JPH0552931A - Tracking method of gps receiver - Google Patents

Tracking method of gps receiver

Info

Publication number
JPH0552931A
JPH0552931A JP21835991A JP21835991A JPH0552931A JP H0552931 A JPH0552931 A JP H0552931A JP 21835991 A JP21835991 A JP 21835991A JP 21835991 A JP21835991 A JP 21835991A JP H0552931 A JPH0552931 A JP H0552931A
Authority
JP
Japan
Prior art keywords
phase
code
code generator
correlator
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21835991A
Other languages
Japanese (ja)
Other versions
JP2765290B2 (en
Inventor
Yoshifumi Tateda
良文 舘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21835991A priority Critical patent/JP2765290B2/en
Publication of JPH0552931A publication Critical patent/JPH0552931A/en
Application granted granted Critical
Publication of JP2765290B2 publication Critical patent/JP2765290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To realize a small-sized GPS receiver having excellent characteristics as a GPS receiver which is used for measuring positions at the time of navigating aircraft, marine vessels, automobiles by receiving radio waves from an artificial satellite by means of a plurality of antennas by commonly using a code generator without deteriorating the code tracking accuracy. CONSTITUTION:The code generator 31 of a demodulation circuit is commonly used among a plurality of receiving sections which receive the same satellite signal and, by approximately setting the phase of the generator 31, the measured results obtained when the phase is accurately set against each receiving section are presumed from the difference between the approximately set phase and the phase of the generator 31 to be set by each receiving section, characteristic of a correlator, and correlated results obtained with the correlator. When the presumed value is used as a measured result, the code generator 31 can be commonly used among the receiving sections without deteriorating the code tracking accuracy of the generator 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機、船舶、自動車の
ナビゲーション分野において、複数のアンテナにより衛
星の電波を受信し、位置を測定するGPS受信機の追尾
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GPS receiver tracking method for measuring the position by receiving satellite radio waves by a plurality of antennas in the navigation field of aircrafts, ships and automobiles.

【0002】[0002]

【従来の技術】近年、絶対方位の測定や、移動体の角度
の変化による受信の中断を避けるために等を目的に、同
一の衛星信号を複数のアンテナで同時に受信するGPS
受信機が注目されている。
2. Description of the Related Art In recent years, a GPS for simultaneously receiving the same satellite signal with a plurality of antennas for the purpose of measuring absolute azimuth and avoiding interruption of reception due to changes in the angle of a moving body.
Receivers are receiving attention.

【0003】以下、従来のGPS受信機の追尾方法につ
いて説明する。図6は従来の追尾方法を適用するGPS
受信機の構成を示すものである。図6において、1はそ
れぞれ衛星の電波を受信する2個の独立した受信部、2
はこれらの受信部を制御し、衛星の信号を測定して位置
や方位などを求める制御部、3は基準発振器である。
A conventional GPS receiver tracking method will be described below. FIG. 6 shows a GPS to which a conventional tracking method is applied.
3 shows a configuration of a receiver. In FIG. 6, reference numeral 1 denotes two independent receivers that respectively receive the radio waves of satellites, and 2
Is a control unit for controlling these receiving units, measuring satellite signals to obtain the position and direction, and 3 is a reference oscillator.

【0004】図7は図6のに示す受信部1の、1個につ
いてさらに詳細な構成を示すものである。11は衛星の
電波を受けるアンテナである。12はアンテナからの信
号を増幅、濾波、周波数変換する高周波部、13は復調
回路であり5個の独立した同一の回路である。この復調
回路において、14は衛星固有の疑似雑音符号を発生す
る符号発生器、15は疑似雑音符号でスペクトル拡散さ
れた衛星信号を逆拡散する相関器で、16は逆拡散され
た信号を位相検波する復調器、17は衛星信号の搬送波
を再生する発振器である。
FIG. 7 shows a more detailed structure of one of the receivers 1 shown in FIG. Reference numeral 11 is an antenna for receiving the radio waves of the satellite. Reference numeral 12 is a high-frequency unit that amplifies, filters, and frequency-converts the signal from the antenna, and 13 is a demodulation circuit, which is five independent identical circuits. In this demodulation circuit, 14 is a code generator for generating a pseudo-noise code peculiar to the satellite, 15 is a correlator for despreading the satellite signal spread by the pseudo-noise code, and 16 is a phase detector for the despread signal. The demodulator 17 is an oscillator for reproducing the carrier wave of the satellite signal.

【0005】以上のように構成されたGPS受信機にお
けるの衛星信号の追尾について、以下その動作を説明す
る。まず、図6の受信部1においてそれぞれ独立に、制
御部2の制御により、5個までの衛星の電波を同時に受
信し、疑似雑音符号、搬送波を基準発振器3と比較測定
するとともに、衛星の軌道情報と時刻データを受け取
る。それぞれの受信部で同時に、同じ衛星の信号を受信
し、それらを比較して方位を求めることができる。ま
た、移動体の異なった部位にアンテナ11をとりつけ、
移動体がローリングなどで角度が変わり、一方の受信部
が測定に必要な衛星信号を受信できなくなった時他方で
補い、連続した測定を行うこともできる。つぎに、図7
の受信部の動作を説明する。アンテナ11で受けた信号
は高周波部12で増幅、濾波、周波数変換を行った後、
5個の独立した復調回路13において、各々別の衛星信
号について、疑似雑音符号と搬送波の追尾と、データの
復調をおこなう。疑似雑音符号の追尾は、符号発生器1
4の出力と衛星信号を、相関器15で比較して、その結
果を復調器16を介して制御部で評価し、その結果を符
号発生器14に帰還することによっておこなう。搬送波
の追尾は、発振器17の出力と逆拡散信号を、復調器1
6で直交検波し、その結果を制御部で評価し、その結果
を発振器17に帰還することによっておこなう。
The operation of tracking a satellite signal in the GPS receiver configured as described above will be described below. First, the receiving unit 1 of FIG. 6 receives the radio waves of up to five satellites simultaneously under the control of the control unit 2 independently, measures the pseudo noise code and the carrier wave with the reference oscillator 3, and measures the orbit of the satellite. Receive information and time data. It is possible to simultaneously receive signals from the same satellite at each of the receivers and compare them to obtain the bearing. Also, attach the antenna 11 to different parts of the moving body,
When the moving body changes its angle due to rolling or the like, and one receiving unit cannot receive the satellite signal required for measurement, the other unit compensates for it and continuous measurement can be performed. Next, FIG.
The operation of the receiving unit will be described. The signal received by the antenna 11 is amplified, filtered and frequency-converted by the high frequency section 12,
Five independent demodulation circuits 13 perform pseudo-noise code and carrier tracking and demodulate data for different satellite signals. Pseudo-noise code tracking is performed by the code generator 1
The output of 4 and the satellite signal are compared by the correlator 15, the result is evaluated by the control unit via the demodulator 16, and the result is fed back to the code generator 14. The carrier wave is tracked by the demodulator 1 using the output of the oscillator 17 and the despread signal.
The quadrature detection is performed at 6, the control unit evaluates the result, and the result is fed back to the oscillator 17.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の方法では、複数の独立した受信部1を持つので、回
路規模が大きい、消費電力が大きい、高価であるなどの
課題を有していた。また、複数の受信部1の間で、同一
の衛星信号を受信する復調回路13の、符号発生器14
を共用することも考えられるが、アンテナ11の設置位
置が異なるので、精度良く疑似雑音符号の追尾ができな
いという課題を有していた。
However, the above-mentioned conventional method has the problems that the circuit scale is large, the power consumption is large, and the cost is high because the plurality of independent receiving units 1 are provided. In addition, the code generator 14 of the demodulation circuit 13 that receives the same satellite signal among the plurality of receivers 1.
Although it is possible to share the same, there is a problem that the pseudo noise code cannot be tracked with high precision because the installation position of the antenna 11 is different.

【0007】本発明は上記従来技術の課題を解決するも
ので、複数の受信部の間で、同一の衛星信号を受信する
復調回路の主要な部分である符号発生器を共用し、アン
テナの設置位置が異なる場合も、精度の良く追尾できる
GPS受信機の追尾方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art. A plurality of receiving sections share a code generator, which is a main part of a demodulation circuit for receiving the same satellite signal, and an antenna is installed. It is an object of the present invention to provide a tracking method for a GPS receiver, which enables accurate tracking even when the positions are different.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明は、同一の衛星信号を受信する複数の受信部の
間で、復調回路の符号発生器を共用し、符号発生器には
概略の位相設定をおこない、各々の受信部で設定すべき
符号発生器の位相との違いと、相関器の特性と、相関器
により得られた相関結果より、各々の受信部について正
しい設定を行った場合の測定結果を予測し、この予測値
を測定結果とする処理方法を有する。
In order to achieve this object, the present invention shares a code generator of a demodulation circuit between a plurality of receiving units that receive the same satellite signal, and the code generator is Perform an approximate phase setting, and make correct settings for each receiving unit based on the difference between the phase of the code generator to be set in each receiving unit, the characteristics of the correlator, and the correlation result obtained by the correlator. In this case, there is a processing method of predicting the measurement result in the case of the above, and using this predicted value as the measurement result.

【0009】[0009]

【作用】本発明は上記方法によって、設定すべき符号発
生器の位相と異なった位相を設定し、その設定差によっ
て引き起こされる測定値のちがいは、追尾が正確であれ
ば、相関特性により決まる割合となる。そして、異なっ
た位相を設定して得た測定値より、先の割合分を逆算す
れば、もとの設定値で測定した場合の測定値を求めるこ
とができる。
According to the present invention, a phase different from the phase of the code generator to be set is set by the above method, and the difference in the measured values caused by the setting difference is determined by the correlation characteristic if the tracking is accurate. Becomes Then, the measured values obtained by setting the different phases are back-calculated to obtain the measured values when the measurement is performed at the original set values.

【0010】[0010]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について、図
面を参照しながら説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0011】図1は本発明の一実施例におけるのGPS
受信機の追尾方法を適用する受信機のブロック図であ
る。
FIG. 1 shows the GPS in one embodiment of the present invention.
It is a block diagram of the receiver which applies the tracking method of a receiver.

【0012】図1において、21は衛星の電波を受ける
2個のアンテナ、22はアンテナからの信号を増幅、濾
波、周波数変換する2個の高周波部、23は復調回路で
あり5個の独立した同一の回路、24はこれらの復調回
路を制御し、衛星の信号を測定して位置や方位などを求
める制御部、25は基準発振器である。
In FIG. 1, 21 is two antennas for receiving radio waves from the satellite, 22 is two high-frequency parts for amplifying, filtering and frequency converting signals from the antennas, and 23 is a demodulation circuit, which is five independent parts. The same circuit, 24 is a control unit that controls these demodulation circuits, measures a satellite signal to obtain the position and azimuth, and 25 is a reference oscillator.

【0013】図2は図1のに示す復調回路23について
さらに詳細な構成を示すブロック図である。この復調回
路において、31は衛星固有の疑似雑音符号を発生する
符号発生器、32−1、32−2は疑似雑音符号でスペ
クトル拡散された衛星信号を逆拡散する相関器で、33
−1、33−2は逆拡散された信号を位相検波する復調
器、34−1、34−2は衛星信号の搬送波を再生する
発振器である。
FIG. 2 is a block diagram showing a more detailed structure of the demodulation circuit 23 shown in FIG. In this demodulation circuit, 31 is a code generator for generating a pseudo-noise code peculiar to the satellite, 32-1 and 32-2 are correlators for despreading the satellite signal spectrum-spread with the pseudo-noise code.
-1, 33-2 are demodulators for phase-detecting the despread signal, and 34-1, 34-2 are oscillators for reproducing the carrier wave of the satellite signal.

【0014】以上のように構成されたGPS受信機にお
けるの衛星信号の追尾について、図3に示す相関特性を
用いてその動作を説明する。まず図1の2個のアンテナ
21を符号のレートであるチップの半分以下に相当す
る、異なった位置に設置し、このアンテナで受けた信号
を、2個の高周波部22で増幅、濾波、周波数変換を行
った後、各々5個の独立した復調回路23において、各
々別の衛星信号について、疑似雑音符号と搬送波の追尾
と、データの復調をおこなう。各復調回路図2におい
て、疑似雑音符号の追尾は、符号発生器31の出力と2
個のアンテナからの衛星信号入力を、それぞれ相関器3
2−1と32−2で比較して、その結果をそれぞれ復調
器33−1、33−2を介して制御部で評価し、その結
果を符号発生器32に帰還することによっておこなう。
搬送波の追尾は、発振器34−1、34−2の出力と逆
拡散信号を、復調器33−1、33−2で直交検波し、
その結果を制御部で評価し、発振器34−1、34−2
に帰還することによっておこなう。この疑似雑音符号と
搬送波の追尾によってそれぞれ独立に、制御部24の制
御により、5個までの衛星の電波を同時に受信し、疑似
雑音符号、搬送波を基準発振器3と比較測定するととも
に、衛星の軌道情報と時刻データを受け取る。1個の復
調回路で同時に、2個のアンテナからの同じ衛星の信号
を受信する。この搬送波の追尾において、2個のアンテ
ナからの信号について、同一の衛星に対して符号発生器
31を共用する。符号発生器31には2個の相関器、2
個の復調器、2個の発振器による測定結果に応じて独立
に次に設定する位相τn を決定する。なお、n は1また
は2で2個のアンテナに対応するものとする。τn は受
信信号の疑似雑音符号を追尾することによって測定され
た符号の位相である。このτn について平均値を求め、
符号発生器31に設定するとともに、平均値と設定すべ
き位相の違いΔτn を制御部で保存する。図3は相関器
の特性である。衛星信号への追尾が正確であるとすれ
ば、τn で最大振幅が得られる。横軸は疑似雑音符号の
位相で、単位は符号のレートであるチップ、縦軸は相関
結果、信号強度はAn である。位相誤差はτn +1/2
チップとτn −1/2チップについて相関を調べ、両者
を比較することによって測定する。データの受信と搬送
波の位相測定は符号位相τn においておこなう。実際に
符号発生器に設定される位相はτn+1/2チップとτn
−1/2チップとτn にそれぞれΔτn を加えた値で
ある。相関器は入力に対して線形の特性をもっている。
Δτn は1/2チップよりも小さな値になることが期待
できる。従って、+1/2、0、−1/2チップについ
てそれぞれ、Δτn だけシフトした場合に得られる測定
値に対する、中心値(Δτn =0)において得られる測
定値の比は、n に依存しないΔτの関数F+ (Δτ)、
F0 (Δτ)、F- (Δτ)で表すことができる。これ
らの特性を表として制御部が持っており、Δτn の値に
応じた各関数値を読み取り、これを+1/2、0、−1
/2チップの測定値に各々乗じることによって、中心値
(Δτn=0)における測定値を求める。なお、0チッ
プの測定値に精度を必要としなければ、この測定値に対
する換算は不要である。
The operation of tracking a satellite signal in the GPS receiver configured as described above will be described with reference to the correlation characteristics shown in FIG. First, the two antennas 21 of FIG. 1 are installed at different positions corresponding to less than half of the chip which is the code rate, and the signals received by these antennas are amplified, filtered and After the conversion, in each of the five independent demodulation circuits 23, the pseudo noise code and the carrier wave are tracked and the data is demodulated for each different satellite signal. In each demodulation circuit in FIG. 2, the pseudo noise code tracking is performed by using the output of the code generator 31 and
The satellite signal input from each antenna is input to the correlator 3 respectively.
2-1 and 32-2 are compared, the result is evaluated by the control unit via the demodulators 33-1 and 33-2, and the result is fed back to the code generator 32.
For tracking the carrier wave, the outputs of the oscillators 34-1 and 34-2 and the despread signal are orthogonally detected by the demodulators 33-1 and 33-2,
The control unit evaluates the result, and the oscillators 34-1, 34-2 are evaluated.
By returning to. The pseudo-noise code and the carrier wave are independently tracked by the control unit 24 so that the radio waves of up to five satellites are simultaneously received, the pseudo-noise code and the carrier wave are measured by comparison with the reference oscillator 3, and the orbit of the satellite is also measured. Receive information and time data. One demodulation circuit simultaneously receives signals from the same satellite from two antennas. In this tracking of carrier waves, the code generator 31 is shared by the same satellite for signals from two antennas. The code generator 31 has two correlators, 2
The phase τ n to be set next is independently determined according to the measurement results of the demodulators and the oscillators. Note that n is 1 or 2 and corresponds to two antennas. τ n is the code phase measured by tracking the pseudo-noise code of the received signal. Calculate the average value for this τ n,
The difference is set in the code generator 31 and the difference Δτn between the average value and the phase to be set is stored in the control unit. FIG. 3 shows the characteristics of the correlator. If the tracking to the satellite signal is accurate, the maximum amplitude is obtained at τn. The horizontal axis is the phase of the pseudo-noise code, the unit is the code rate chip, and the vertical axis is the correlation result, and the signal strength is An. Phase error is τn + 1/2
It is measured by examining the correlation between the chip and τ n -1/2 chip and comparing the two. Data reception and carrier phase measurement are performed at the code phase τn. The phase actually set in the code generator is τn + 1/2 chip and τn
It is the value obtained by adding Δτn to −½ chip and τn. The correlator has a linear characteristic with respect to the input.
It can be expected that Δτ n will be a value smaller than 1/2 chip. Therefore, the ratio of the measured value obtained at the central value (Δτn = 0) to the measured value obtained when shifted by Δτn for +1/2, 0, and −1/2 chips, respectively, is Δτ independent of n. Function F + (Δτ),
It can be expressed by F0 (Δτ) and F- (Δτ). The control unit has these characteristics as a table, reads each function value according to the value of Δτ n, and reads this as +1/2, 0, -1
The measured value at the center value (Δτn = 0) is obtained by multiplying the measured value of each / 2 chip. If the measurement value of 0 chip does not require accuracy, conversion to this measurement value is unnecessary.

【0015】本実施例によるGPS受信機の追尾方法よ
れば、測定精度を落とすことなく、従来例に比較して符
号発生器を共用することができ、回路規模が小さくな
り、小型化、低価格化、省電力化を図ることが出来る。
According to the tracking method of the GPS receiver according to the present embodiment, the code generator can be shared as compared with the conventional example without lowering the measurement accuracy, the circuit scale becomes smaller, the size becomes smaller and the price is lower. And power saving can be achieved.

【0016】以上の説明より明らかなように、本実施例
によるGPS受信機の追尾方法は、回路規模の点で優れ
た効果が得られる。
As is clear from the above description, the tracking method of the GPS receiver according to this embodiment has an excellent effect in terms of circuit scale.

【0017】以上のように本実施例によれば、同一の衛
星信号を受信する複数の受信部の間で、符号発生器には
概略の位相設定をおこない、各々の復調回路で設定すべ
き符号発生器の位相との違いと、相関器の特性と、相関
器により得られた相関結果より、各々の受信部について
正しい設定を行った場合の測定結果を予測し、この予測
値を測定結果とすることにより、測定精度を落とすこと
なく、復調回路の符号発生器を共用することができ、小
型化、低価格化、省電力化を図ることができる。
As described above, according to the present embodiment, the phase is roughly set in the code generator between a plurality of receiving units that receive the same satellite signal, and the code to be set in each demodulation circuit is set. From the difference between the phase of the generator, the characteristics of the correlator, and the correlation result obtained by the correlator, predict the measurement result when the correct settings are made for each receiver, and use this predicted value as the measurement result. By doing so, the code generator of the demodulation circuit can be shared without degrading the measurement accuracy, and downsizing, cost reduction, and power saving can be achieved.

【0018】(実施例2)以下、本発明の第2の実施例
について、図面を参照しながら説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.

【0019】図4は本発明の一実施例におけるGPS受
信機の追尾方法を適用する受信機のブロック図である。
図4において、41は2個のアンテナ、42は2個の高
周波部、43は5個の独立した復調回路回路、44は制
御部、45は基準発振器である。構成は図1の第1の実
施例とほぼ同様であるが、2個のアンテナ間の設置範囲
を2チップに相当する距離以内とする。図5は本発明の
第2の実施例における復調回路43について詳細な構成
を示すブロック図である。51は符号発生器、52−
1、52−2は相関器で、53−1、53−2は復調
器、54−1、54−2は発振器である。以上は図2の
構成と同様なものである。図2の構成と異なるのは符号
発生器51と復調器54−1、54−2の間に符号移相
器55−1、55−2を設けた点である。
FIG. 4 is a block diagram of a receiver to which the tracking method of the GPS receiver in one embodiment of the present invention is applied.
In FIG. 4, 41 is two antennas, 42 is two high frequency parts, 43 is five independent demodulation circuit circuits, 44 is a control part, and 45 is a reference oscillator. The configuration is almost the same as that of the first embodiment of FIG. 1, but the installation range between the two antennas is within the distance corresponding to two chips. FIG. 5 is a block diagram showing the detailed structure of the demodulation circuit 43 in the second embodiment of the present invention. 51 is a code generator, 52-
Reference numerals 1 and 52-2 are correlators, 53-1 and 53-2 are demodulators, and 54-1 and 54-2 are oscillators. The above is the same as the configuration of FIG. The difference from the configuration of FIG. 2 is that code phase shifters 55-1 and 55-2 are provided between the code generator 51 and the demodulators 54-1 and 54-2.

【0020】上記のような構成に適用するGPS受信機
の追尾方法の第1の実施例との違いについて、その動作
を説明する。まず、アンテナの設置位置が符号のレート
であるチップの半分に相当する距離以上離れた位置に設
置したことにより、符号発生器51に設定する位相と、
設定すべき位相の違いΔτn が1/2チップに近付くと
第1の実施例では、関数F+ (Δτ)、F0 (Δτ)、
F- (Δτ)の誤差が急激に増加する。本実施例におい
ては、この誤差が増加しないように符号移相器55−
1、55−2によって概略の位相に調節する。位相の調
整は1/2チップ単位以下であれば良い。1/2チップ
単位で補正すればΔτを1/4チップ以下にすることが
できる。
The operation of the GPS receiver tracking method applied to the above-mentioned structure will be described with respect to the difference from the first embodiment. First, by installing the antenna at a position separated by a distance equal to or more than half of the chip which is the code rate, the phase set in the code generator 51,
When the phase difference Δτn to be set approaches ½ chip, in the first embodiment, the functions F + (Δτ), F0 (Δτ),
The error in F- (Δτ) increases rapidly. In the present embodiment, the code phase shifter 55-
1, 55-2 adjusts to the approximate phase. The phase may be adjusted in units of 1/2 chip or less. If it is corrected in units of 1/2 chip, Δτ can be reduced to 1/4 chip or less.

【0021】以上のように、符号発生器51と復調器5
4−1、54−2の間に符号移相器55−1、55−2
を設けることにより、アンテナを1/2チップ以上離し
た場合にも、測定精度を落とすことなく、復調回路の符
号発生器を共用することができ、小型化、低価格化、省
電力化を図ることができる。
As described above, the code generator 51 and the demodulator 5
Code phase shifters 55-1 and 55-2 are provided between 4-1 and 54-2.
By providing the antenna, even if the antennas are separated by 1/2 chip or more, the code generator of the demodulation circuit can be shared without deteriorating the measurement accuracy, thereby achieving downsizing, cost reduction, and power saving. be able to.

【0022】(実施例3)以下、本発明の第3の実施例
について、図面を参照しながら説明する。
(Embodiment 3) Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.

【0023】本発明の一実施例におけるGPS受信機の
追尾方法を適用する受信機の構成は第1の実施例と概略
同等であるので、図面は割愛する。その違いは図1にお
ける、復調回路回路23の構成要素、図2の符号発生器
31の位相設定が1/8チップ単位で量子化されている
ことである。そして符号の発生は、基準発振器25が発
生する疑似雑音符号レートの8倍の固定されたタイミン
グ信号で作られる。
The structure of the receiver to which the tracking method of the GPS receiver in one embodiment of the present invention is applied is substantially the same as that of the first embodiment, and therefore the drawings are omitted. The difference is that the components of the demodulation circuit 23 in FIG. 1 and the phase setting of the code generator 31 in FIG. 2 are quantized in 1/8 chip units. The code generation is then made with a fixed timing signal that is eight times the pseudo-noise code rate generated by the reference oscillator 25.

【0024】上記のような構成に適用するGPS受信機
の追尾方法の第1の実施例との違いについて、その動作
を説明する。符号発生器を量子化したことにより、符号
発生器31に設定する位相と、設定すべき位相の違いΔ
τn が第1の実施例では、平均値との差であったが、量
子化による誤差も上乗せされる。本実施例ではこの上乗
せされたΔτn を制御部で保存する。そして、第1の実
施例と同様に相関特性によって決まる関数F+ (Δ
τ)、F0 (Δτ)、F- (Δτ)を+1/2、0、−
1/2チップの測定値に各々乗じることによって、精度
のよい測定値を得る。
The operation of the tracking method of the GPS receiver applied to the above-mentioned structure will be described with respect to the difference from the first embodiment. By quantizing the code generator, the difference Δ between the phase set in the code generator 31 and the phase to be set Δ
In the first embodiment, τ n is the difference from the average value, but an error due to quantization is also added. In the present embodiment, the added Δτ n is stored in the control unit. Then, as in the first embodiment, the function F + (Δ
τ), F0 (Δτ), F- (Δτ) +1/2, 0,-
An accurate measured value is obtained by multiplying each measured value of 1/2 chip.

【0025】以上のように、符号発生器31を量子化す
ることにより、測定精度を劣化させることなしに、さら
に小型化、低価格化、省電力化を図ることができる。
As described above, by quantizing the code generator 31, further downsizing, cost reduction, and power saving can be achieved without degrading the measurement accuracy.

【0026】なお、第1の実施例においてアンテナ21
の数を2個、同時受信の衛星数を5個で説明したが、こ
れに限定せず、数が複数個であればよい。また、符号発
生器の設定値は複数のアンテナによる設定値の平均を用
いたが、これに限定せず1個のアンテナによる設定値を
用いても良く、また他の手段を用いてもよい。さらに、
復調回路の構成は図2に限定せす゛、発振器の出力を符
号に対する相関器を介して復調器に供給するなど、符号
発生器を共用すれば、他のスペクトル拡散信号の復調回
路であってもよい。第3の実施例においては、第2の実
施例の符号移相器55−1、55−2を量子化すること
もできる。また、量子化は1/8チップとしたが、1/
2未満の別の値をとしてもよいことは言うまでもない。
In the first embodiment, the antenna 21
The number of satellites is two and the number of satellites for simultaneous reception is five. However, the number of satellites is not limited to this, and the number may be plural. Further, the setting value of the code generator is an average of the setting values of a plurality of antennas, but the setting value is not limited to this, and the setting value of one antenna may be used, or other means may be used. further,
The configuration of the demodulation circuit is limited to that shown in FIG. 2. Even if the code generator is shared, for example, the output of the oscillator is supplied to the demodulator through the correlator for the code, even if the demodulation circuit for other spread spectrum signals is used. Good. In the third embodiment, the code phase shifters 55-1 and 55-2 of the second embodiment can be quantized. Also, the quantization is 1/8 chip,
It goes without saying that another value less than 2 may be used.

【0027】[0027]

【発明の効果】以上のように本発明は、同一の衛星信号
を受信する複数の受信部の間で、符号発生器には概略の
位相設定をおこない、各々の復調回路で設定すべき符号
発生器の位相との違いと、相関器の特性と、相関器によ
り得られた相関結果より、各々の受信部について正しい
設定を行った場合の測定結果を予測し、この予測値を測
定結果とすることにより、測定精度を落とすことなく、
復調回路の符号発生器を共用することができ、小型化、
低価格化、省電力化を図ることができる優れたGPS受
信機の追尾方法を実現できるものである。
As described above, according to the present invention, between the plurality of receiving units that receive the same satellite signal, the phase is roughly set in the code generator, and the code generation to be set in each demodulation circuit is performed. Predict the measurement result when the correct setting is made for each receiving unit from the difference between the phase of the receiver, the characteristics of the correlator, and the correlation result obtained by the correlator, and use this predicted value as the measurement result. Therefore, without lowering the measurement accuracy,
The code generator of the demodulation circuit can be shared, downsizing,
It is possible to realize an excellent tracking method for a GPS receiver, which can achieve cost reduction and power saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるGPS受信機の
追尾方式を適用する受信機のブロック結線図
FIG. 1 is a block connection diagram of a receiver to which a tracking system of a GPS receiver according to a first embodiment of the present invention is applied.

【図2】同第1の実施例におけるGPS受信機の復調回
路の詳細なブロック結線図
FIG. 2 is a detailed block diagram of the demodulation circuit of the GPS receiver according to the first embodiment.

【図3】同第1の実施例におけるGPS受信機の相関器
の特性図
FIG. 3 is a characteristic diagram of a correlator of the GPS receiver according to the first embodiment.

【図4】本発明の第2の実施例におけるGPS受信機の
追尾方式を適用する受信機のブロック結線図
FIG. 4 is a block connection diagram of a receiver to which a GPS receiver tracking system according to a second embodiment of the present invention is applied.

【図5】本発明の第2の実施例におけるGPS受信機の
復調回路の詳細なブロック結線図
FIG. 5 is a detailed block diagram of the demodulation circuit of the GPS receiver according to the second embodiment of the present invention.

【図6】従来のGPS受信機のGPS受信機の追尾方式
を適用する受信機のブロック結線図
FIG. 6 is a block connection diagram of a receiver to which a tracking method of a GPS receiver of a conventional GPS receiver is applied.

【図7】従来のGPS受信機の受信部の詳細なブロック
結線図
FIG. 7 is a detailed block connection diagram of a receiver of a conventional GPS receiver.

【符号の説明】[Explanation of symbols]

21 アンテナ 22 高周波部 23 復調回路 24 制御部 25 基準発振器 31 符号発生器 32 相関器 33 復調器 34 発振器 41 アンテナ 42 高周波部 43 復調回路回路 44 制御部 45 基準発振器 51 符号発生器 52 相関器 53 復調器 54 発振器 55 符号移相器 21 antenna 22 high frequency unit 23 demodulation circuit 24 control unit 25 reference oscillator 31 code generator 32 correlator 33 demodulator 34 oscillator 41 antenna 42 high frequency unit 43 demodulation circuit circuit 44 control unit 45 reference oscillator 51 code generator 52 correlator 53 demodulation 54 oscillator 55 code phase shifter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 疑似雑音符号レートの2分の1以下の距
離に相当する位置に設置する複数のアンテナと、これら
のアンテナからの信号をそれぞれ増幅、濾波、周波数変
換する高周波部と、この高周波部の出力信号をそれぞれ
逆拡散する相関器と、それぞれ位相検波する復調器と、
それぞれに対応する搬送波を再生する発振器と、前記複
数のアンテナに共通な衛星固有の疑似雑音符号を発生す
る符号発生器とを具備し、複数のアンテナにより同一の
衛星信号を受け、前記各アンテナに共通な前記符号発生
器に、疑似雑音符号の概略の位相を設定し、各々の受信
部で設定すべき符号発生器の位相との違いと、相関器の
特性と、相関器により得られた相関結果より、各々の受
信部について正しい設定を行った場合の測定結果を予測
し、この予測値を用いて、疑似雑音符号を追尾するGP
S受信機の追尾方法。
1. A plurality of antennas installed at positions corresponding to a distance equal to or less than ½ of a pseudo noise code rate, a high frequency section for amplifying, filtering, and frequency converting signals from these antennas, respectively, and a high frequency section for this high frequency section. A correlator that despreads the output signals of the respective units, and a demodulator that performs phase detection,
An oscillator for reproducing a carrier wave corresponding to each of the antennas, and a code generator for generating a pseudo-noise code unique to the satellite common to the plurality of antennas are provided, the same satellite signal is received by the plurality of antennas, and each antenna receives the same satellite signal. The common phase of the code generator is set to the common code generator, and the difference between the phase of the code generator to be set in each receiving unit, the characteristics of the correlator, and the correlation obtained by the correlator. From the result, the GP that tracks the pseudo noise code by predicting the measurement result when the correct setting is made for each receiving unit and using this predicted value
S Receiver tracking method.
【請求項2】 疑似雑音符号レートの2倍以下の距離に
相当する位置に設置する複数のアンテナと、各相関器の
符号入力に、それぞれ疑似雑音符号の位相を補正する符
号移相器を備え、各々の受信部で設定すべき符号発生器
の位相との差を概略の位相に調節する請求項1記載のG
PS受信機の追尾方法。
2. A plurality of antennas installed at a position corresponding to a distance equal to or less than twice the pseudo noise code rate, and a code phase shifter for correcting the phase of the pseudo noise code at the code input of each correlator. 2. The G according to claim 1, wherein the difference from the phase of the code generator to be set in each receiving section is adjusted to an approximate phase.
PS receiver tracking method.
【請求項3】 1/2チップ以下の量子化した単位で位
相設定する符号発生器を備え、アンテナに共通な符号発
生器に、量子化した疑似雑音符号の概略の位相を設定
し、この量子誤差を含めた、各々の受信部に設定すべき
位相との差と、相関器の特性と、相関器により得られた
相関結果より、各々の受信部について正しい設定を行っ
た場合の測定結果を予測し、この予測値を用いて、疑似
雑音符号を追尾する請求項1または請求項2記載のGP
S受信機の追尾方法。
3. A code generator for setting a phase in a quantized unit of ½ chip or less, wherein an approximate phase of a quantized pseudo noise code is set in a code generator common to antennas, From the difference between the phase that should be set in each receiving unit, including the error, the characteristics of the correlator, and the correlation result obtained by the correlator, obtain the measurement result when the correct setting is made for each receiving unit. 3. The GP according to claim 1, wherein the GP is predicted, and the pseudo noise code is tracked by using the predicted value.
S Receiver tracking method.
JP21835991A 1991-08-29 1991-08-29 Tracking method of GPS receiver Expired - Fee Related JP2765290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21835991A JP2765290B2 (en) 1991-08-29 1991-08-29 Tracking method of GPS receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21835991A JP2765290B2 (en) 1991-08-29 1991-08-29 Tracking method of GPS receiver

Publications (2)

Publication Number Publication Date
JPH0552931A true JPH0552931A (en) 1993-03-02
JP2765290B2 JP2765290B2 (en) 1998-06-11

Family

ID=16718653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21835991A Expired - Fee Related JP2765290B2 (en) 1991-08-29 1991-08-29 Tracking method of GPS receiver

Country Status (1)

Country Link
JP (1) JP2765290B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600328A (en) * 1995-06-21 1997-02-04 Matsushita Electric Industrial Co., Ltd. Demodulator circuit in global positioning system receiver
KR100951006B1 (en) * 2008-01-10 2010-04-02 한국항공우주연구원 Apparatus and method for fast TTFF in a GNSS Receiver
JP2016116359A (en) * 2014-12-16 2016-06-23 株式会社ダイヘン Non-contact power supply system, power transmission device, and positional deviation detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600328A (en) * 1995-06-21 1997-02-04 Matsushita Electric Industrial Co., Ltd. Demodulator circuit in global positioning system receiver
KR100951006B1 (en) * 2008-01-10 2010-04-02 한국항공우주연구원 Apparatus and method for fast TTFF in a GNSS Receiver
JP2016116359A (en) * 2014-12-16 2016-06-23 株式会社ダイヘン Non-contact power supply system, power transmission device, and positional deviation detection method

Also Published As

Publication number Publication date
JP2765290B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US6259401B1 (en) Global positioning system receiver with improved multipath signal rejection
US4841544A (en) Digital direct sequence spread spectrum receiver
US5414729A (en) Pseudorandom noise ranging receiver which compensates for multipath distortion by making use of multiple correlator time delay spacing
US6731672B1 (en) GPS receiver having improved signal acquisition at a low signal to noise ratio
US6828935B1 (en) Digitally synthesized phased antenna for multibeam global positioning
US6175327B1 (en) GPS receivers with adaptive antenna systems for suppressing interference signals
US5245628A (en) Enhanced l1/l2 code channel for global positioning system receivers
US5241561A (en) Radio receiver
JP3576177B2 (en) GPS pointing or attitude system using a single receiver
US8374223B2 (en) BOC signal acquisition and tracking method and apparatus
US6725157B1 (en) Indoor GPS clock
US10859709B2 (en) Satellite navigation receiver with fixed point sigma rho filter
KR20010034174A (en) Receiver of pseudo-noise signals of satellite radio navigational systems
US8947298B2 (en) GNSS receiver and positioning method
US20090213912A1 (en) Multipath mitigation gnss receiver
US20140232597A1 (en) Method and apparatus tracking global navigation satellite system (gnss) signal, and gnss receiver
US7508339B1 (en) Anti-jam system for use with normal L1 only GPS receiver
EP3362818B1 (en) Satellite navigation receiver with fixed point sigma rho filter
Ruegamer et al. A Bavarian initiative towards a robust Galileo PRS receiver
US6687316B1 (en) High resolution correlator technique for spread spectrum ranging system code and carrier multipath mitigation
JP2002122651A (en) Gps receiver
JPH0552931A (en) Tracking method of gps receiver
US20080123718A1 (en) Positioning apparatus and control method thereof
US20090180520A1 (en) Positioning apparatus
JPH07181243A (en) Demodulation circuit of gps receiver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees