JPH0552918A - Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device - Google Patents

Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device

Info

Publication number
JPH0552918A
JPH0552918A JP3213425A JP21342591A JPH0552918A JP H0552918 A JPH0552918 A JP H0552918A JP 3213425 A JP3213425 A JP 3213425A JP 21342591 A JP21342591 A JP 21342591A JP H0552918 A JPH0552918 A JP H0552918A
Authority
JP
Japan
Prior art keywords
magnetic
sensor
frequency
magnetic sensor
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213425A
Other languages
Japanese (ja)
Inventor
Akira Ito
明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3213425A priority Critical patent/JPH0552918A/en
Publication of JPH0552918A publication Critical patent/JPH0552918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To remove noise and direction dependency including such a case that a two- or three-dimensional sensor is constituted by arranging two magnetism-electricity converting semiconductor pulse sensors, with their directivity opposed to each other. CONSTITUTION:This magnetic sensor 6 is constituted by arranging two magnetism-electricity converting pulse sensors 1, with their directivity opposed to each other, and connected with take-out lines 2-5. A voltage is applied across the lines 2-5 through resistances R1 and R2 and, when a magnetic flux exists in the direction shown by the arrow, a voltage is generated across both ends of the resistance R1 and its frequency is decided by the density of the magnetic flux. On the other hand, no voltage is generated across both ends of the resistance R2 and its frequency is '0'. However, when the magnetic flux is in the opposite direction, the voltage is not generated across both ends of the resistance R1, but across both ends of the resistance R2 and the frequency is decided by the density of the magnetic flux. Thus the direction of the magnetic flux can be recognized from the voltages generated across the resistances R1 and R2 and the density of the magnetic flux can be decided from the frequencies. When such sensor 6 is combined by the number of two or three, a two- or three- dimensional magnetic sensor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁界の強さを周波数に
変換する半導体センサーを用いて磁界を測定する磁気セ
ンサー、2次元磁気センサー、3次元磁気センサー及び
磁界の方向・強さを測定する磁気測定装置、磁気測定半
導体装置の構成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor for measuring a magnetic field using a semiconductor sensor for converting the strength of a magnetic field into a frequency, a two-dimensional magnetic sensor, a three-dimensional magnetic sensor and a direction / strength of a magnetic field. And a method for configuring a magnetic measurement semiconductor device.

【0002】[0002]

【従来の技術】従来の磁気センサーは、ホール素子を用
いたもので磁気を電圧に変換して微少な信号を増幅して
用いられていた。
2. Description of the Related Art A conventional magnetic sensor uses a Hall element and is used by converting magnetism into a voltage to amplify a minute signal.

【0003】又、磁電変換半導体パルスセンサーを用い
た場合、単体で用いられた。
When a magnetoelectric conversion semiconductor pulse sensor is used, it is used alone.

【0004】さらに、2次元磁気センサー・3次元磁気
センサー・磁気測定装置・磁気測定半導体装置の場合も
ホール素子が用いられていて出力を増幅していた。
Further, in the case of the two-dimensional magnetic sensor, the three-dimensional magnetic sensor, the magnetic measuring device, and the magnetic measuring semiconductor device, the Hall element is used to amplify the output.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述の従来技
術では、磁気センサーにホール素子を用いた場合、磁気
センサーからの出力が小さいためノイズの影響が大きい
という問題、出力電圧を増幅しなければ利用できないた
め回路が複雑という問題、磁気センサーにかけられる電
圧が小さいという問題があった。磁気センサーに磁電変
換半導体パルスセンサーを用いた場合は、図1(a)の
ように回路を作ると、磁電変換パルスセンサー1の出力
は図1(b)のようになる。ここで、磁束密度Bが紙面
の表から裏の方向を正とする。又、出力は抵抗Rの両端
で観測する。図1(b)からわかるように、正方向の磁
界に対しては出力が表れるが、負方向の場合には出力周
波数が0であるため、一方向しか測定できないという問
題があった。
However, in the above-mentioned prior art, when the Hall element is used in the magnetic sensor, the output from the magnetic sensor is small, so that the influence of noise is large. There are problems that the circuit is complicated because it cannot be used and that the voltage applied to the magnetic sensor is small. When a magnetoelectric conversion semiconductor pulse sensor is used as the magnetic sensor, the output of the magnetoelectric conversion pulse sensor 1 becomes as shown in FIG. 1B when the circuit is made as shown in FIG. Here, the magnetic flux density B is positive in the direction from the front side to the back side of the paper. The output is observed at both ends of the resistor R. As can be seen from FIG. 1 (b), although the output appears with respect to the magnetic field in the positive direction, the output frequency is 0 in the case of the negative direction, so there is a problem that measurement can be performed in only one direction.

【0006】又、磁気測定装置・磁気測定半導体装置に
おいては、検出回路が複雑であるという問題、アナログ
・デジタル(A/D)コンバータが必要でありコストが
高くなるという問題を有していた。
Further, in the magnetic measuring device and the magnetic measuring semiconductor device, there are problems that the detection circuit is complicated and that an analog / digital (A / D) converter is required, resulting in high cost.

【0007】そこで、本発明の磁気センサー・2次元磁
気センサー・3次元磁気センサーは、前述の問題を解決
し、ノイズに強く磁気の測定が向きに依存しないで測定
できること、又、本発明の磁気測定装置・磁気測定半導
体装置は、検出回路の簡単化及びコストダウン及び装置
の小型化を目的とする。
Therefore, the magnetic sensor, the two-dimensional magnetic sensor, and the three-dimensional magnetic sensor of the present invention solve the above-mentioned problems and are strong against noise, and the magnetic measurement can be performed without depending on the direction. A measuring device and a magnetic measuring semiconductor device aim at simplification of a detection circuit, cost reduction, and size reduction of the device.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明の磁気センサーは、磁界の強さを周波数に
変換し指向性を有する磁電変換半導体パルスセンサーを
2つ指向性が逆向きになるように配置したことを特徴と
する。
(1) The magnetic sensor of the present invention is characterized in that two magnetoelectric conversion semiconductor pulse sensors having a directivity by converting the strength of a magnetic field into a frequency are arranged so that the directivities are opposite to each other.

【0009】(2)本発明の2次元を測定する2次元磁
気センサーは、前述磁電変換半導体パルスセンサーを有
することを特徴とする。
(2) The two-dimensional magnetic sensor of the present invention for measuring two dimensions is characterized by having the above-mentioned magnetoelectric conversion semiconductor pulse sensor.

【0010】(3)本発明の3次元磁気センサーは、前
記磁電変換半導体パルスセンサーあるいは前述磁気セン
サーあるいは前述2次元磁気センサーを少なくとも1つ
以上有することを特徴とする。
(3) The three-dimensional magnetic sensor of the present invention is characterized by having at least one of the magnetoelectric conversion semiconductor pulse sensor, the magnetic sensor, or the two-dimensional magnetic sensor.

【0011】(4)本発明の磁気測定装置は、前記
(1)から(3)の磁気センサーを少なくとも1つ以上
有するセンサー部、該センサー部からの信号から周波数
を検出する周波数検出部、該周波数検出部で求められた
周波数から磁界の方向・強さを計算する磁気計算部を有
することを特徴とする。
(4) The magnetic measuring device of the present invention comprises a sensor section having at least one or more magnetic sensors according to (1) to (3), a frequency detecting section for detecting a frequency from a signal from the sensor section, It is characterized by having a magnetic calculation unit for calculating the direction and strength of the magnetic field from the frequency obtained by the frequency detection unit.

【0012】(5)本発明の磁気測定半導体装置は、磁
界の強さを周波数に変換しかつ指向性を有する磁電変換
半導体パルスセンサーが少なくとも2つ以上同一半導体
基板上に形成されている、あるいは該磁電変換半導体パ
ルスセンサーが少なくとも1つ以上で構成されるセンサ
ー部、および該センサー部からの信号から周波数を検出
する周波数検出部、該周波数検出部で求められた周波数
から磁界の方向・強さを計算する磁気計算部の内少なく
とも1つ以上が同一半導体基板上に形成されていること
を特徴とする。
(5) In the magnetic measurement semiconductor device of the present invention, at least two or more magnetoelectric conversion semiconductor pulse sensors that convert magnetic field strength into frequency and have directivity are formed on the same semiconductor substrate, or A sensor unit having at least one magnetoelectric conversion semiconductor pulse sensor, a frequency detecting unit for detecting a frequency from a signal from the sensor unit, and a direction and strength of a magnetic field based on the frequency obtained by the frequency detecting unit. Is characterized in that at least one or more of the magnetic calculation sections for calculating are formed on the same semiconductor substrate.

【0013】[0013]

【実施例】図2(a)は請求項1記載の磁気センサーの
構成を示す一実施例の図、図2(b)は磁気センサーに
回路を接続した一実施例の図で、1が図1に代表される
ような磁気を周波数に変換し指向性のある磁電変換パル
スセンサー、2から5はそれぞれ取り出し線A、取り出
し線B、取り出し線C、取り出し線D、6は磁気センサ
ー、7・8は抵抗R1 、R2 である。図2(b)のよう
に電圧をかけ、図2(a)のように磁束密度Bがかかっ
ている(紙面の表から裏の方向に磁界がある)場合、R
1 の両端には電圧が発生しその周波数は磁束密度Bによ
って決まる。又、R2 の両端にはこの場合電圧が発生せ
ず周波数も0である。しかし、磁束密度Bが図2(a)
と逆向き、つまり紙面の裏から表の方向にあるとき、R
1 の両端には電圧が発生せず、この時R2 に電圧が発生
し周波数が磁束密度Bによって決まる。以上のことか
ら、R1 に周波数変化が発生すると正方向(正方向は紙
面の表から裏の方向への磁界で、図2(a)に示す磁束
密度Bの向き)の磁界、R2 に周波数が発生する場合は
負方向の磁界であることがわかり、それぞれ周波数によ
って磁界の強さは決められ、従って磁界の向き・強さを
調べる磁気センサーとなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 (a) is a diagram of an embodiment showing the structure of a magnetic sensor according to claim 1, FIG. 2 (b) is a diagram of an embodiment in which a circuit is connected to the magnetic sensor, and 1 is a diagram. Magnetoelectric conversion pulse sensor typified by 1 which converts magnetism to frequency and has directivity, 2 to 5 are extraction lines A, extraction lines B, extraction lines C, extraction lines D, 6 are magnetic sensors, 7 ... Reference numeral 8 is resistors R1 and R2. When a voltage is applied as shown in FIG. 2B and a magnetic flux density B is applied as shown in FIG. 2A (the magnetic field is in the direction from the front side to the back side of the paper), R
A voltage is generated across 1 and its frequency is determined by the magnetic flux density B. In this case, no voltage is generated across R2 and the frequency is zero. However, the magnetic flux density B is shown in FIG.
When it is in the opposite direction, that is, from the back of the paper to the front, R
No voltage is generated at both ends of 1, and at this time a voltage is generated at R2 and the frequency is determined by the magnetic flux density B. From the above, when a frequency change occurs in R1, the magnetic field in the positive direction (the positive direction is the magnetic field from the front side to the back side of the paper, the direction of the magnetic flux density B shown in FIG. 2A), and the frequency changes in R2. When it is generated, it is known that the magnetic field is in the negative direction, and the strength of the magnetic field is determined by the frequency of each. Therefore, it becomes a magnetic sensor for examining the direction and strength of the magnetic field.

【0014】図3(a)は、請求項2記載の2次元磁気
センサーの一実施例で、図3(a)中のそれぞれの磁気
センサー6は、各々の中に書かれている矢印の向きを正
として動作する前述請求項1記載の磁気センサーであ
り、図2(a)のような構成をしている。2つの磁気セ
ンサーは直交しているため、図3(b)のような磁束密
度Bを観測する場合、図3(a)の構成で図3(a)中
の上側の磁気センサーによってByが下側の磁気センサ
ーによってBxがそれぞれ検出される。
FIG. 3 (a) is an embodiment of the two-dimensional magnetic sensor according to claim 2, wherein each magnetic sensor 6 in FIG. 3 (a) has a direction of an arrow written therein. The magnetic sensor according to claim 1 that operates with the positive sign, and has a configuration as shown in FIG. Since the two magnetic sensors are orthogonal to each other, when observing the magnetic flux density B as shown in FIG. 3 (b), by the magnetic sensor on the upper side in FIG. Bx is detected by the magnetic sensor on the side.

【0015】そして、Bは B×B=Bx×Bx+By×By tanθ=Bx/By より求めることができる。Then, B can be obtained by B × B = Bx × Bx + By × By tan θ = Bx / By.

【0016】図4は、請求項3記載の3次元磁気センサ
ーの概略を示す一実施例の図で、磁束密度Bを観測する
時X・Y・Z軸にそれぞれ矢印の向きの特性の請求項1
記載の磁気センサーを配置すると、それぞれの磁気セン
サーは磁束密度Bの成分である(Bx・By・Bz)を
観測する。従って、この観測値から B×B=Bx×Bx+By×By+Bz×Bz COSφ=Bz/B tanθ=Bx/By となるため、この式から計算される。
FIG. 4 is a diagram of an embodiment showing the outline of the three-dimensional magnetic sensor according to claim 3, wherein when observing the magnetic flux density B, the characteristics of the directions of the arrows in the X, Y and Z axes are claimed. 1
When the described magnetic sensors are arranged, each magnetic sensor observes the component (Bx · By · Bz) of the magnetic flux density B. Therefore, from this observation value, B × B = Bx × Bx + By × By + Bz × Bz COSφ = Bz / B tan θ = Bx / By, which is calculated from this formula.

【0017】図5は、図4をさらに具体的にした3次元
磁気センサーの一実施例の図で、10は半導体基板、1
1から13はそれぞれX方向磁気センサー、Y方向磁気
センサー、Z方向磁気センサーである。それぞれの磁気
センサーは、図4で示した原理によってBx・By・B
zを観測でき、計算によって磁界を求められる。
FIG. 5 is a diagram showing one embodiment of a three-dimensional magnetic sensor which is a more specific version of FIG.
Reference numerals 1 to 13 are an X-direction magnetic sensor, a Y-direction magnetic sensor, and a Z-direction magnetic sensor, respectively. Each magnetic sensor is Bx ・ By ・ B according to the principle shown in FIG.
z can be observed, and the magnetic field can be calculated.

【0018】図6は、請求項4記載の磁気測定装置の基
本的ブロック図で、21が磁電変換パルスセンサーを用
いているセンサー部、22が周波数検出部、23が求め
られたデータから磁場を計算する磁気計算部、24はセ
ンサー部からの電圧信号、25は周波数信号である。セ
ンサー部で磁束密度によって決まった周波数で振幅する
電圧信号を、周波数検出部でカウントすることによって
周波数を検出し、該周波数をもとに計算することで磁界
を測定できる。
FIG. 6 is a basic block diagram of the magnetic measuring device according to claim 4, wherein 21 is a sensor section using a magnetoelectric conversion pulse sensor, 22 is a frequency detecting section, and 23 is a magnetic field from the obtained data. A magnetic calculation unit for calculation, 24 is a voltage signal from the sensor unit, and 25 is a frequency signal. The magnetic field can be measured by detecting the frequency by counting the voltage signal that oscillates at the frequency determined by the magnetic flux density in the sensor unit by the frequency detecting unit and calculating based on the frequency.

【0019】図7は、請求項4記載の磁気測定装置の一
実施例の図で、31がアナログスイッチ、32がカウン
ター、33がCPU、34がアナログスイッチ切り換え
信号、35はカウントスタート・リセット信号、36は
セレクトデータ信号、37はカウントデータ信号、38
はアンサー信号である。アナログスイッチ31をCPU
33から制御して、1本の信号を時間Tsだけカウンタ
ー32に送信する。カウンター32はセレクト信号36
をカウントする。そして、Ts時間内のカウント数がカ
ウントデータ信号として出力され、Tsとカウント信号
のカウント数Nによって周波数fはf=N/Tsとして
CPU33で求められる。そして、求められた周波数に
よって磁束密度Bが決定できる。以上の結果をアンサー
信号38に出力する。
FIG. 7 is a diagram of an embodiment of the magnetic measuring apparatus according to the present invention, in which 31 is an analog switch, 32 is a counter, 33 is a CPU, 34 is an analog switch switching signal, and 35 is a count start / reset signal. , 36 is a select data signal, 37 is a count data signal, 38
Is the answer signal. Analog switch 31 to CPU
Controlled by 33, one signal is transmitted to the counter 32 for the time Ts. Counter 32 has select signal 36
To count. Then, the count number within the Ts time is output as a count data signal, and the frequency f is calculated by the CPU 33 as f = N / Ts by Ts and the count number N of the count signal. Then, the magnetic flux density B can be determined by the obtained frequency. The above result is output to the answer signal 38.

【0020】図8は、請求項5記載の磁気測定半導体装
置の全体的ブロツク図である。41は半導体基板であ
る。センサー部21、周波数検出部22、磁気計算部2
3を1つの半導体基板上に形成した実施例である。
FIG. 8 is an overall block diagram of the magnetic measurement semiconductor device according to the fifth aspect. 41 is a semiconductor substrate. Sensor unit 21, frequency detection unit 22, magnetic calculation unit 2
3 is an example in which 3 is formed on one semiconductor substrate.

【0021】図9は、図8のセンサー部の具体的な一実
施例の図で半導体基板の断面図である。51は半導体基
板(ウェハー)、52は取り出し配線である。
FIG. 9 is a cross-sectional view of a semiconductor substrate showing a specific example of the sensor portion of FIG. Reference numeral 51 is a semiconductor substrate (wafer), and 52 is a takeout wiring.

【0022】又、図5の実施例のように、同一基板上に
3次元磁気センサーを構成する実施例、図7の実施例の
1つの半導体基板上に形成する実施例がある。
Further, there is an example in which a three-dimensional magnetic sensor is formed on the same substrate as in the example of FIG. 5 and an example in which it is formed on one semiconductor substrate of the example of FIG.

【0023】[0023]

【発明の効果】以上述べたように発明すれば、磁気セン
サーの場合特性に指向性があるが、2つを組み合わせて
用いることで指向性を無くすことができ、磁界の向きと
強さが測定できるようになり、2次元・3次元磁気セン
サーの場合、直角に構成することで2次元の磁気の強さ
・向き、3次元の磁気の強さ・向きを測定できるという
効果がある。
According to the invention as described above, the characteristic of a magnetic sensor has directivity, but by using two in combination, the directivity can be eliminated and the direction and strength of the magnetic field can be measured. In the case of a two-dimensional and three-dimensional magnetic sensor, it is possible to measure the two-dimensional magnetic strength and direction and the three-dimensional magnetic strength and direction by configuring the two-dimensional and three-dimensional magnetic sensors at right angles.

【0024】又、磁気測定装置に磁電変換半導体パルス
センサーを用いる場合、ホール素子を用いた場合のよう
に、信号を増幅したりアナログデジタル変換する必要が
なくなり、カウンターを用いることで磁束密度が測定で
きるようになり、さらに磁気測定半導体装置にすること
で省スペース・低コスト・高精度測定装置の作成ができ
るという効果がある。
Further, when the magnetoelectric conversion semiconductor pulse sensor is used in the magnetic measuring device, there is no need to amplify the signal or perform analog-digital conversion as in the case of using the Hall element, and the magnetic flux density can be measured by using the counter. By using a magnetic measurement semiconductor device, it is possible to produce a space-saving, low-cost, high-precision measurement device.

【0025】そして、パルス信号がそのままカウンター
の入力として用いることが可能なため、ノイズに対して
非常に強くなるという効果もある。
Further, since the pulse signal can be used as it is as the input of the counter, there is an effect that it becomes very strong against noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁電変換素子の使用例と出力特性の図。FIG. 1 is a diagram showing a usage example and output characteristics of a magnetoelectric conversion element.

【図2】本発明の磁気センサーの一実施例の図。FIG. 2 is a diagram of an embodiment of a magnetic sensor of the present invention.

【図3】本発明の2次元磁気センサーの一実施例の図。FIG. 3 is a diagram of an embodiment of a two-dimensional magnetic sensor of the present invention.

【図4】本発明の3次元磁気センサーの一実施例の図。FIG. 4 is a diagram of an embodiment of a three-dimensional magnetic sensor of the present invention.

【図5】本発明の3次元磁気センサーの一実施例の図。FIG. 5 is a diagram of an embodiment of a three-dimensional magnetic sensor of the present invention.

【図6】本発明の磁気測定装置の一実施例の図。FIG. 6 is a diagram of an embodiment of a magnetic measurement apparatus of the present invention.

【図7】本発明の磁気測定装置の一実施例の図。FIG. 7 is a diagram of an embodiment of a magnetic measurement apparatus of the present invention.

【図8】本発明の磁気測定半導体装置の一実施例の図。FIG. 8 is a diagram of an embodiment of a magnetic measurement semiconductor device of the present invention.

【図9】本発明の磁気測定半導体装置の一実施例の図。FIG. 9 is a diagram of an embodiment of a magnetic measurement semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1 磁電変換パルスセンサー 2 取り出し線A 3 取り出し線B 4 取り出し線C 5 取り出し線D 6 磁気センサー 7 抵抗R1 8 抵抗R2 10,41,51 半導体基板 11 X方向磁気センサー 12 Y方向磁気センサー 13 Z方向磁気センサー 21 センサー部 22 周波数検出部 23 磁気計算部 24 電圧信号 25 周波数信号 31 アナログスイッチ 32 カウンター 33 CPU 34 アナログスイッチ切り換え信号 35 カウントスタート・リセット信号 36 セレクトデータ信号 37 カウントデータ信号 38 アンサー信号 52 取り出し配線 1 Magnetoelectric conversion pulse sensor 2 Extraction line A 3 Extraction line B 4 Extraction line C 5 Extraction line D 6 Magnetic sensor 7 Resistor R1 8 Resistor R2 10, 41, 51 Semiconductor substrate 11 X direction magnetic sensor 12 Y direction magnetic sensor 13 Z direction Magnetic sensor 21 Sensor part 22 Frequency detection part 23 Magnetic calculation part 24 Voltage signal 25 Frequency signal 31 Analog switch 32 Counter 33 CPU 34 Analog switch switching signal 35 Count start / reset signal 36 Select data signal 37 Count data signal 38 Answer signal 52 Extraction wiring

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気を測定する磁気センサーにおいて、
磁界の強さを周波数に変換し指向性を有する磁電変換半
導体パルスセンサーを2つ指向性が逆向きになるように
配置したことを特徴とする磁気センサー。
1. A magnetic sensor for measuring magnetism, comprising:
A magnetic sensor comprising: two magnetic-electric conversion semiconductor pulse sensors, which have a directivity by converting the strength of a magnetic field into a frequency, arranged so that the directivities are opposite to each other.
【請求項2】 2次元磁界を測定する2次元磁気センサ
ーにおいて、前述の磁電変換半導体パルスセンサーを有
することを特徴とする2次元磁気センサー。
2. A two-dimensional magnetic sensor for measuring a two-dimensional magnetic field, comprising the above-mentioned magnetoelectric conversion semiconductor pulse sensor.
【請求項3】 3次元磁界を測定する磁気センサーにお
いて、前述の磁電変換半導体パルスセンサーあるいは請
求項1記載の磁気センサーあるいは請求項2記載の磁気
センサーを少なくとも1つ以上有することを特徴する3
次元磁気センサー。
3. A magnetic sensor for measuring a three-dimensional magnetic field, comprising at least one of the above-mentioned magnetoelectric conversion semiconductor pulse sensor, the magnetic sensor according to claim 1, or the magnetic sensor according to claim 2.
Dimensional magnetic sensor.
【請求項4】 磁界の方向・強さを測定する磁気測定装
置において、請求項1または2または3記載の磁気セン
サーを少なくとも1つ以上有するセンサー部、該センサ
ー部からの信号から周波数を検出する周波数検出部、該
周波数検出部で求められた周波数から磁界の方向・強さ
を計算する磁気計算部を有することを特徴とした磁気測
定装置。
4. A magnetic measuring device for measuring the direction / strength of a magnetic field, comprising a sensor unit having at least one magnetic sensor according to claim 1 or 2 and detecting a frequency from a signal from the sensor unit. A magnetic measurement device comprising: a frequency detection unit; and a magnetic calculation unit that calculates the direction and strength of a magnetic field from the frequency obtained by the frequency detection unit.
【請求項5】 磁界の方向・強さを測定する磁気測定半
導体装置において、磁界の強さを周波数に変換しかつ指
向性を有する磁電変換半導体パルスセンサーが少なくと
も2つ以上同一半導体基板上に形成されている、あるい
は該磁電変換半導体パルスセンサーが少なくとも1つ以
上で構成されるセンサー部、および該センサー部からの
信号から周波数を検出する周波数検出部、該周波数検出
部で求められた周波数から磁界の方向・強さを計算する
磁気計算部の内少なくとも1つ以上が同一半導体基板上
に形成されていることを特徴とする磁気測定半導体装
置。
5. In a magnetic measurement semiconductor device for measuring the direction and strength of a magnetic field, at least two or more magnetoelectric conversion semiconductor pulse sensors for converting magnetic field strength into frequency and having directivity are formed on the same semiconductor substrate. Or a sensor section in which the magnetoelectric conversion semiconductor pulse sensor is composed of at least one, a frequency detecting section for detecting a frequency from a signal from the sensor section, and a magnetic field based on the frequency obtained by the frequency detecting section. 2. A magnetic measurement semiconductor device, wherein at least one or more magnetic calculation units for calculating the direction and strength of a magnetic field are formed on the same semiconductor substrate.
JP3213425A 1991-08-26 1991-08-26 Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device Pending JPH0552918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213425A JPH0552918A (en) 1991-08-26 1991-08-26 Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213425A JPH0552918A (en) 1991-08-26 1991-08-26 Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device

Publications (1)

Publication Number Publication Date
JPH0552918A true JPH0552918A (en) 1993-03-02

Family

ID=16639017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213425A Pending JPH0552918A (en) 1991-08-26 1991-08-26 Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device

Country Status (1)

Country Link
JP (1) JPH0552918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187063B2 (en) 2002-07-29 2007-03-06 Yamaha Corporation Manufacturing method for magnetic sensor and lead frame therefor
CN107884729A (en) * 2017-10-23 2018-04-06 哈尔滨工程大学 A kind of magnetoelectricity composite base magnetic sensor system for suppressing environment common mode noise

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187063B2 (en) 2002-07-29 2007-03-06 Yamaha Corporation Manufacturing method for magnetic sensor and lead frame therefor
US7494838B2 (en) 2002-07-29 2009-02-24 Yamaha Corporation Manufacturing method for magnetic sensor and lead frame therefor
US7541665B2 (en) 2002-07-29 2009-06-02 Yamaha Corporation Lead frame for a magnetic sensor
US8138757B2 (en) 2002-07-29 2012-03-20 Yamaha Corporation Manufacturing method for magnetic sensor and lead frame therefor
CN107884729A (en) * 2017-10-23 2018-04-06 哈尔滨工程大学 A kind of magnetoelectricity composite base magnetic sensor system for suppressing environment common mode noise

Similar Documents

Publication Publication Date Title
JP6525336B2 (en) 3-axis digital compass
EP0282529B1 (en) Auto zero circuit for flow meter
EP0590222A1 (en) Magnetic position sensor
JP4410316B2 (en) Position sensor
CN101517373A (en) Physical quantity measuring apparatus and signal processing method thereof
CN110231494A (en) Magnetic speed sensor with distributed Wheatstone bridge
WO2007010842A1 (en) Rotation angle detection apparatus
JPH0626884A (en) Position detection device
JP7140149B2 (en) Current sensors, magnetic sensors and circuits
US4731580A (en) Displacement sensing device with two magnetoresistance element sections used independently
CN103312269A (en) Frequency doubling of xmr signals
US4733177A (en) High resolution high output magneto resistive transducer for determining static and dynamic position
CN109655767B (en) Integrated magnetic structure
EP3273203B1 (en) Displacement detection device
JPH0552918A (en) Magnetic sensor, two-and three-dimensional magnetic sensors, magnetism measuring instrument, and magnetism measuring semiconductor device
US5886520A (en) Position sensor having magnetic resistance effect devices for detecting a position of an object
JP3972116B2 (en) Magnetic attractive force measuring device for magnet body
US10852365B2 (en) Stray field suppression in magnetic sensor Wheatstone bridges
CA1236543A (en) High resolution high output transducer
JPH04301702A (en) Detecting method for electromagnetic characteristics changing part and device thereof
JPS61164119A (en) Load meter
US20230066358A1 (en) Strayfield insensitive magnetic sensing device and method using spin orbit torque effect
RU1798744C (en) Device for measuring magnetic field
JPS6182112A (en) Length measuring machine
SU152193A1 (en) Device for measuring phase angle