JPH0552908B2 - - Google Patents

Info

Publication number
JPH0552908B2
JPH0552908B2 JP32601089A JP32601089A JPH0552908B2 JP H0552908 B2 JPH0552908 B2 JP H0552908B2 JP 32601089 A JP32601089 A JP 32601089A JP 32601089 A JP32601089 A JP 32601089A JP H0552908 B2 JPH0552908 B2 JP H0552908B2
Authority
JP
Japan
Prior art keywords
wind speed
airflow
measuring device
sensor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32601089A
Other languages
Japanese (ja)
Other versions
JPH03186767A (en
Inventor
Masaharu Iwamya
Keizo Goto
Sumiko Makawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Netsu Kogyo Kaisha Ltd
Original Assignee
Toyo Netsu Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Netsu Kogyo Kaisha Ltd filed Critical Toyo Netsu Kogyo Kaisha Ltd
Priority to JP32601089A priority Critical patent/JPH03186767A/en
Publication of JPH03186767A publication Critical patent/JPH03186767A/en
Publication of JPH0552908B2 publication Critical patent/JPH0552908B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気流がどの方向に流れているか、気流
速度がどれくらいか、気流がどの様に乱れている
かあるいはどの様に渦流が発生しているかを、周
囲環境を汚染させることなく、また大ががりな準
備を行うことなく知ることを目的とした気流計測
装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is capable of determining in which direction the airflow is flowing, how fast the airflow is, how the airflow is turbulent, or how eddies are generated. The present invention relates to an airflow measuring device that aims to measure airflow without contaminating the surrounding environment or making extensive preparations.

(従来技術) 従来気流の可視化技術としては空気中に密度の
小さな物質を注入して気流のトレーサとする方
法、天然や科学繊維のフイラメントを棒の先など
に付けて気流に載せて吹き流すタフト法等が知ら
れている。このうちトレーサ法には線香の煙や発
煙筒からの煙を利用する方法、四塩化チタンや塩
化アンモニウム等の化学物質による加水分解によ
る白煙を利用する方法、気流中に鳥の羽毛やたん
ぽぽの種子の羽毛などを放出する方法あるいはヘ
リウムガスで膨らませた風船をおもりで調節して
放出する方法などがある。一方タフト法としては
毛糸の素線を使う方法、蚕の繭糸を使う方法、ポ
リメチルペンテンのフイラメントを利用する方法
などがある。
(Prior technology) Conventional techniques for visualizing airflow include injecting low-density substances into the air and using them as airflow tracers, and tufting, which involves attaching a filament of natural or scientific fiber to the end of a stick and placing it on the airflow to blow it away. The law is known. Of these, tracer methods include methods that use incense stick smoke or smoke from smoke tubes, methods that use white smoke from hydrolysis with chemicals such as titanium tetrachloride and ammonium chloride, and methods that use the use of white smoke produced by hydrolysis of chemicals such as titanium tetrachloride and ammonium chloride. There are methods such as releasing seed feathers, etc., or releasing balloons inflated with helium gas and adjusting the weight with weights. On the other hand, the tufting method includes a method using woolen strands, a method using silkworm cocoon thread, and a method using polymethylpentene filament.

これらの方法はいずれも実験室などでは利用価
値が高いが、実際に気流状態を知りたい場所、例
えば超LSIの生産工場や手術中の術野近く、ある
いは竣工間際の建物での気流状態を知るためには
非常に不適切な方法である。すなわち、トレーサ
物質が周囲環境を汚染してしまうことになるし、
繭の糸などでは視線方向とは異なる方向から強い
光を当ててしかも背景を黒く(暗く)しないとほ
とんど見えないという欠点を持つていた。
All of these methods are useful in laboratories, but they are useful in places where you actually want to know the airflow conditions, such as in a VLSI production factory, near the surgical field, or in a building that is about to be completed. This is a very inappropriate method. In other words, the tracer substances will contaminate the surrounding environment,
Cocoon threads had the disadvantage that they could hardly be seen unless strong light was applied from a direction different from the line of sight and the background was made black (dark).

清浄度を必要とする空間内の気流の可視化方法
として、純水を超音波振動子にてミスト状にして
気流中に吹き出す方法、純水の水蒸気をドライア
イスで冷却して凝縮させ気流中に放出する方法な
どが提案され実施されたが、いづれも可視化でき
る距離が短くまた大量に出さないと見えないので
細かい部分の可視化や乱流の様子の可視かはでき
なかつた。
As a method of visualizing airflow in a space that requires cleanliness, there is a method of making pure water into a mist using an ultrasonic vibrator and blowing it out into the airflow, and a method of cooling pure water vapor with dry ice and condensing it into the airflow. Several methods have been proposed and put into practice, but in either case, the distance at which they can be visualized is short, and they cannot be seen unless a large amount is released, making it impossible to visualize fine details or the state of turbulence.

(発明が解決しようとする問題点) 本発明はかかる観点よりなしたもので、近年発
展の目覚しい超LSI技術を利用して計測、データ
収録、計算及び計算結果の表示をマイクロコンピ
ユータを利用して行うものである。すなはち、空
気の動きを熱線風速計により計測し、計測結果を
信号変換した後磁気記憶したりマイクロコンピユ
ータでデジタル計算し、その結果を液晶などによ
る小型表示装置に表示するものである。表示する
結果としては、瞬時瞬時の気流のx、y、z方向
成分の計算値と合成ベクトル、ある時間中に複数
回計測した各瞬時のx、y、z方向成分の平均値
と平均合成ベクトル及びある時間中に計測した瞬
時瞬時の合成ベクトルをすべて重ね合わせて表示
して気流のゆれ方向・乱れ具合いなどが分かるよ
うにした項目である。こうすることにより、汚染
されては困る場所や狭い場所あるいは高所の気流
状態を容易に、清潔に計測することが出来るよう
になる。
(Problems to be Solved by the Invention) The present invention has been made from this point of view, and uses a microcomputer to perform measurement, data recording, calculation, and display of calculation results by utilizing the super LSI technology that has developed rapidly in recent years. It is something to do. In other words, air movement is measured with a hot-wire anemometer, the measurement results are converted into signals, then stored magnetically or digitally calculated with a microcomputer, and the results are displayed on a small display device such as a liquid crystal. The displayed results include the calculated values and composite vector of the x, y, and z-direction components of the instantaneous airflow, and the average value and average composite vector of the x, y, and z-direction components of each instant measured multiple times during a certain time. This is an item in which all instantaneous resultant vectors measured during a certain period of time are superimposed and displayed so that the direction and degree of turbulence of the airflow can be understood. By doing this, it becomes possible to easily and cleanly measure airflow conditions in places where contamination is a problem, narrow places, or high places.

(発明の構成) 上記の目的を達成するために本発明の気流計測
装置は次のとうり構成される。
(Configuration of the Invention) In order to achieve the above object, the airflow measuring device of the present invention is configured as follows.

すなわち、気流を3次元的に計測できるように
した熱線式センサと、この熱線式センサへの電力
供給量を制御し、気流の冷却現象による抵抗値の
変化から支流速度を計算し、風速のx、y、z軸
方向成分を計算したり、データを格納したりある
いは計算値を表示したりする機能が集中存在する
計測器本体から成り立つている。
In other words, it uses a hot-wire sensor that can three-dimensionally measure airflow, controls the amount of power supplied to the hot-wire sensor, calculates the tributary velocity from the change in resistance due to the cooling phenomenon of the airflow, and calculates x of the wind speed. , y, and z-axis direction components, storing data, and displaying calculated values.

(実施例) 次に本発明の実施例を図に基づいて説明する
と、第1図は全体構成図であり、第2図はそのブ
ロツクダイアグラム、第3図は計測結果の表示
例、第4図は熱線式風速センサの先端部の一例を
示したものである。
(Example) Next, an example of the present invention will be explained based on the drawings. Fig. 1 is an overall configuration diagram, Fig. 2 is a block diagram thereof, Fig. 3 is an example of display of measurement results, and Fig. 4 is a diagram showing the overall configuration. shows an example of the tip of a hot wire type wind speed sensor.

まず第1図から説明すると、全体は2つの部分
からなり、熱線式風速センサ1とセンサの制御、
信号の授受・変換、データの収録・計算、計算結
果の表示な等を行う計測器本体2から成立ち、両
者はワイヤ14とコネクタ15によつて接続され
ている。
First, to explain from Fig. 1, the whole consists of two parts: the hot wire type wind speed sensor 1, the sensor control,
It consists of a measuring instrument main body 2 that performs signal transmission, reception, conversion, data recording and calculation, display of calculation results, etc., and both are connected by a wire 14 and a connector 15.

熱線式風速センサ1の先端部11には2本1組
として6本のピンが植えられており、その先端部
に所定の電気抵抗値をもつ細い金属線を張る。こ
のピンは、例えば第4図に示すように植えてあ
る。すなはち金属線41,42はピンの長さが同
じで金属線の長さも同じでお互いに直角を成して
いる。第3の金属線43はピンの長さを変えてあ
り、金属線41,42に対して直角を成してい
る。6本のピンの下部にはそれぞれワイヤが接続
されており、気流を乱さないように細い円管12
内を通つてセンサ握り部13内で連絡用コード1
4に接続されている。
Six pins are set in pairs at the tip 11 of the hot-wire wind speed sensor 1, and a thin metal wire having a predetermined electrical resistance is stretched over the tip. This pin is placed, for example, as shown in FIG. In other words, the metal wires 41 and 42 have the same pin length and the same metal wire length, and are at right angles to each other. The third metal wire 43 has pins of varying lengths and is perpendicular to the metal wires 41, 42. A wire is connected to the bottom of each of the six pins, and a thin circular tube 12 is connected so as not to disturb the airflow.
The communication cord 1 is inserted into the sensor grip part 13 through the inside.
Connected to 4.

計測器本体2の表面には計測結果の表示をする
ための表示窓21と計測器や計測結果表示項目選
択用のスイツチ類取り付け部22があり、箱体の
内部にはLSIを使用しそれらがボード上に取り付
けられた電子機器や携帯できるような電源装置が
納められている。
On the surface of the measuring instrument body 2, there is a display window 21 for displaying measurement results and a switch mounting section 22 for selecting the measuring instrument and measurement result display items. It contains electronic equipment mounted on the board and a portable power supply.

第2図は本気流計測装置のブロツクダイアグラ
ムであり、センサからの電気抵抗変化の情報は計
測器本体内に設けられた信号変換器によつてデジ
タル変換されてデータ収録装置内に入り、CPU
の制御により記憶されたりCPUに送られて計算
され、表示装置に表示される。センサ部の細い電
線に所定の電圧が印加されると、その電気抵抗に
対応して電流が流れ、同時にジユール熱が発生し
温度が高くなる。静止空気中では発熱体のまわり
に上昇気流が生じ空気によつて運びさられる熱量
と電流による発生熱量との間にバランスが生じ
る。この時の抵抗値を基準値にとる。このセンサ
を気流中に設置するとさらに気流によつて持ち去
られる熱量が増加する。気流によつて冷却される
と電線の温度が低下して電気抵抗値が変化する。
すなはち、検定用風道内にセンサを設置して、風
速と電気抵抗の変化の関係を予め測定しておけば
以後は電気抵抗を測定することによつて風速を知
ることができることになる。これが熱線風速形の
原理である。
Figure 2 is a block diagram of this airflow measuring device. Information on electrical resistance changes from the sensor is converted into digital data by a signal converter installed inside the measuring device, enters the data recording device, and is sent to the CPU.
It is stored or sent to the CPU, calculated, and displayed on the display device under the control of the CPU. When a predetermined voltage is applied to the thin wire of the sensor section, a current flows in accordance with its electrical resistance, and at the same time, Joule heat is generated and the temperature rises. In still air, an upward air current is created around the heating element, creating a balance between the amount of heat carried by the air and the amount of heat generated by the electric current. The resistance value at this time is taken as the reference value. Placing this sensor in an air stream further increases the amount of heat carried away by the air stream. When the wire is cooled by the airflow, the temperature of the wire decreases and the electrical resistance value changes.
In other words, if a sensor is installed in the test wind duct and the relationship between the wind speed and the change in electrical resistance is measured in advance, then the wind speed can be determined by measuring the electrical resistance. This is the principle of the hot wire wind velocity type.

熱線風速計は気流に対する指向性が高いので、
3本の電線をお互いに直角を成すように設置して
おき、各々の電線に直交する気流速度を求め、予
め決めておくセンサの軸(たとえばセンサ握り部
に基準軸を刻印して示しておく)に対する気流速
度を計算することによつてx、y、zの気流速度
を知ることが出来る。
Hot wire anemometers are highly directional to airflow, so
Install three wires so that they are perpendicular to each other, find the airflow velocity perpendicular to each wire, and determine the sensor axis in advance (for example, indicate the reference axis by marking it on the sensor grip). ), the airflow velocities in x, y, and z can be determined by calculating the airflow velocities for

本発明の気流計測装置による測定結果の表示例
を第3図に示す。第3図のaは測定結果を連続的
またはプログラムにより所定の時間間隔で3次元
(左図)または2次元(右図)で示した物である。
この計測モードではスイツチ操作により表示画面
を停止できるようにもしている。第3図のbは所
定の時間間隔(例えば1秒間に5回)で所定の数
のデータ(例えば100個)を取り込み、後でx、
y、z方向の平均風速と平均風速及び平均ベクト
ルを計算して3次元(左図)または2次元(右
図)で示した物である。第3図のcはbと同様な
計測を行い各瞬間のx、y、z方向の気流成分か
らベクトルを合成し、その全てを重ね合わせて表
現した物である。
FIG. 3 shows an example of display of measurement results by the airflow measuring device of the present invention. FIG. 3a shows the measurement results in three dimensions (left diagram) or two dimensions (right diagram) continuously or at predetermined time intervals according to a program.
In this measurement mode, the display screen can also be stopped by operating a switch. b in Figure 3 captures a predetermined number of data (for example, 100 pieces) at a predetermined time interval (for example, 5 times per second), and later x.
The average wind speed, average wind speed, and average vector in the y and z directions are calculated and shown in three dimensions (left figure) or two dimensions (right figure). 3. c in FIG. 3 is expressed by performing the same measurements as b, synthesizing vectors from the airflow components in the x, y, and z directions at each moment, and superimposing all of them.

(発明の効果) 以上のように、本発明によればセンサを気流状
態を知りたいと思う場所に持つて行けば、容易に
実時間上の気流の向きや風速あるいはある時間内
の平均的気流状態や気流ベクトルを複数重ね合わ
せた物が分かる。すなはち、洗浄度を必要とする
場所の気流状態や細かな場所の気流状態を知るこ
とが出来る。また計測器内に収録したデータを別
のコンピユータに取り込めばデータを編集するこ
ともできる。
(Effects of the Invention) As described above, according to the present invention, if you bring the sensor to a place where you want to know the airflow state, you can easily check the direction and speed of the airflow in real time, or the average airflow within a certain period of time. You can see the state and airflow vectors superimposed on each other. In other words, it is possible to know the airflow conditions in areas that require high degree of cleaning and the airflow conditions in detailed areas. Data recorded in the measuring instrument can also be edited by importing it into another computer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気流計測装置の構成図、第2
図はブロツクダイアグラム、第3図は計測結果の
表示例、第4図はセンサ先端部の構造図である。
なお図中の1は熱線式風測センサ、2は計測器本
体である。
Fig. 1 is a configuration diagram of the airflow measurement device of the present invention, Fig. 2
The figure is a block diagram, FIG. 3 is a display example of measurement results, and FIG. 4 is a structural diagram of the sensor tip.
In addition, 1 in the figure is a hot wire type wind sensor, and 2 is a measuring instrument main body.

Claims (1)

【特許請求の範囲】 1 センサの先端部にピンを立てその先端に細い
電線を張り、その電線に電流を流して発熱させ、
そのセンサを測定しようとする空気流中に置き、
空気流の冷却現象による電気抵抗値の変化から空
気流速を知る熱線式風速計において、センサの先
端部に互いに直角を成すように3組の細い電線を
直線状に張り、各直線に対する風速を求め、更に
予め設定しておくx、y、z軸方向の風速成分を
求め、このx、y、z方向成分より合成ベクトル
を求めて、計測器の表面に設けた表示画面上に
x、y、z軸方向の風速成分の計算値及び合成ベ
クトルを3次元的または2次元的に、連続または
連続的に表示しておき任意の時刻に画面を停止で
きるようにしまたは所定時間間隔で表現するよう
にした気流計測装置。 2 3組の熱線による風速の測定を、予め設定す
る複数回だけ行い、その各々の測定値は記憶装置
内に格納しておき、所定の数だけ計測が終わつた
後でx、y、z軸方向の平均風速成分、平均合成
ベクトルを求めて計測器の表面に設けた表示画面
上に、x、y、z軸方向の平均風速成分、平均合
成ベクトルの計算値及び平均合成ベクトルを3次
元的または2次元的に表現するようにしたことを
特徴とする特許請求の範囲1に記載した気流計測
装置。 3 3組の熱線による風速の測定を、予め設定す
る複数回だけ行い、その各々の測定値は記憶装置
内に格納しておき、所定の数だけ計測が終わつた
後でx、y、z軸方向の風速成分より各瞬間毎の
合成ベクトルを求めて計測器の表面に設けた表示
画面上に、3次元または2次元的に全ての合成ベ
クトルを重ね合わせて表現するとともにx、y、
z方向の平均風速成分と全体の平均風速の計算結
果を表示するようにしたことを特徴とする特許請
求の範囲1に記載した気流計測装置。 4 1から3に述べた機能を計測器の表面に設け
たスイツチ操作により選択できるようにしたこと
を特徴とする特許請求の範囲1に記載した気流計
測装置。
[Claims] 1. A pin is placed at the tip of the sensor, a thin electric wire is attached to the tip, and a current is passed through the wire to generate heat.
Place the sensor in the air stream you want to measure,
In a hot-wire anemometer, which determines the air flow velocity from changes in electrical resistance due to the cooling phenomenon of the air flow, three sets of thin electric wires are strung in a straight line at right angles to each other at the tip of the sensor, and the wind speed for each straight line is determined. Furthermore, the wind velocity components in the x, y, and z axis directions that are set in advance are determined, and a composite vector is determined from these x, y, and z direction components, and the x, y, and The calculated value of the wind speed component in the z-axis direction and the resultant vector can be displayed three-dimensionally or two-dimensionally, continuously or continuously, so that the screen can be stopped at any time, or it can be expressed at predetermined time intervals. airflow measuring device. 2 Measure the wind speed using three sets of hot wires a preset number of times, store each measurement value in the storage device, and after completing the measurement a predetermined number of times, measure the wind speed on the x, y, and z axes. The average wind speed component in the x, y, and z axis directions, the calculated value of the average composite vector, and the average composite vector are displayed three-dimensionally on the display screen provided on the surface of the measuring instrument. The airflow measuring device according to claim 1, characterized in that the airflow measuring device is expressed two-dimensionally. 3 Measure the wind speed using three sets of hot wires a preset number of times, store each measurement value in the storage device, and after completing the measurement a predetermined number of times, perform the measurement on the x, y, and z axes The resultant vector for each moment is determined from the wind speed component in each direction, and all resultant vectors are superimposed and expressed in three or two dimensions on the display screen provided on the surface of the measuring instrument, and x, y,
The airflow measuring device according to claim 1, characterized in that the calculation results of the average wind speed component in the z direction and the overall average wind speed are displayed. 4. The airflow measuring device according to claim 1, wherein the functions described in 1 to 3 can be selected by operating a switch provided on the surface of the measuring device.
JP32601089A 1989-12-18 1989-12-18 Air current measuring device Granted JPH03186767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32601089A JPH03186767A (en) 1989-12-18 1989-12-18 Air current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32601089A JPH03186767A (en) 1989-12-18 1989-12-18 Air current measuring device

Publications (2)

Publication Number Publication Date
JPH03186767A JPH03186767A (en) 1991-08-14
JPH0552908B2 true JPH0552908B2 (en) 1993-08-06

Family

ID=18183088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32601089A Granted JPH03186767A (en) 1989-12-18 1989-12-18 Air current measuring device

Country Status (1)

Country Link
JP (1) JPH03186767A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452127B2 (en) * 2005-07-25 2008-11-18 Extech Instruments Corporation Anemometer with non-contact temperature measurement
JP2006263792A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Device and method for detecting malfunction of chill vent
JP6200896B2 (en) * 2012-10-31 2017-09-20 日本カノマックス株式会社 Anemometer
JP6225937B2 (en) * 2015-03-25 2017-11-08 コニカミノルタ株式会社 Optional equipment for electrical equipment

Also Published As

Publication number Publication date
JPH03186767A (en) 1991-08-14

Similar Documents

Publication Publication Date Title
Hodgson et al. An experimental investigation of heat transfer from a spray cooled isothermal cylinder
Hottel et al. Temperature measurements in high-velocity air streams
JPH0552908B2 (en)
Walker et al. Absolute low speed anemometer
Danielsson Convective heat transfer measured directly with a heat flux sensor
Mee et al. Measurement of the temperature field downstream of simulated leading-edge film-cooling holes
JPS5921505B2 (en) Trace gas flow detector
van Putten et al. A silicon bidirectional flow sensor for measuring respiratory flow
Faircloth Jr et al. Effect of vibration on heat transfer for flow normal to a cylinder
Mahler Bidirectional hot‐wire anemometer
Goldstein et al. Design and calibration of a total-temperature probe for use at supersonic speeds
Lawson Jr et al. A note on the measurement of transverse velocity fluctuations with heated cylindrical sensors at small mean velocities
RU2791425C1 (en) Quasi-distributed hot-wire probe for measuring the distribution of gas flow velocity
CN205539523U (en) Earth magnetism horizontal component developments monitoring device
SU59757A1 (en) Anemometer
Leon et al. DESIGN, CONSTRUCTION, AND EVALUATION OF A COMPACT RECIRCULATINGWIND TUNNEL FOR AGRICULTURAL EXPERIMENTS
Mulhearn et al. A simple device for dynamic testing of X-configuration hot-wire anemometer probes
Benseman et al. A thermocouple anemometer
Ettouney et al. An anemometer for scale model environmental wind measurements
SU80240A1 (en) Device for measuring the vertical component of the air flow
JPS61186825A (en) Measuring method of temperature distribution using thermography device
Harris Further development of the cold tip velocity meter
Mastracci et al. Visualization of grid-generated turbulence in He II using PTV
JPS6111656A (en) Measuring device for logarithmic attenuation factor
Kuhlman et al. 2-component Point Doppler Velocimetry (PDV) measurements of turbulent flow over an airfoil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20070806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees