Problem] As a result of intensive studies on metal thin film type magnetic recording media, the present inventors found that the formula () is In a magnetic recording medium formed by forming a layer containing an alkenylsuccinic anhydride represented by
The inventors have discovered that the abrasion resistance of magnetic heads, guide poles, and other members is significantly improved, and that the coefficient of friction with respect to traveling system members is reduced, resulting in superior weather resistance, and have thus come up with the present invention. That is, the above object of the present invention is to apply the formula () on the surface of a ferromagnetic metal thin film formed on a support by a method such as electroplating, electroless plating, vapor phase plating, sputtering, vapor deposition, or ion plating. This is achieved by forming a layer containing an alkenylsuccinic anhydride shown in the following. () (R: Alkenyl group having 8 or more carbon atoms and 30 or less carbon atoms) The compound used in the present invention can be widely used without any restrictions on the number of double bonds, etc., as long as it is a compound represented by the above general formula (). . Examples of R in the compound of formula () include 1-eicosenyl, 2-eicosenyl, 1-octadecenyl, 2-octadecenyl, 1-dodecenyl, 1-
Examples include octenyl and 1-octyl-1-butenyl groups. Among these, those that satisfy extremely high levels of running properties and weather resistance are those in which R is 1-eicosenyl, 2-eicosenyl, 1-octadecenyl,
This is the case when the alkenyl group has 12 or more carbon atoms, such as 2-octadecenyl and 1-dodecenyl groups. In the present invention, the protective layer provided on the surface of the magnetic metal thin film may contain one or more alkenylsuccinic anhydrides represented by the formula () and a general lubricant mixed therein or laminated thereon. Lamination refers to providing a general lubricant layer on top of a layer containing one or more alkenylsuccinic anhydrides represented by the above formula (). The above formula ()
When the running properties of the alkenyl succinic anhydride shown in the formula are insufficient by themselves, this mixed use or lamination is a very effective means. In addition to the alkenylsuccinic anhydride of the above formula (), lubricants that can be mixed include fatty acids, metal soaps, fatty acid amides, higher aliphatic alcohols, fatty alcohols and fatty acids, phosphoric acid, boric acid, titanic acid,
Esters with various acids such as silicic acid, fluorine substituted products of the above, paraffins, silicone oils, animal and vegetable oils, mineral oils, higher aliphatic amines; inorganic fine powders such as graphite, silica, molybdenum disulfide, tungsten disulfide, etc. ; fine resin powders such as polyethylene, polypropylene, polyvinyl chloride, ethylene-vinyl chloride copolymers, and polytetrafluoroethylene; α-olefin polymers; unsaturated aliphatic hydrocarbons and fluorocarbons that are liquid at room temperature. Among these, particularly preferred are fatty acids, metal salts of fatty acids (metal soaps), fatty acid amides, fatty alcohols and fatty acids, phosphoric acid, boric acid,
These include esters with various acids such as titanic acid and silicic acid, and their fluorine substituted products. In the present invention, the surface protective layer can be formed by dissolving the material in an organic solvent and applying or spraying it on the substrate and then drying it, melting the material and applying it to the substrate, or dissolving the material in an organic solvent. Examples include a method in which the substrate is immersed in a dissolved solution to cause the material to be adsorbed onto the substrate surface, and a method in which a monomolecular film of the material is formed on the substrate surface by the Langmuir-Blodget method. The thickness of the protective layer provided in the present invention (abundance is referred to as thickness here) is 0.5
mg/ m2 to 100mg/ m2 is preferable, more preferably 2mg/ m2 to 20mg/ m2 . If the thickness is less than 0.5mg/ m2 , it is difficult to form a uniform film;
Running performance and durability are insufficient. Also, the thickness is 100
If it exceeds mg/m 2 , there is a problem that electromagnetic transducability deteriorates due to spacing loss between the head and the tape. In addition, in the present invention, in order to improve the adhesion of the protective layer to the base metal thin film, the surface of the base metal thin film is modified with a surfactant such as a fatty acid, various chelating agents, and various coupling agents before applying the protective/lubricant agent. You can also ask questions. Further, the protective layer may be one layer or may be composed of a plurality of layers. Materials for ferromagnetic metal thin films include iron, cobalt,
Nickel and other ferromagnetic metals or Fe-Co,
Fe-Ni, Co-Ni, Co-Cr, Fe-Rh, Co-P,
Co-B, Co-Y, Co-La, Co-Ce, Co-Pt,
Co−Sm, Co−Mn, Fe−Co−Ni, Co−Ni−
P, Co-Ni-B, Co-Ni-Ag, Co-Ni-Nd,
Co−Ni−Ce, Co−Ni−Zn, Co−Ni−Cu, Co
- Ferromagnetic alloys such as Ni-W and Co-Ni-Re are formed by methods such as electroplating, electroless plating, vapor phase plating, sputtering, vapor deposition, and ion plating, and the film thickness is magnetically recordable. When used as a medium, it is in the range of 0.02−2μm, especially
A range of 0.05-0.4 μm is desirable. The above-mentioned ferromagnetic metal thin film may also include O, N, Cr, Ga,
As, Sr, Zr, Nb, Mo, Rh, Pd, Sn, Sb,
It may contain Te, Pm, Re, Os, Ir, Au, Hg, Pb, Bi, etc. Although the surface shape of the above magnetic layer is not particularly defined, there are protrusions with a height of 10 to 1000 Å and a density of 10 3 to 1000 Å.
10 9 /mm 2 , and furthermore, when it has protrusions with a height of 50 to 200 Å at a density of 10 4 to 10 8 /mm 2 , the runnability and durability are particularly excellent. The thickness of the support is preferably 4 to 50 μm. Further, an underlayer may be provided on the support in order to improve the adhesion and magnetic properties of the ferromagnetic thin film. Substrates used in the present invention include plastic bases such as polyethylene terephthalate, polyimide, polyamide, polyvinyl chloride, polyvinyl chloride, cellulose triacetate, polycarbonate, polyethylene naphthalate, and polyphenylene sulfide, or Al, Ti, and stainless steel. Steel etc. can be used. The magnetic recording medium may have any shape such as tape, sheet, card, or disk, but tape and disk shapes are particularly preferred. [Example] Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Example A cobalt-nickel magnetic film (thickness: 150 nm) was obliquely deposited on a 13 μm polyethylene terephthalate film to prepare a raw material for a magnetic recording medium. An electron beam evaporation source is used as the evaporation source, and a cobalt-nickel alloy (Co: 80wt%, Ni: 20%) is used as the evaporation source.
%), and oblique evaporation was performed in a vacuum of 5×10 -5 Torr so that the incident angle was 50 degrees. Various materials dissolved in methyl ethyl ketone were coated on the original magnetic metal thin film of the obtained magnetic recording medium, and samples were prepared by drying and designated as Samples Nos. 1 to 8 (Table 1). The coefficient of friction, that is, μ value, of the obtained magnetic tape against a stainless steel bar at (A) 25°C, 80% relative humidity and (B) 25°C, 10% relative humidity, and 8
Table 2 shows the repeated running durability, still durability, head clogging, and weather resistance of a mm-type VTR. Here, repeated running durability refers to the durability of a 50 m long tape to an 8 mm VTR (Fuji Photo Film Co., Ltd.; FUJIX
-8 M6 model), this is the number of times it can be played repeatedly until the screen becomes distorted due to unstable running or the running stops due to an increase in the coefficient of friction. Still durability was evaluated by pressing the pause button during image playback on a VCR of the same type (but with the function to limit still playback time removed) and measuring the time until the image stopped appearing. Weather resistance was evaluated based on the changes that occurred on the surface after being stored for 10 days at a temperature of 60°C and a relative humidity of 90%. (Things with no noticeable change...○, Spots of discoloration areas observed on the surface under a 100x microscope...△, Things with obvious discoloration or corrosion when observed with the naked eye...× Head clogging was evaluated as ◯ if the number of instantaneous drops in output due to video head clogging per minute was 0, △ if 1 to 5, and × if 6 or more. In this way, a metal thin film magnetic recording medium having a layer containing an alkenylsuccinic anhydride represented by the formula () on its surface is superior to fatty acids and alkylsuccinic anhydrides in μ value and repeatability, Moreover, it is clear that these characteristics are realized under a wide range of conditions from high humidity to low humidity. [Effects of the Invention] By providing a layer containing alkenylsuccinic anhydride represented by the above formula () on a ferromagnetic metal thin film, excellent runnability, durability, and weather resistance that could not be achieved with conventional technology can be achieved. It is possible to provide an extremely excellent metal thin film type magnetic recording device that is durable and does not cause head clogging.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 非磁性支持体上に設けられた強磁性金属薄膜
表面上に下記一般式()で示されるアルケニル
コハク酸無水物を含む層が設けられていることを
特徴とする磁気記録媒体。 () (ただし、Rは炭素数8以上30以下のアルケニ
ル基)
[Scope of Claims] 1. A magnetic material characterized in that a layer containing an alkenylsuccinic anhydride represented by the following general formula () is provided on the surface of a ferromagnetic metal thin film provided on a non-magnetic support. recoding media. () (However, R is an alkenyl group having 8 to 30 carbon atoms)
JP29454985A 1985-12-26 1985-12-26 Magnetic recording medium Granted JPS62167611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29454985A JPS62167611A (en) 1985-12-26 1985-12-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29454985A JPS62167611A (en) 1985-12-26 1985-12-26 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62167611A JPS62167611A (en) 1987-07-24
JPH0553007B2 true JPH0553007B2 (en) 1993-08-09

Family

ID=17809224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29454985A Granted JPS62167611A (en) 1985-12-26 1985-12-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62167611A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040031A (en) * 1996-03-13 2000-03-21 Nec Corporation Contact recording magnetic disk device

Also Published As

Publication number Publication date
JPS62167611A (en) 1987-07-24

Similar Documents

Publication Publication Date Title
JP2680169B2 (en) Magnetic recording media
JPH0580733B2 (en)
JPH0566652B2 (en)
US5082714A (en) Magnetic recording media
JP2590482B2 (en) Magnetic recording media
US4690857A (en) Magnetic recording medium
JP2601339B2 (en) Magnetic recording media
JP2581090B2 (en) Magnetic recording media
JPH0553007B2 (en)
JP2629725B2 (en) Magnetic recording media
JPH0580732B2 (en)
JP2597227B2 (en) Magnetic recording media
JPS62208424A (en) Magnetic recording medium
JPH0758537B2 (en) Magnetic recording medium
JPS63183607A (en) Magnetic recording medium
JPH0316688B2 (en)
JPS6295721A (en) Magnetic recording medium
JP2508733B2 (en) Magnetic recording media
JP2625839B2 (en) Magnetic recording media
JPH0432020A (en) Magnetic recording medium
JP3627298B2 (en) Magnetic recording medium
JP2667301B2 (en) Magnetic recording media
JP2941849B2 (en) Magnetic recording media
JPS62234225A (en) Magnetic recording medium
JPS6292224A (en) Magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees